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% The Consortium for Advanced Simulation of Light
water reactors (CASL)

CASL's mission : to provide forefront and Energy Innovation Hub
usable modeling and simulation

capabilities needed to address
phenomena that limit the operation and

safety performance of LWRs Eral Notlonal
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CASL is an outcome-oriented endeavor. Science and

engineering products are of primary importance.
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CASL Mod-Sim Challenges

Full core to assembly to subassembly to pin/pellet
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Uncertainty _ .
Quantification Calibration

Verification

 The Predictive Code Maturity Model (PCMM) is the process

being employed in CASL to measure software quality and
maturity.

 This is an iterative process where one continually works to
increase the lowest score.
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Total Uncertainty

« Total uncertainty = numerical + model + parameter =
verification + validation + uncertainty quantification

« A large uncertainty results from bad numerics, bad
physical models, and/or large parameter
uncertainties.

* It is unsafe to make assumptions about unmeasured
uncertainties.

 Improved confidence in mod-sim capability is
achieved from a quantitative-based holistic approach.

UL
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Common Measures of Uncertainty
- Verification:  [|QOI ., — QO omputed|

 Validation: HQOIe:Upefrimental - QOIcomputed”

« Uncertainty Quantification:
HQOIpertu'r‘bed - QOIcomputed”

Numerical, model, and parameter uncertainty are computed in a consistent

manner to allow meaningful comparisons of error and sensitivity.
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General Strategy
 Quantify all modes of uncertainty
« Quantitatively compare the different forms of uncertainty

« Work to reduce the largest uncertainties

 Predictive Capability Maturity Model will be employed by
CASL.
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Dakota Driver

Dakota Text Input Dakota Executable Dakota Output:
File method Text and Tabular Data

« DAKOTA is the software package that /

will be used to deliver tools to A e
. - dKota Farameters S In DaKota

improve the PCMM analysis. File Results File
variables responses

o DAKOTA has been Strong in g....; .................. - ........................ |.. ..... .:

uncertainty quantification and : [ Proprocessing | automatic post- |

: processing |-

calibration and M\/A1re improving its

ability to do ve !\:II\{.,Adzl.ion and

validation.

 Adapters to manipulate parameters in:
— High-level user input
— Auxiliary data, e.g., model form

— Offline generated input data such
as cross section

Dakota enables ViEl&analyses in CASL S
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Slide 8

MVA1l changed so to and
Mousseau, Vincent Andrew, 5/23/2016

MVA2 Shoud we replace code input with "VERAIN" and code output with "VERAOUT"?
Mousseau, Vincent Andrew, 5/23/2016

MVA3 remove core since it has multiple meanings in this talk
Mousseau, Vincent Andrew, 5/23/2016
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% VUQ Analysis of Cobra-TF for Problem of Interest

Simulation of a single PWR assembly
— Hot Full Power, T/H feedback
— Boron concentration of 1300 ppm, 100% power
— Power supplied by neutronics held constant
Dittus Bolter parameter variation
Quantity of Interest is maximum fuel temperature
Results are based on random samples of the parameter distributions.
A 95% credible interval is calculated similar to Wilks" "

Power
Fuel / Clad / Fluid Temperature /
Fluid Density
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Slide 9

MVA4 Compare with Wilks which most of them use.
Mousseau, Vincent Andrew, 5/23/2016
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i Cobra-TF Solution Verification
CTF-only: With Spacer Grids*

* Grid locations were Mesh #Axial Tot. Press.
shifted to produce factor, f elements (bar)
equal mesh spacing
between all grids. 0.5 4.036 72 1.16843
0.75 6.054 48 1.1701
\ spacer  E(j—1.0)=0.0066| 10 | 8or2 | 36 | 1.17176
" Challr 15 | 12108 | 24 | 1.17508
allenge
2.0 16.144 18 1.17845
v E=a{dx)*b, & _ 6.5836-03,b = FHTS -
Error Model:
a E=P—P=a(Az)"
Ly b=1.012 -

