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Si Technology .

G. Moore (Intel) “ It should not be called Si tecpnology but metal dielectric technology”
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Kelin Kuhn / Int'l Symp. on Adv. Gate Stack Technology! Sept. 29th, 2010

Dominated by interconnects
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Integration Advantages

High data rate — multiple
wavelengths per channel

— Requires dense integration.

— High index contrast system —
compact devices

CMOS compatible photonics
— Leverage existing infrastructureg

— Large number of active dewcesE
(SPAD S) o

— Low cost

High efficiency

— Compact devices — give lower
dark current

— Ge on Si offers best chance for
integrated compact devices.

Optical Transceiver for Exascale
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Detector development in Si Photonics )
Platform

* Key Platform Components
— Linear mode APD for integrated photonic receievers

— Geiger mode APD for inteqgrated photon counting
applications.

— Single Photon Detection (SPD) Capability

* Build on our high performance Ge on Si photodiode
technology.

* Expand Si Photonics platform to Quantum Photonics
using new and existing building blocks,.




Ge in Modern CMOS iz

. . Strain engineering in CMOS
Germanium old semiconductor g g

Intel 45nm
tECh nOIOgV' High Stress
- Indirect Bandgap at 0.66 eV. 7 & E |
- Direct Bandgap at 0.8 eV (1550 nm) in telecom band. = . ’g ! *é
- Not efficient optical emitter. L e g

Selective epitaxial growth of Ge on Si
has enabled advanced strain engineering
in modern CMOS.

Fully CMOS Compatible.

High electron and hole mobilities.

Ge optoelectronics: direct bandgap
at 1550nm implies good absorption.

PR 18
Ge Quantum-well Ge

M SFET Transistor
Sources: (1) ESSDERC 2008, (2) www.intel.com/silicon research/R&D pipeline
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Energy (eV)

Optical Properties of Doped Ge g,

Tight binding band-structure

Sandia

Can we determine validity of band-filling

\

and strain models for PL & EL signatures?

Optical Properties of Heavily Doped Semiconductor
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Hole energy Electron energy
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Indirect Bandgap in Strained Ge

(a) Unstrained  (b) Tensile strained (c) Tensile strained,
doping and current

l Eg'L (581_1 — 685)/2 ACH + ASX’lh ASX’L
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Ge on Si Detector Development L=

Compact high speed photodiode Ge on Si Avalanche Photodiode
Sandia Intel, UCSB, UVa

5i,N, ARC P-contact 10 pm

. M-contact )

p+doped (implanted) Si

p+ doped (in-situ) Ge Si

Si substrate

det | curr | WD |mag O HFW | tit | HV .
T m52°0100kv Felios1 | MNATURE PHOTONICS | VOL 3 | JANUARY 2009 | www.nature.com,/naturephotonics

LD |86 pA|4.0 mm |47 046x|5.44

5 December 2011 / Vol. 19, No. 25 / OPTICS EXPRESS 24897

* Integrated waveguide Ge on Si photodetector demonstrated
best in class performance.

 Ge on Silinear mode separate absorption multiplication
avalanche photodiode demonstrated 340 GHz gain bandwidth
product.

 Combining new device concepts would enable integrated
single photon detection and launch Quantum Si Photonics.
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Integrated SACM APD =

Absorber
| l/ ______
B
Si P -Si Si
- / Si Waveguide
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54800 3.0kV x7.00k SE{(M)

Charge region Multiplication region

e Lateral Multiplication region in Si
 Waveguide entry into Ge absorber.
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Lohoto(Va=1) — Liark(Ve=1)
Estimate unit gain voltage from measured responsivity of Ge p-i-n device.

Studied impact of overlap and found best devices had t=0 nm.
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* Heterodyned bandwidth measurements

* Use fixed and tunable laser and calibrated with
commercial detector in RF spectrum analyzer.
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 Measured at low gain away from breakdown

* Parameterized multiplication widths.
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* Response and maximum gain for 500 nm and 1000nm

wide multiplication region.

* Gain-Bandwidth product of 311 GHz for 1 micron wide

muliplication region.
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Gain-bandwidth product (GHz)
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Fig 3 (a) Measured total photocurrent (solid curve) under 1550 nm illumination. dark current {dash curve). and
responsivity vs. bias voltage at room temperature of a 8 pm x 10 pm APD. (b) Measured frequency response at
different bias voltages at 1550nm mnput wavelength.

[1] K.-W. Ang, J. W. Ng, A. E.-J. Lim, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong.
Waveguide-integrated ge/si avalanche photodetector with 105ghz gain-
bandwidth product. In Optical Fiber Communication Conference, page JWA36.

Optical Society of America, 2010.

Previous results at 1550 nm in waveguide coupled Ge on Si showed 105 GHz Gain-Bandwidth
product.
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Receiver characterization
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Integrated Geiger Mode APD WE

Develop a new Geiger mode APD and try and
run as a Single Photon Detector.

Use same general structure as Linear mode
APD.

Optimize implant and E-field profile in device.
Minimize Dark Current if possible.
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Gated Geiger Mode Setup ),
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Current (A)

Dark IV vs. Temperature i
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Linear mode APD
New design (Buried channel)

SACM lateral APD
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Da rk Counts VS. Temperature @laburatories
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Probability [/s]

Geiger Mode Dark Count Rate L=
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I —f=10kHz, AT = 125ns, p{/**") = 0.0108|

——f=10kHz, AT = 50ns, p{*°") = 0.00173
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Dark count probability per time period decreases with decreasing gate time
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Probability Distribution

Geiger Mode Single Photon Detection iz
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In a 1 ns window, an

| average photon number of
1 3.17 is needed in order to

make the probability of a

| count from a photon equal
| to the probability of a dark

count
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Probability Distribution
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Geiger Mode Single Photon Detection iz

(n) = 0.96 photons

In a 1 ns window, an
average photon number of
1 2.58 is needed in order to
| make the probability of a
| count from a photon equal
| to the probability of a dark
count

c()ot = 6.37 x 107°
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Time [ns]
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Gejger Mode Decreasing Gate Time

—AT=5ns,7. =2ns
rnse

—AT=4ns, 7. =2ns
rse
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Slight decrease in dark count probability and increase in photon count probability, but it’s not
clear if this is real or variation between measurements
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Geiger Mode Photon Count Rate vs.  [fi
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Summary

Demonstrated integrated Linear mode APD with
Gain-Bandwidth product of 311 GHz.

Showed BER<10? 3t 10Gbps with good receiver
sensitivity.

Demonstrated integrated gated Geiger mode
performance with low dark count vs.
temperature.

Showed single photon sensitivity.

Need further improvement through design and
optimization.



