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Abstract. Sandia engineers use the Temporal Logic of Actions (TLA) early in
the design process for digital systems where safety considerations are critical.
TLA allows us to easily build models of interactive systems and prove (in the
mathematical sense) that those models can never violate safety requirements, all
in a single formal language. TLA models can also be refined, that is, extended
by adding details in a carefully prescribed way, such that the additional details
do not break the original model. Our experience suggests that engineers using
refinement can build, maintain, and prove safety for designs that are significantly
more complex than they otherwise could. We illustrate the way in which we have
used TLA, including refinement, with a case study drawn from a real safety-
critical system. This case exposes a need for refinement by composition, which
is not currently provided by TLA. We have extended TLA to support this kind
of refinement by building a specialized version of it in the Coq theorem prover.
Taking advantage of Coq’s features, our version of TLA exhibits other benefits
over stock TLA: we can prove certain difficult kinds of safety properties using
mathematical induction, and we can certify the correctness of our proofs.

1 Introduction

Sandia Laboratories builds extremely high consequence systems. Logical errors in these
systems could incur enormous costs both financially and in loss of life. It is of course
natural then to want to apply formal methods to verify such systems. However, histori-
cally, the use of formal methods in digital system design at Sandia has been limited. To
rectify this, Sandia engineers are implementing a new methodology to integrate formal
methods into the specification and design phase of high consequence systems. However,
we need specification languages which comport with the way designers think about the
systems they are designing and which are easy enough to use for engineers who are
not formal methods experts. At the same time, we need tools which make verification
tractable at scale.

Sandia engineers have begun to make use of the Temporal Logic of Actions (TLA)
[9] for formalizing specifications. TLA has proven itself to be an effective formalism for
describing the evolution of digital systems over time. However, TLA+ and its associated
tooling still faces limitations. TLA+ comes with a model checker [17], but this model
checker, while fully automated, is insufficient for proving many properties. Often times
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engineers need to work over infinite state spaces and want to verify properties beyond
the capability of any model checker. Such properties require instead interactive theorem
proving with human supplied lemmas and inductive hypotheses. What is more, model
checkers are complex pieces of software and could contain bugs. We want to be able
to independently verify claims made by verification tools. In short, we want proofs and
we want those proofs to be easily, and independently, machine checkable.

In order to overcome some of these limitations we have embedded a version of TLA
inside the proof assistant Coq [7]. Coq is a highly advanced tool, however, its logic is not
specialized to our application domain. Further, Coq’s flexibility comes at the expense of
usability as it is a tool which is geared primarily to formal method experts. We needed a
way to leverage Coq’s power while retaining TLA’s ease of use and this has driven the
design of our embedding, TLACoq.

The initial problem which motivated the design of TLACoq is the specification of
a component of a high consequence digital system produced by Sandia. We initially
developed a formal model of this component, called the Arbitrary Waveform Generator
(AWG), in TLA+. After running into limitations with TLA+ we developed TLACoq and
transitioned the AWG model to our embedding. Doing so allowed us to prove properties
which we could otherwise only partially verify by way of bounded model checking. It
also enabled us to adopt a development approach where we composed orthogonal re-
finements to construct a complete model. The compositional approach is crucial: dif-
ferent refinements reveal different aspects of the system, we need to be able to work
with refinements individually or in combination while managing complexity. We be-
lieve even larger gains will appear as we apply these techniques to bigger systems.

In Section 2 we describe the high level specification of the Arbitrary Waveform
Generator. In Section 3 we discuss our initial attempts to formalize this specification
in TLA+ and the challenges we encountered. In Section 4 we describe how we use our
embedding TLACoq and how we structured the AWG development in it. In Section 5 we
cover the design decisions and technical details of our embedding. We conclude with
lessons learned.

2 Application: Arbitrary Waveform Generator (AWG)

The Arbitrary Waveform Generator (AWG) is a component of a high consequence dig-
ital system being developed at Sandia. The AWG is used for storing “patterns" in mem-
ory which are later played out as timed waveforms. While relatively simple, the AWG
component is a real circuit that is being incorporated into silicon in production. Its
specification presented in this paper was developed as a collaboration between formal
methods experts and domain engineers with an eye towards more broadly introduc-
ing certain formal methods techniques at Sandia. This process of collaboration proved
helpful early on in clarifying details of the AWG’s original requirements document that
otherwise might have been missed. And, the act of formalizing the resulting specifica-
tion revealed weak spots and avenues to improve our formal method techniques.

Our ultimate application domain demands a very high level of assurance in order
to avoid loss of life. However, there is nothing intrinsic about the AWG that is unique
to our application domain. Indeed, similar systems are likely to be used in a host of
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applications. The timed input/output behavior of the AWG will appear in any system
where precise playback of programmed in patterns is required and so could be used
for anything from a musical alarm clock to an autonomous vehicle. Given both the
generality of the AWG and its importance in a concrete high consequence system we
believe it serves as a suseful demonstration for digital system formalization.