27y Very good agreement with theoretical 1.0

0.001

01 1
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This research used resources of the Oak

Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, which is Each run requires ~600 cpu hours on ORNL'’s Titan
supported by the Office of Science of the
U.S. Department of Energy under Contract | 1000 ; —

Coupled CTF-Neutronics Solution

Verification

No. DE-AC05-000R22725. E=aP b = Oggfzrli E
Mesh #Axial Max
factor,f | elements Power
0.5 92 27,882 é
0.75 65 |27,907 “ 100} :
1.0 50 27,909 LIgJ
1.25 43 27,966
1.5 37 27,995
1.75 35 28,018
2.0 30 28,019 100.1 ' — '1 ' — ""'10
E(fZI.O) — 102 — 037% mesh factor, f
Error Model: EPmax = Pmax — Pmax — a (f)b
b= 0.842 i

Laboratories




Slide 11

MVA5 The green line does not show up well on my monitor. You might want to change it to black.

Mousseau, Vincent Andrew, 5/23/2016

MVAG6 Make sure in the talk you define "FEM Error"
Mousseau, Vincent Andrew, 5/23/2016
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% Coupled Problem Parameter Sensitivity 2>

Downselect

0.5 21.423 Fuel

15 7.445 Fuel

0.9 6.807 Fuel

1.1 -5.405 Fuel

1.05 4.436 Coupling

0.95 -4.354 Coupling

NA 0.739 Neutronics
0.95 0.610 Thermal Hydraulics
1.05 -0.495 Thermal Hydraulics
0.95 0.254 Coupling

1.05 0.236 Coupling

NA -0.198 Neutronics
1.05 -0.106 Coupling
~ MeshSpacing  NA 0.050 Numerical
0.95 0.085 Coupling

0.95 0.034 Coupling

1.05 0.032 Coupling

40+ initial VUQ parameters reduced to 7 via sensitivity analysis Sandia

National _
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Dittus Boelter Uncertainty Quantification

Nu =0.023Re”® Pr’* = 0, Re" Pr”

« We have three parameters, lead coefficient, 6;, Reynolds
exponent, 8,, Prandlt exponent?; .

 The challenge is to determine the parameter distribution for
these three parameters.

« We will initially use “expert opinion” to say
0, (0.0,0.046]
0, €[0.0,1.6]
0, [0.0,0.8]

» We then assume a uniform distribution and do 93 samples
to get a 95%-95% confidence interval from Wilks Formula.
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1" Second Attempt

* Dittus Boelter was based on 13 data sets, this analysis is
based on one, Morris and Whitman, “Heat Transfer for
Oils and Water in Pipes,” Industrial and Engineering
Chemistry, Vol. 20, No. 3, pp.234-240, 1928.

 From this data set we can build the following parameter
distributions.

» We use the Delayed Rejection Adaptive Metroplis
(DRAM) algorithm.

 (Given the experimental data, and the correlation, the
following parameter distributions can be constructed by
Bayesian analysis.

5S=w
BEE
g=3



\

Bayesian Based Parameter Distributions
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Dittus Boelter

We note that the maximum probability for the lead
coefficient (labeleds, ) is now lower 0.004 from 0.023.

The Reynolds exponent (labeled?. ) is now larger 0.99
from 0.8

The Prandlt exponent (labeled o,)is only slightly larger
0.41 from 0.4.

These differences are because we only used 1 of the 13
data sets employed to build Dittus Boelter.

We can then take 93 random samples from these
distributions and get the following maximum fuel
temperature distribution.

5S=w
BEE
g=3
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Second Uncertainty Quantification
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Joint Samples for the Three Parameters
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Dittus Boelter Results

T_fuel_max 95.0% Credible Interval
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Comparing the Three Results

On the next slide we will show all three maximum
temperature distributions.

The first two have very different shape but roughly the
same 95% uncertainty range.

