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 Physical vapor deposition allows for intimate contact between explosive

and confinement layers as well as precise control over layer thicknesses  Porosity ~10-15 vol.% (dependent on

S d' _ _ o _ « Small amount of porosity develops deposition conditions) — mixture of small,
dldid * We have performed experiments to determine minimum thickness of Metal vaoor during crystallization (~ 0.5 vol. %) with roughly equiaxed pores and large,
N - I confinement necessary to behave as if it was eﬁectively infinite in P pore sizes of ~ 100 nm e|onga’[ed ones a|ong column boundaries
atlﬂna hexanitroazobenzene (HNAB) films confined with copper and in NO NT
2 Electron source  No preferred crystal orientation « Strong preferred (200) out-of-plane crystal

- hexanitrostilbene (HNS) films confined with aluminum
Laboratories

« Studying effects of varying confinement thickness can provide O:N N

\l orientation

» Low surface roughness (~ 50 nm)

A\
- : : : At N NO Water-cooled hearth
. iInformation about detonation reaction kinetics 2 . bearm denosit « Moderate surface roughness (~ 1 um)
Exce tz 0 n dl _ B n A NOZ ectron beam eposition source
P =1 [= 1y Af O,N Schematic of the deposition system used to fabricate explosive films i
Shock sent into confinement Rarefacgl?n wave HNAB ;i
) . " . s 0
service Reflected shock \l Confinement layer Deposition conducted in a vacuum chamber evacuated to ~ 10° Torr 3
/  Fast deposition rate (~ 100 um/hr) for HNAB :
& Explosive »
,  Slower deposition rate (~ 5 um/hr) for HNS
in the = = . N
» Polycarbonate substrates used to minimize thermal expansion mismatch
————— o I et S i seis = Symmetry plane : "
l / « Shadow masks used to define deposition geometry
nationa Reaction Zone Reaction Zone (new location) « Metal confinement layers deposited using electron beam evaporation
» Poor adhesion with copper required use of chromium adhesion layers
. Sketch depicting a detonation confined with a dense inert material. The effectively infinite 2m
inrterest confinement condition is reached when the confinement layer is thick enough that the
detonation reaction zone can completely pass before a rarefaction can interact with it. ] _
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