The AWG needs to support two main operations. The first is to read in a pattern
from its input and store that pattern in its memory. The second is to, upon receiving a
special signal, begin playing out the value in its memory. At any time the AWG can
also be “reset" by passing in a certain signal, clearing its memory. Thus, the AWG can
be conceptually thought of as a state machine (see Figure 1) that can be in one of three
modes: initially, or upon being reset, the AWG will not have a meaningful value in
its memory and thus not be able to be played. From the cleared state, the AWG can
receive an input pattern which it will encode into memory leaving it ready to play out
the pattern. Finally, the AWG can play out the pattern stored in its memory. This process
of playing out the pattern will happen in a timed manner, removing bits from its pattern
buffer as they are output, and so eventually leaving the AWG with its buffer erased.
From either the “Ready" or “Written" states the AWG can be “reset" returning it to a
“Clear" state.

This description of the AWG is, of course, much more abstract than what would
suffice to describe an implementation. For example, it does not include the intermediate
states that will be encountered as the pattern is played out in a timed manner or while
initiating the machine with a new pattern. We will therefore need to refine this specifica-
tion. But, it is worth emphasizing that a formalization of the specification at this level of
abstraction also is insufficiently detailed for those building components which interact
with the AWG. The protocols a component uses to communicate with other components
are very relevant to the design of those other components. Nonetheless, it is still impor-
tant to have conceptual models, and we believe formal models as well, which operate at
these higher levels of abstraction. This leads to an important observation: refinement of
component specifications matters not just in the design of individual components but in
systems of components as well. We must refine protocols in addition to state machines.
And, this is necessary to build tractable high level specifications.

Thus we will refine our model to clarify that the pattern is played out not all at once
but as a sequence of states, requiring an internal memory. Additionally we need to re-



fine our model to describe the channels on which it communicates (See Figure 2). One
of these channels will carry signals we will call commands and will take one of three
forms: a “Run" command instructing the AWG to play out its memory, a “Write" com-
mand containing a pattern, or a “Flush" command asking the AWG to be flushed. The
other input channel is a simple wire used for sending “Reset" signals. There are three
output channels: the waveform lines on which the pattern will be played, the “Ready"
line, and a “Status" line used for such things as error codes. The AWG is only ex-
pected to handle commands while it reads as having a “Valid" status and a true “Ready"
line. And, we would expect it to take multiple clock cycles for initiation after receiving
a command or resetting before it was ready to accept another command. However, it
should be able to “Reset" at any time. This then illustrates the difference between the
“Flush" command and the “Reset" signal–while ultimately serving a similar purpose,
the “Flush" command will only come when our system is ready to receive commands
and so can take advantage of this stronger precondition in its implementation while a
“Reset" must be possible in any state of the system.

The addition of memory and timed output is mostly independent from the issue of
the communication protocol. When we think about the details of one refinement of the
initial basic model we need not think about the details of the other.

3 Expressing the AWG in TLA+

In order to formalize the AWG system we turned to the Temporal Logic of Actions
(TLA). TLA has desirable properties for formulating a system like the AWG. Fore-
most, TLA specifications are not sensitive to the rate of the passage of time, i.e. it is
stuttering invariant [3]. This enables the development of formal TLA specification using
a process of refining more abstract specifications into more concrete ones in much the
same way we approach designs like the AWG informally [6]. TLA takes a logic centric
view: specifications and theorems about specifications are both just logical formulae
and the statement that one specification refines another is interpreted simply as that the
more refined specification implies the more abstract one, perhaps along some “refine-
ment mapping” of their underlying state spaces [1]. Stuttering invariance implies that
refinements can in many instances slow down time through the addition of intermediate
states in the refined specification which are not observable in the more abstract one.

3.1 Models and Refinements

We took a refinement based approach to formalizing the AWG in TLA+ . Our initial
specification, therefore, only modeled some very basic properties of the AWG system.
The model (Figure 3) is parameterized by a set called Pattern which serves to ab-
stract away the details of the patterns stored in memory and played out by the AWG.
The constant NilPattern represents the “empty” pattern. The memory status fol-
lowing self-check may be Valid or Invalid. The specification variable memory
is a Pattern representing the state of memory. The variables ready, status, and
output represent the output lines.



Next , Initialize
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vars ,<< ready,status,memory,output >>
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Spec , PowerOn ∧�[Next]vars ∧ Fairness

Fig. 3. Excerpt of Basic Model in TLA+

The Next relation is then defined as the conjunction of five actions. These actions
specify relations between a current and a next state. In TLA the apostrophe at an end
of a variable means it refers to the next value of that variable and can only occur in an
action. WFvars(A) is the TLA formula which asserts weak fairness for the action A and
means that A either keeps happening or is eventually impossible. �[A]vars means that
at every step A happens or the value of vars is unchanged.