The third one shows the improvement of recognizing the
correlation between the parameters and building a single
joint distribution.

We continually make better use of the data we have.
The final uncertainty is 5 degrees versus 40 degrees
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Comparison of Results
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Dittus Boelter

We now have a process to compute parameter distributions.

The process depends on the experimental data used to
produce the correlation.

The process is easily defendable and does not rely on
expert opinion.

New experimental data can be easily incorporated to
improve the accuracy of the new calibrated correlation.

Future work will compare this uncertainty to expert opinion
based parameter distributions employing Wilks formula.




The Big Picture: Automated PCMM

0.0

0.05

0.04

0.02

0.0z
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[u]
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Custom Input Adapters —
verain.inp

Joint Correl.

Params

react2xml.pl

Xsec lib

Params.in

DakotaVERAIN. F
| i

2ctf

Tabular_output.dat

samples = 1000

max_fuel_T

" Joint Gorelation
deck.inp
N vuq_mult.txt
CTF vu q * txt vuq_param.txt

Mpact®

results.out

Custom Output Adapters /

verain.h5
t adapter®
dock ctf h5
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Conclusions

« The CASL project is employing a holistic view of uncertainty.

 Quantification of uncertainty includes
— numerical uncertainty quantified by verification
— Model uncertainty quantified by validation
— Parameter uncertainty measured by a variety of methods

* The key to uncertainty quantification is constructing parameter

distributions. We have a Bayesian method named DRAM to build
these parameter distributions.

 This approach to uncertainty quantification is easily defendable
and readily improved by incorporation of new validation data.

Sandia
m National _
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Extra Slides




i Hi2lLo
(R. Smith et al.)

Design Algorithm
Statistical Model:

dp = dg(0,&n) + 0(&n) + €nlén)

~ Dy_1= {(Zh (-221 T fzn—l}
dn = dh_(s-n) =T 'é:n(gn)

_ . .
Existing data: [(fl, dl), (fg, dz), Tt (Enw—la dn—l)]

Calibrate parameters of low-fidelity model: dg(9 , fn)

¥ DRAM

Choose new design §n to reduce uncertainty in

w.v KNN Estimate of Mutual Information

Evaluate high-fidelity model at &,,: d,, = d}, (&n) + En(&n)

J

http://www.casl.gov/docs/CASL-U-2014-0197-000.pdf
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Hi2lLo
(R. Smith et al.)

Example Thermal-Hydraulics

Bash écribis (G'iue'cémpunenls}

Regime: Laminar flow in a pipe

Implementation Schematic

[
ke

Poiseuille Flow: Permits verification of crD  and low-fidelity model

72
ap_ _V'p Low-Fidelity Model:
dz 2 D L
where F{G) =k
Re - .
= Average Velocity True Parameters: ¢ = [64, —1]
pD
64 ' - =
f=— Friction Factor Desipn ¥kl © —=e

Re
http://lwww.casl.gov/docs/CASL-U-2014-0197-000.pdf
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For general parameter perturbations:

a = kqag + Sa

Cobra-TF Parameter Exposure
with Noel Belcourt

Dakota This capability enables:
« Sensitivity studies
« UQ studies
« Parameter optimization
vuq_mult.txt ] .
Q of | and calibration
k_alpha
k_o.r;l.ega

Exposure of VERA Input and Cobra-TF input parameters

enables VUQ analysis
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Consortium for Advanced Simulation of LWRs

Parameter Uncertainty

* Wilkes is the standard (93 runs),
multivariate MC using uniform dist
within best-judgment ranges

 Dittus-Boelter
e McAdams
« X-secs

Do forward UQ using these improved
parameter input distributions.

