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Outline

• Motivation

• Introduction to Selective Ge on Si integrate 
photonic devices

• Integrated Linear Mode APD

• Integrated Geiger Mode APD
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Si Technology
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G. Moore (Intel) “ It should not be called Si technology but metal dielectric technology”

Dominated by interconnects



Core Silicon Photonics

Resonant Optical 
Modulator/Filter

Thermally stabilized 
modulator 

Fast Reconfigurable Interconnects
Tunable Resonant Filter

Thermo-optic Phase Shifter

Broadband Mach-Zehnder
Filter/Switch Low loss 

optical coupler
Switch Arrays

Si Photonics-
CMOS Integration

3.2fJ/bit at 12Gb/s

High-speed  
Ge Detector in Si

< 1V-cm at 10 Gb/s

Free-carrier Effect (high-speed) Thermal Optic Effect (wide-band)

Ge



Integration Advantages
• High data rate – multiple 

wavelengths per channel
– Requires dense integration.  
– High index contrast system –

compact devices 

• CMOS compatible photonics
– Leverage existing infrastructure
– Large number of active devices 

(SPAD’s)
– Low cost

• High efficiency
– Compact devices – give lower 

dark current
– Ge on Si offers best chance for 

integrated compact devices.

Optical Transceiver for Exascale
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Detector development in Si Photonics 
Platform

• Key Platform  Components

– Linear mode APD for integrated photonic receievers

– Geiger mode APD for integrated photon counting 
applications.

– Single Photon Detection (SPD) Capability

• Build on our high performance Ge on Si photodiode 
technology.

• Expand Si Photonics platform to Quantum Photonics 
using new and existing building blocks,.
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Ge in Modern CMOS
Strain engineering in CMOS

PMOSNMOS

Intel 45nm
Germanium old semiconductor
technology.
- Indirect Bandgap at 0.66 eV.
- Direct Bandgap at 0.8 eV (1550 nm) in telecom band.
- Not efficient optical emitter.

Selective epitaxial growth of Ge on Si 
has enabled advanced strain engineering
in modern CMOS. 
Fully CMOS Compatible.
High electron and hole mobilities.

Ge optoelectronics: direct bandgap
at 1550nm implies good absorption.

J. Liu, et. al., Optics Letters, 35, 679 (2009)
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Optical Properties of Doped Ge
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Tight binding band-structure Can we determine validity of band-filling 
and strain models for PL & EL signatures?

Optical Properties of Heavily Doped Semiconductor

J. Jung, T. G . Pederson, JAP,113,114904,(2013)
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Indirect Bandgap in Strained Ge
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Ge on Si Detector Development

• Integrated waveguide Ge on Si photodetector demonstrated 
best in class performance. 

• Ge on Si linear mode separate absorption multiplication 
avalanche photodiode demonstrated 340 GHz gain bandwidth 
product.

• Combining new device concepts would enable integrated 
single photon detection and launch Quantum Si Photonics.

Al Al Al

W Via W ViaW ViaGe

PECVD 
Ox

HDP 
Ox

Si

Compact high speed photodiode Ge on Si Avalanche Photodiode

5 December 2011 / Vol. 19, No. 25 / OPTICS EXPRESS 24897

Sandia Intel, UCSB, UVa
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Integrated SACM APD

• Lateral Multiplication region in Si 

• Waveguide entry into Ge absorber.
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LIV Characteristics
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Bandwidth Measurements

• Heterodyned bandwidth measurements

• Use fixed and tunable laser and calibrated with 
commercial detector in RF spectrum analyzer.
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Bandwidth 

• Measured at low gain away from breakdown

• Parameterized multiplication widths.
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Gain Bandwidth Product

• Response and maximum gain for 500 nm and 1000nm 
wide multiplication region.

• Gain-Bandwidth product of 311 GHz for 1 micron wide 
muliplication region.
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Comparison 
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Our device!

[1] K.-W. Ang, J. W. Ng, A. E.-J. Lim, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong. 
Waveguide-integrated ge/si avalanche photodetector with 105ghz gain-
bandwidth product. In Optical Fiber Communication Conference, page JWA36. 
Optical Society of America, 2010.

Previous results at 1550 nm in waveguide coupled Ge on Si showed 105 GHz Gain-Bandwidth 
product.



Receiver characterization
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Integrated Geiger Mode APD 

• Develop a new Geiger mode APD and try and 
run as a Single Photon Detector.

• Use same general structure as Linear mode 
APD.

• Optimize implant and E-field profile in device.

• Minimize Dark Current if possible.
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Gated Geiger Mode
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A. Photon arrives each gate with fixed offset time.  Periods are equal

B. Photon arrives at commensurate gates with fixed offset time.  Periods are n multiple
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Dark IV vs. Temperature
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Dark Counts vs. Temperature
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Geiger Mode Dark Count Rate

Dark count probability per time period decreases with decreasing gate time
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Geiger Mode Single Photon Detection

� ��� � �� = 6.30 × 10��
�.�

��.�

In a 1 ns window, an 
average photon number of 
3.17 is needed in order to 
make the probability of a 

count from a photon equal 
to the probability of a dark 

count

� ≈ 0.76	�ℎ�����
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Geiger Mode Single Photon Detection

� ��� � �� = 6.37 × 10��
�.�

��.�

In a 1 ns window, an 
average photon number of 
2.58 is needed in order to 
make the probability of a 

count from a photon equal 
to the probability of a dark 

count

� ≈ 0.96	�ℎ�����
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Geiger Mode Decreasing Gate Time

Slight decrease in dark count probability and increase in photon count probability, but it’s not 
clear if this is real or variation between measurements 
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Geiger Mode Photon Count Rate vs. 
<n>
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Summary

• Demonstrated integrated Linear mode APD with 
Gain-Bandwidth product of 311 GHz.

• Showed BER<10-12 at 10Gbps with good receiver 
sensitivity.

• Demonstrated integrated gated Geiger mode 
performance with low dark count vs. 
temperature.

• Showed single photon sensitivity.
• Need further improvement through design and 

optimization. 
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