Some desired properties of this specification are shown in Figure 4. The notation
 is pronounced “leads to” [11] and is an example of a liveness property. Namely,
that ready keeps becoming TRUE. Thus, the AWG will keep accepting and playing
out new patterns and so we can rule out whole classes of anomalous and potentially
dangerous behavior such as playing out one waveform forever.

One of the areas of missing details in the Basic model is in the handling of com-
mands. In the basic model, Run, Flush, and Write(p) are treated simply as events.
However, we know that they are actually commands which come as input to the system
and might take multiple steps to handle. Therefore, our first refinement is to incorporate
the more detailed notion of commands.

In the new model our state consists of the four variables from the Basic model plus
variables cmd and ctrl. The idea is that cmd will store the command the machine is
currently processing while ctrl will store its status in that process.



THEOREM Spec⇒ �TypeInvariant

CommandsEnabled , ENABLED Run ∧ ENABLED Flush
∧ ∀p ∈ Pattern.ENABLED Write(p)

THEOREM Spec⇒ �CommandsEnabled
THEOREM Spec⇒ �(ENABLED Reset)
THEOREM Spec⇒ (ready = FALSE ready = TRUE)

Fig. 4. Properties of Basic Model in TLA+

DoFlush , cmd.op = Flush

∧ memory’ = NilPattern

∧ output’ = NilPattern

Next , Initialize ∨ Reset
∨ Do ∨ Resp
∨ ∃c ∈ Command.Req(c)

Spec , PowerOn ∧�[Next]vars ∧ Fairness

Do , ready = TRUE

∧ status = Valid

∧ ctrl = Busy

∧ DoFlush ∨ DoWrite ∨ DoRun
∧ ctrl’ = Done

∧ UNCHANGED
<< ready,status,cmd >>

Fig. 5. Excerpt from Command Module

In place of the actions Flush, Run, and Write(p) from the Basic model, we have
a more complicated implementation of commands by way of the actions Do, Resp,
and Req(c). A client issuing a command is represented by Req(c) actions. The AWG
processes the command and updates its internal data structures in a Do action. Finally,
the AWG resets its interface to accept further commands in the Resp action. These
actions are defined such that the desired order of operations is strictly enforced and,
moreover, that the correspondence with the Basic model is maintained.

The new model allows us to define properties related to commands. We also want
to ensure that what we have described really is a refinement of the Basic model, so
that all the properties we established about the Basic model hold automatically in the
Command model. Formally, we must demonstrate that our new Spec formula implies
the Spec from the Basic model.

In addition to the more detailed theory of commands, we must consider the playing
of patterns in more detail. The AWG should not play patterns to the output all at once,
but rather play them slowly. In order to handle this we can modify our original basic
specification to store the memory not as a single element of the abstract set Pattern
but rather as a finite sequence of elements from such an abstract set. Playing a pattern
will now be a multi-step process so we also add a variable mode, the type invariant for
which will be that it is a member of the set containing only the constants Record and
Play. The Flush and Write actions are modified to only fire when the mode is in
Record (which they also preserve).

Playback is now implemented with three events. The StartPlay event can occur
when the mode is Record, the status is Valid, and the ready flag is TRUE. It
requires the new state have the mode Play but is otherwise unmodified. The DoPlay



event can only fire when the status is Valid, the ready flag is TRUE, and has the
effect of popping the first element of the memory sequence into the output leaving
everything else unchanged. EndPlay becomes possible instead of DoPlay when the
memory is the empty sequence and simply switches the mode back to Record.

3.2 Limitations of the TLA+ framework

At this point we have described a set of TLA+ models, each describing a different aspect
of the AWG. We have extended the Basic model in two different ways incorporating
different aspects of the full system we care about. We have also stated, and model
checked, a number of properties. We would therefore like to complete the picture by
combining all the various aspects of the three models into a single complete model. We
would also like to verify the various correctness theorems we have stated.

However, we encounter challenges in both these goals. Both the Command model
and the Memory model were developed by extending the Basic model, but in doing so
we had to restate essentially the entire model. It would be undesirable indeed to have
to fully write out yet another model. Instead, we would like to simply be able to assert
that our full specification is exactly the refinement of the basic model which extends the
Basic model in the way the Command model does and the way Memory model does.

We are able to use the TLA+ model checker to check the theorems we have stated,
but only by first instantiating the abstract set pattern with a concrete, finite, set. The
model checker tells us that our theorems are true, but only for this concrete set. How
can we be sure they hold for any instantiation of Pattern? Moreover, the model
checker will claim that the properties hold, but it does not provide any sort of witness
or reason as to why this is true. Instead, we gain confidence in correctness only relative
to our confidence in the correctness of the model checker. While a TLA+ proof system
(TLAPS) [5] which might help rectify some of these issues has been partially developed
it is incomplete and does not currently support temporal reasoning.