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-
000R22725.
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% Summary of Current Activities Presented at
PHYSOR 2016

PHYSOR 2016, Sun Valley, ID, May 1-5, 2016
« B. Collins, R. Salko, S. Stimpson, K. T. Clarno, A. Godfrey, S. Palmtag, J. Secker, B. Kendrick, R. Montgomery,
“Simulation of CRUD-Induced Power Shift using the VERA Core Simulator and MAMBA’
*  A. Graham, T. Downar, B. Collins, R. Salko, S. Palmtag, “Assessment of Thermal Hydraulic Feedback Models”

« A Godfrey, B. Collins, K.S. Kim, J. Powers, R. Salko, S. Stimpson, W. Wieselquist, K. Clarno, J. Gehin, S. Palmtag, R.
Montgomery, R. Montgomery, D. Jabaay, B. Kochunas, T. Downar, N. Capps, J. Secker, “VERA Benchmarking
Results for Watts Bar Nuclear Plant Unit 1 Cycles 1-12°

 T.Downar, B. Kochunas, B. Collins, “Validation and Verification of the MPACT Code”

* A Godfrey, M. Jessee, S. Stimpson, B. Collins, T. Evans, M. Kromar, F. Franceschini, D. Salazar “VERA
Benchmarking Results for KRSKO Nuclear Power Plant Cycle 1”

»  F. Franceschini, D. Salazar, M. Ouisloumen, A. Godfrey, S. Stimpson, B. Collins, C.Gentry, “AP1000 PWR Cycle 1
HFP Depletion Simulations with VERA-CS”

« S. Stimpson, B. Collins, A. Zhu, Y. Xu, “A Hybrid Nodal P3/SP3 Axial Transport Solver for the MPACT 2D/1D
Scheme”

« . Stimpson, J. Powers, K. Clarno, R. Pawlowski, R. Bratton, “Assessment of Pellet-Clad Interaction Indicators in
Watts Bar Unit1, Cycles 1-3 Using VERA”

»  B. Kochunas, E. Larsen, “Fourier Analysis of Iteration Schemes for K-Eigenvalue Transport Problems with Flux-
Dependent Cross Sections”
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Parameter Sensitivity > Downselect

partial simple morris CPS
parameter correlation correlation morris main interaction variation
k_eta 0.07 0.03
k_gama -0.03 0.04
k_sent -0.03 -0.02
k_sdent -0.07 -0.01
k_tmasv -0.03 0.00
k_tmasl 0.11 0.00 6.48E-05 2.28E-05 medium
k_tmasg -0.19 -0.01
k_tmomv -0.12 -0.01
k_tmome 0.02 0.00
k_tmoml 0.02 -0.02 2.23E-04 1.30E-04 medium
k_xk 0.08 -0.02
k_xkes -0.05 0.00
k_xkge -0.07 0.01
k_xkl 0.04 -0.01
k_xkle -0.03 0.00
k_xkvls 0.11 -0.01
k_xkwvw -0.10 0.01
k_xkwlw 0.14 0.01
k_xkwew -0.01 0.03
k_qvapl -0.09 -0.01
k_tnrgv -0.03 0.00
k_tnrgl -0.01 0.03 9.00E-06 9.49E-06 low
k_rodqq 0.02 -0.01
k_qradd -0.02 0.00
k_qradv -0.01 0.00
k_qliht -0.01 0.00
k_sphts -0.05 0.03
k_cond -0.04 0.00
k_xkwvx 0.03 -0.02
k_xkwlx 1.00 0.88 1.80E-01 7.07E-03 high
k_cd 1.00 0.46 9.59E-02 7.88E-03 high
k_cdfb -0.02 -0.01
k_wkr 0.02 0.02

5 Active Inputs (single phase flow):

k_cd : Pressure loss coefficient
of spacer in sub-channel

k_xkwlx : Vertical liquid wall drag
coefficient

“User Guidelines and Best Practices for CASL UQ
Analysis Using Dakota,” SAND2014-2864

33 initial VUQ parameters reduced to 5 via sensitivity analysis
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National _
Laboratories



Slide 32

MVA?7 Note single phase flow somewhere
Mousseau, Vincent Andrew, 5/23/2016
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