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Background: Statistical transport equation

The statistical transport equation exactly describes averaged 
fluxes in a (binary) stochastic medium:

Ω ⋅ � �� �⃗, Ω + ��,� �� �⃗, Ω

=
��,�
4�
��Ω′ �� �⃗, Ω′ + ��

�� ��,� �⃗, Ω − ��,� �⃗, Ω

�� �⃗, Ω : the ensemble-averaged angular flux conditioned on 
the existence of material i at location �⃗

��,� �⃗, Ω : the ensemble-averaged angular flux conditioned on 
the existence of material i at location �⃗ and the existence of an 
interface/surface between material i and material j
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Background: Generalized closure

We previously proposed a generalized family of closures for the 
statistical transport equation:

�� �⃗, Ω = � �⃗ � �⃗, Ω

where [] indicates a vector/operator in both angular and 
material space and R is a response matrix, which may in general 
be dense.

The LP closure may be expressed as � ≈ �.
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Background: Generalized rod problem

Our approach is to relate the interior fluxes (with or without 
interfaces) to the boundary fluxes.  From this we relate 
�� �⃗, Ω and � �⃗, Ω .
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Background: Deterministic generation of 
realizations and construction of R

 Use a numerical quadrature to determine the location of each 
pseudo-interface for a given P.  There will be as many 
quadratures as pseudo-interfaces (P-dimensional product 
quadrature).  This yields an ensemble of realizations.

 Solve the transport problems for each generated realization, 
and combine results according to quadrature integration 
rules. Repeat for all P to obtain �� �⃗, Ω and � �⃗, Ω .

 Construct R: 

� = �� ��

�� = �� �� = ����
�� � ≡ � �



7

Background: Example problem
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Motivation for less expensive closure

Algorithmic complexity of generalized closure : ≤ � 2���

Tractable Intractable

We desire an approach with lower algorithmic complexity.
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Proposed solution: atomic mix buffer layers
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We explicitly model the interfaces in a region of interest and 
atomically mix elsewhere.  This greatly reduces the algorithmic 
complexity, hopefully without sacrificing too much accuracy.
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We discovered an interesting limit…

Let the width of the “sensitive” region shrink to zero:

Near this “atomic mix” limit:

• There is a single unmixed material in that region (without 
interfaces), or two unmixed materials (with one interface).

• Transport results are governed completely by a single 
atomically mixed realization
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Atomic mix closure

Since we preserved the distinction in material identities as we 
approach the atomic mix limit, we can relate the average 
fluxes in a simple manner:  
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A few transport calculations and some matrix math yield the 
atomic mix closure.
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Conclusions

 In our attempt to find more sophisticated closures to the 
statistical transport equation, we have discovered a simple 
closure.

 This closure is generally more accurate than LP and requires 
only a modest amount of pre-computation.

 The atomic mix closure is much more accurate than atomic 
mix results: the functional form retains important properties 
as chord lengths increase.

 The closure is subject to instabilities in thick problems 
(diagonal dominance issues) that can be addressed with 
subgrid approaches.
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Future work

 Improve the theory, e.g. formal asymptotic derivation

 Gain better understanding of instabilities

 Correct for boundary effects

 Extend to higher-order angular quadratures and multigroup