4 Expressing the AWG in TLACoq

We want to be able to prove properties about our models using inductive reasoning.
Moreover, we want to support parametric reasoning — it should be possible for us to
consider some aspects of a model as abstract parameters and still be able to prove prop-
erties about that model which hold for any instantiation of those parameters. Further,
we want proof witnesses and a small trusted base so we do not have to depend on the
correctness of complex pieces of machinery like model checkers. Moreover, we would
like a framework which not only provides these things but which also has good support
for “programming in the large" and building abstractions.

Interactive theorem provers based on type theory excel at precisely this point. By
using a small core logic they separate the problems of finding proofs and interacting
with the system with the problem of checking a proof already found. Systems like Coq
and Isabelle [16] come equipped with fully powerful fully automated methods (such as
Coq’s Presburger solver which uses the Omega test [12]) as well as tools for developing



S e c t i o n Model .
V a r i a b l e s h r hr ’ : Z .

D e f i n i t i o n I n i t := 1 <= hr <= 1 2 .
D e f i n i t i o n Next := hr ’ = hr mod 12 + 1 .

End Model .

D e f i n i t i o n Spec := ‘ I n i t ‘ / \ [ ] [ Next ] .

Fig. 6. A model of a clock in our embedding of the TLA in Coq

new domain specific automation, but these capabilities are kept separate from the logic
kernel.

Coq in particular seems like a close match to our needs. Its type theory not only
extends higher order logic with dependent types, it also allows for quantification over
universes providing the ability to abstract over types. Moreover, Coq has a rich module
system, and the Coq tool has proven to scale to very large scale projects such as a
fully certified C compiler [4] and the proof of the four color theorem [8]. However,
unlike what we see with TLA+, Coq’s logic is not geared specifically toward expressing
systems which evolve over time. While TLA is well suited to describing systems like
the AWG, vanilla Coq is not.

TLACoq is an embedding of TLA into Coq. It allows us to take advantage of Coq’s
features which make scalable verification tractable while presenting an interface sim-
ilar to TLA. Moreover, while Coq is a highly advanced tool requiring a great deal of
time to master, one of our goals on the AWG project has been to support collaboration
between subject matter experts and system designers with formal methods experts. As
such, we have aimed to make the embedding relatively straightforward to use even for
non experts. For example, we can use our embedding to formalize a model of a simple
clock akin to that considered by Lamport [10, 11]. The Coq code in Figure 6 provides
a complete specification of the clock using our library. The Init and Next defini-
tions inside the Model section describe the initial configuration and evolution of the
state of the clock which we encode as a single integer hr. Init requires this vari-
able have a value between one and twelve. Next relates the variable hr to the variable
hr’ (representing the next time) whenever hr’ is equal to one plus the value of hr
modded out by twelve. These definitions are simply predicates in Coq and so involve
no temporal operators. However, the definition of Spec below them occurs within the
embedded TLA. Spec is simply the temporal logic conjunction of the requirement that
Init holds for the initial state and that every future change in state happens accord-
ing to the Next predicate. Note the use of ’/\ instead of /\ in the definition of Spec.
This is because we are constructing the conjunction of two TLA formulae and not the
meta logical conjunction of two Coq propositions. Similarly, the quote in ’Init lifts
Init, a Coq predicate, into a TLA formula. While exceedingly simple, the clock al-
ready demonstrates the main features we need to specify the AWG. In particular, we
can not only state properties of interest about the Coq model, but prove them as well.
For example, an important property we can prove about the clock is that the value of hr



Theorem h o u r _ i n v : v a l i d ( Spec ‘=> [ ] ‘ I n i t ) .
P r o o f .

u n f o l d Spec , I n i t , Next .
a p p l y t l a _ i n v .

(∗ Base c a s e ∗ )
i n t u i t i o n .

(∗ I n d u c t i v e c a s e ∗ )
i n t r o s .
a s s e r t (0 <= x mod 12 < 12) by ( a p p l y Z . mod_pos_bound ; i n t u i t i o n ) .
i n t u i t i o n .

Qed .

Fig. 7. Proof of Type Invariant for the Clock

will always be between one and twelve. The proof in Figure 7 of this property demon-
strates a standard style of proofs in our system, where TLA specific reasoning tools and
theorems are used to handle the temporal backbone of formulae but standard Coq tac-
tics are used for the non-temporal leaves. In this case we need to instruct Coq to prove
our property by induction. Then, a fully automated method (intuition) becomes
sufficient for handling the base case. The inductive step is almost fully automated, but
not quite, requiring a small amount of guidance and appeal to a general mathematical
theorem from Coq’s standard library. The availability of theorems such as these is one
of the benefits of working with Coq.

Using TLACoq we formulated the specification of the AWG module. Following the
original version in TLA we approached this through a series of modules corresponding
to the Basic, Command, and Memory refinements. As in the original Basic specification
we took the set of patterns to be abstract. We describe the parameters to the Basic mod-

Module Type Bas icParams .
P a r a m e t e r P a t t e r n I s h : Type .
P a r a m e t e r I s P a t t e r n : P a t t e r n I s h −> Prop .
P a r a m e t e r N i l P a t t e r n : P a t t e r n I s h .
P a r a m e t e r N i l P a t t e r n P a t t e r n : I s P a t t e r n N i l P a t t e r n .
P a r a m e t e r E q N i l P a t t e r n C l a s s i c a l : f o r a l l p ,

I s P a t t e r n p −> p = N i l P a t t e r n \ / p <> N i l P a t t e r n .
End Bas icPa rams .

Module B a s i c ( Params : Bas icParams ) .
Im po r t Params .
H in t Reso lve N i l P a t t e r n P a t t e r n .

Fig. 8. Basic AWG Module Structure



I n d u c t i v e MemStatus : Type := V a l i d | I n V a l i d .

Record S t := {
r e a d y : boo l ; s t a t u s : MemStatus ;
memory : P a t t e r n I s h ; o u t p u t : P a t t e r n I s h } .

Fig. 9. Basic State Type

S e c t i o n Model .
V a r i a b l e s t s t ’ : S t .

Le t ready ’ := ( s t ’ ) . ( r e a d y ) . Le t r e a d y := s t . ( r e a d y ) .
Le t s t a t u s ’ := ( s t ’ ) . ( s t a t u s ) . Le t s t a t u s := s t . ( s t a t u s ) .
Le t memory ’ := ( s t ’ ) . ( memory ) . Le t memory := s t . ( memory ) .
Le t o u t p u t ’ := ( s t ’ ) . ( o u t p u t ) . Le t o u t p u t := s t . ( o u t p u t ) .

D e f i n i t i o n T y p e I n v a r i a n t :=
I s P a t t e r n memory / \ I s P a t t e r n o u t p u t .

(∗ a c t i o n d e f i n i t i o n s e l i d e d ∗ )
D e f i n i t i o n Next :=

I n i t i a l i z e \ / R e s e t \ / F l u s h \ / Run
\ / ( e x i s t s p , I s P a t t e r n p / \ Wr i t e p ) .

End Model .
(∗ d e f i n i t i o n e l i d e d ∗ )
D e f i n i t i o n Spec := ‘ PowerOn ‘ / \ [ ] [ Next ] ‘ / \ F a i r n e s s .

Fig. 10. Outline of Basic Model in Coq

ule (Figure 8) by way of a module type BasicParams which has a type representing
patterns.

We defined our states as coming from the type St containing a memory, the output,
a boolean ready flag, and the status. The status variable is defined as coming from the
type containing only the constants Valid and InValid. Using this definition we can
then define the various events of the model in much the same way as we encountered in
pure TLA. For example, the Next event is defined simply as the conjunction of smaller
events in Coq. To express these events in a clear way we define a Section and using
the Variable keyword to lambda abstract over the the current and next states in the
section. Then, we can give names to the variables as projections into the states as can
be seen in Figure 10. On the other hand, the definition of the whole specification is an
element of our expr data type and does not live in the model section. Observe that
with the definition of St much of what we considered a “type invariant property" of
the model in the pure set theoretic model will now hold automatically. For example,
that status is in the type MemoryStatus is definitionally true rather than being a
theorem which must be proved about the specification. However, because we encode



I n d u c t i v e C o n t r o l : Type := Ready | Busy | Done .
I n d u c t i v e Command : Type :=

| F l u s h : Command
| Wr i t e : P a t t e r n I s h −> Command
| Run : Command .

D e f i n i t i o n IsCommand ( c : Command ) : Prop :=
match c wi th
| Wr i t e p => I s P a t t e r n p
| _ => True
end .

Fig. 11. Start of Command Module

membership in the pattern set as a predicate, we still have a type invariant that simply
states that output and memory remain valid patterns. However, by switching to the Coq
representation we can now prove that the type invariant always holds as an inductive
property.

Theorem S p e c _ t h e n _ T y p e I n v a r i a n t :
v a l i d ( Spec ‘=> [ ] ‘ T y p e I n v a r i a n t ) .

And, indeed, we can state and prove the other properties from the TLA+ version of the
specification.

After the Basic model we construct the two refinements. The Command model
works similarly to the Basic model. It is again constructed as a module functor pa-
rameterized by a module of the BasicParams type. Using Coq’s inductive type sys-
tem makes it easy to express the type of the control variable as well as the type of
commands. But, we only consider a Write command to be valid if the stored pattern
data is, in fact, a pattern. We can express this by defining a predicate on commands by
pattern matching. Beyond this, the definition of the command module works as direct
translation of our early TLA+ specification following the same approach as we used for
translating the Basic module.

The last module to translate is the memory module. Here we have as parameters not
merely a base type of patterns and its associated properties, but also a maximal length
of the vector of these which will be stored in memory. To represent this we use a new
module type which extends the BasicParams.

The main idea then is to instantiate the Basic module with a representation in which
patterns from the Basic module correspond to sequences of patterns in the Memory
module. We do this by way of a module functor as in Figure 12. As before the Coq
code is mostly a direct translation of the original TLA+ specification. The refinement
mapping from Memory to Basic, however, depends on instantiating Basic with a differ-
ent, and more specific, set of parameters.

Now, we have constructed two modules in Coq which each refine our original Basic
specification. We want a specification which incorporates the details from each. We
would like to be able to do this in a general way: we should not have to fully describe
the combined refinement at the same level of detail as the others, but rather simply
declare it as the combination of the memory and command refinements.



Module ParamsFromMem ( Params : MemParams ) <: Bas icParams .
D e f i n i t i o n P a t t e r n I s h := l i s t Params . P a t t e r n I s h .
D e f i n i t i o n I s P a t t e r n := Params . I s L i s t P a t t e r n .
D e f i n i t i o n N i l P a t t e r n : P a t t e r n I s h := n i l .
Theorem N i l P a t t e r n P a t t e r n : I s P a t t e r n N i l P a t t e r n .
P r o o f .

u n f o l d I s P a t t e r n , N i l P a t t e r n . s i m p l . a u t o .
Qed .
Theorem E q N i l P a t t e r n C l a s s i c a l : f o r a l l p , I s P a t t e r n p

−> p = N i l P a t t e r n \ / p <> N i l P a t t e r n .
P r o o f .

i n t r o s p H.
u n f o l d N i l P a t t e r n , I s P a t t e r n .
d e s t r u c t p . l e f t ; a u t o . r i g h t ; i n t r o s F ; i n v e r s i o n F .

Qed .
End ParamsFromMem .

Fig. 12. Memory Module Functor

Record S t := {
r e a d y : boo l ; s t a t u s : MemStatus ; mode : Mode ;
memory : l i s t P a t t e r n I s h ; o u t p u t : l i s t P a t t e r n I s h } .

Fig. 13. State type for Memory Refinement

One option, available to us from TLA+, is to simply combine the two models as
a conjunction [2]. However, a complexity arises in that the two models have different
types to represent their states and we need to be explicit about what states we are using.
Using the product of the two state spaces would lead to a model, but not the one we
intend. Specifically, we would have, for example, two separate variables encoding the
status.

Instead we construct the combined specification as the conjunction of the two re-
finements restricted to the case where they map to the same thing in Basic. The details
are provided in an appendix.

5 Implementing TLACoq

There are a number of ways to use a meta logic as rich as Coq to host another logic
or language. Often when considering embedded languages we contrast so-called “shal-
low" and “deep" embeddings [14]. In a shallow embedding each construct of the target
language is directly mapped to a construct of the meta language. By contrast, in a deep
embedding the target language constructs are considered as data representing syntax.
Existing work includes examples of both deep and shallow embeddings of TLA into
Coq. In [15] a shallow embedding of TLA in Coq was constructed to prove a meta re-
sult that all TLA specifications of a certain form satisfy a “machine closed" property



Module FROMMEM := ParamsFromMem ( Params ) .
Module BASIC := B a s i c . B a s i c (FROMMEM) .
D e f i n i t i o n r e f i n e m e n t _ m a p p i n g ( s t : S t ) : BASIC . S t :=

match s t w i th
| { | r e a d y := re ad y 0 ; s t a t u s := s t a t u s 0 ;

memory := memory0 ; mode := mode0 ;
o u t p u t := o u t p u t 0 | } =>

{ | BASIC . r e a d y := r ea d y0 ;
BASIC . s t a t u s := s t a t u s 0 ;
BASIC . memory := match mode0 wi th

| Record => memory0
| P l ay => ( ( L i s t . r e v o u t p u t 0 ) ++ memory0 )

end ;
BASIC . o u t p u t := match mode0 wi th

| Record => L i s t . r e v o u t p u t 0
| P l ay => n i l

end | }
end .

Fig. 14. Memory Refinement of Basic

Theorem t l a _ i n v _ g e n :
f o r a l l (A : Type ) ( I n i t : P r e d i c a t e A) ( Next : Ac t i on A)
( F P : Expr A) , ( v a l i d ( ‘ I n i t ‘ / \ [ ] [ Next ] ‘ / \ F ‘=> P ) ) −>

( f o r a l l s , e v a l P s −> Next ( s 0 ) ( s 1 ) −> e v a l P ( s @ 1 ) )
−> v a l i d ( ‘ I n i t ‘ / \ [ ] [ Next ] ‘ / \ F ‘=> [ ] P ) .

Fig. 15. Induction Rule

in which the liveness part of the specification does not constrain the reachable states
of the system. As such, TLA formulae are interpreted simply as predicates on infinite
sequences of states. A deep approach to embedding a TLA like logic in Coq was used
more recently as part of the VeriDrone project [13]. VeriDrone combines discrete digital
components with continuous physical ones in a hybrid cyber-physical system, and so
their logic combines continuous time with the discrete transition semantics of TLA. Fol-
lowing Lamport, they use a two step approach where their logical syntax corresponds
to a full set of “RTLA" formulae of which the stuttering invariant TLA formulae are
only a subset.

We take what is mostly a deep embedding approach to the handling of TLA formu-
lae in Coq. The set of TLA expressions is encoded as an inductive datatype parameter-
ized by the type of states . The advantage of our design is that it yields simpler proofs for
safety properties by ensuring that all formulae are stuttering invariant by construction.
Safety properties are demonstrated via the induction rule in Figure 15 without having
to think about stuttering steps. On top of this data type we use Coq’s notations facilities
to build a more convenient syntax for writing TLA formulae. We rely on Coq’s exten-
sive standard library for the mathematical language used in formulae, rather than going
through the trouble of embedding set theory.



Coq has a very flexible and configurable parser, which we use to provide a con-
venient syntax for writing TLA formulae. This allows our Coq code to look a lot like
regular TLA+.

Instead of encoding TLA’s proof theory directly, we provide a semantic account of
the truth of TLA formulae in Coq and then we use Coq to prove the truth of a formula.
Following Lamport [9], TLA formulae are interpreted as being predicates over infinite
sequences of states called behaviors. Our implementation “compiles” an Expr value
to a Coq function from behaviors to Coq’s Prop type of propositional values. From
there, proofs are done in Coq as per usual, and in particular may use Coq’s standard
automation facilities.

6 Conclusions

Our use of Coq to embed a TLA-like language yielded several practical benefits. Us-
ing refinement for composition, we were able to construct a model of a critical system
component in stages, adding detail as we went. The use of Coq allowed us to construct
proofs of correctness properties using an interactive theorem proving approach, combin-
ing automation where possible with human insight where necessary. Unlike approaches
based on bespoke model checkers, Coq also lends a very high level of confidence to our
proofs.

The designers and engineers involved in the specification and verification of the
AWG component found the effort to be worthwhile. Using a TLA-style specification
forced us to consider details about how the high-level design worked early on. Without
it, we probably would not have considered those details until they were encountered by
programmers or revealed in testing, at which point changing the design would have been
much more difficult. We estimate that the cost of performing the formal specification
and model checking was justified by the time saved later in the process, and that those
costs will decrease in the future as we gain experience with the tools and techniques.

The use of interactively-developed proofs rather than automated model checking
comes at a cost in terms of development time and required expertise. Improved automa-
tion within Coq would be helpful and we are planning future work in this area. One
obvious path is to replicate the capabilities of the TLA+ model checker within Coq. We
might even be able to prove the correctness of the model checker within Coq itself.

Further work could involve connecting TLACoq with other Coq based verification
approaches, with the goal of “full stack verification,” where low level implementations
are proven to correspond to our high level models. One can imagine a world in which
design, development, and specification happen in tandem, such that implementations
are fully verified and correct by construction. Formalizing the high level descriptions of
systems as we have done with TLACoq is an essential step in this effort.
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A Composition From Refinement

We have two models which both refine basic along functions of their state spaces. We
want a fourth model which refines both of them, but in a way in which those refinements
are compatible, in that either function from the combined model to basic is identical.
Further, we want the best such combined model in a particular sense: any model which
refines both command and memory in such a way that the two refinements yield the
same refinement should refine our combined total model. This general picture should

Basic

Command Memory

Total

c

r1

r2

ι1

i1
ι1

i2

u

Fig. 16. Composition as Push-out

be familiar to those who have encountered category theory as it is what is called, in cat-
egorical language, a “push-out" (Figure 16). Indeed, more than 20 years ago, Goguen
suggested push-outs as an abstract, formalism independent, definition for the combina-
tion of components [3]. And, Fiadeiro and Maibaum already demonstrated the use of
push-outs for combining specifications in a temporal logic setting in the early 1990s [1].
Unfortunately, it seems this work has been largely neglected and not previously applied
to TLA.

However, push-outs of refinements have a simple definition in TLACoq. We simply
take the pull-back of the underlying state spaces in the underlying category of types or
sets (that is, the push-out in the opposite category recognizing that functions go from
more concrete to more abstract while we have written refinement arrows from abstract
to concrete) and use the conjunction of the specifications along their specifications. That
is, the state space of the total model should, intuitively, be the subtype of the product of
state spaces of Memory and Command where the two refinement mappings yield the
same value in the state space of basic. The combined specification is constructed then
as the conjunction of the two refined specifications mapped along the projections from
the combined state space.

As mentioned, we can construct the pushout of two TLACoq refinements by way of
the pullback of the underlying state spaces together with the conjunction of specifica-
tion. The pullback of the state spaces would usually be the subset of the pairs of the
values from the refined state spaces where those values map to the same element in the
original unrefined model.

However, this intuitive definition does not quite work for us because Coq’s mod-
ule system is generative rather than applicative and so when Memory and Command



instantiate Basic they generate different types. To get around this, we must define a
projection between them. First, we define the total model parametrically as a module
functor and instantiate Basic and Command.

Module T o t a l ( Params : MemParams ) .
Module MEMORY := Memory ( Params ) .
Module COMMAND := Command (MEMORY.FROMMEM) .

Then we define an isomorphism between their underlying state spaces.

D e f i n i t i o n c a s t S t 1 ( s t : MEMORY. BASIC . S t ) :
COMMAND. BASIC . S t :=

match s t w i th
| { | MEMORY. BASIC . r e a d y := r e a d y ;

MEMORY. BASIC . s t a t u s := s t a t u s ;
MEMORY. BASIC . memory := memory ;
MEMORY. BASIC . o u t p u t := o u t p u t | } =>

{ |
COMMAND. BASIC . r e a d y := r e a d y ;
COMMAND. BASIC . s t a t u s := s t a t u s ;
COMMAND. BASIC . memory := memory ;
COMMAND. BASIC . o u t p u t := o u t p u t | }

end .

This allows us to say when the two states are the same.

D e f i n i t i o n sameSt ( s t 1 : MEMORY. BASIC . S t )
( s t 2 : COMMAND. BASIC . S t ) : Prop :=
c a s t S t 1 s t 1 = s t 2 .

With this in place, we can define the full specification of the total model.

I n d u c t i v e S t : Type := Make_St : f o r a l l s t 1 s t 2 ,
sameSt (MEMORY. r e f i n e m e n t _ m a p p i n g s t 1 )

(COMMAND. r e f i n e m e n t _ m a p p i n g s t 2 )
−> St .

D e f i n i t i o n p1 ( s t : S t ) : MEMORY. S t :=
match s t w i th
| Make_St m _ _ => m
end .

D e f i n i t i o n p2 ( s t : S t ) : COMMAND. S t :=
match s t w i th
| Make_St _ m _ => m
end .

D e f i n i t i o n Spec : Expr S t :=
( map p1 MEMORY. Spec ) ‘ / \ ( map p2 COMMAND. Spec ) .



B Details of Embedding

An essential notion in TLA is the idea of stuttering invariance. The idea is that “stut-
tering steps", those steps where the state does not change, are irrelevant. Therefore,
two behaviors which differ only by the addition and removal of stuttering steps should
validate the same formulae. However, formalizing this idea is a bit of a challenge. Lam-
portÕs solution is to define a function # from behaviors to behaviors which eliminates
any stuttering steps except for those at the end (when all remaining steps are stuttering
steps) [4]. Then, two behaviors s1 and s2 are stuttering equivalent if #s1 = #s2.

Unfortunately, this definition does not work very well in a constructive setting such
as Coq. The problem is that # function is not generally computable as equality of states
is not necessarily decidable and, even when use a type of states where it is, we can
not decide if all remaining steps in a behavior are stuttering steps as that would require
examining an infinite number of states.

We thus use an alternative account of stuttering equivalence. Our idea is to observe
that if two behaviors s1 and s2 are stuttering equivalent then they must have the same
first state (s1n = s2n). Moreover, if the first step in s1 is a stuttering step then s1@1 is
stuttering equivalent to s2 while if it is not then there must be some n such that s1@1
is stuttering equivalent s2@n and where all the steps in s2 up to n are stuttering steps
meaning all the states of s2 before s2@n are equal. In either case there is some n such
that s1@1 is stuttering equivalent to s2@n and where for all k less than n, s20 = s2k.
And, because stuttering equivalence is symmetric, it works the other way also: there is
some m such that s1@m is stuttering equivalent to s2@1 and where for all k less than
m, s10 = s1k.

D e f i n i t i o n s t u t t e r _ r e l a t i o n {A : Type }
(R : B e h a v i o r A −> B e h a v i o r A −> Prop ) :=
( f o r a l l s s ’ , R s s ’ −> s 0 = s ’ 0 ) / \
( f o r a l l s s ’ , R s s ’ −> e x i s t s m, R ( s @ 1) ( s ’ @ m)

/ \ f o r a l l k , k < m −> s ’ 0 = s ’ k ) / \
( f o r a l l s s ’ , R s s ’ −> e x i s t s m, R ( s @ m) ( s ’ @ 1)

/ \ f o r a l l k , k < m −> s 0 = s k ) .

D e f i n i t i o n s t u t t e r _ e q u i v {A : Type } ( s s ’ : B e h a v i o r A) : Prop
:= e x i s t s R , R s s ’ / \ s t u t t e r _ r e l a t i o n R .

Theorem s t u t t e r _ e q u i v _ e v a l : f o r a l l A ( e : Expr A) s s ’ ,
s t u t t e r _ e q u i v s s ’ −> e v a l e s <−> e v a l e s ’ .

Fig. 17. Stuttering Equivalence as Largest Stuttering Relation

Further, it follows that not only is this a true fact about stuttering equivalent behav-
iors but it is a complete account as well. Given any two behaviors s1 and s2 which have
the same first element and where there are n and m such that s11 is stuttering equivalent
to s2n with s20 = s2k for all k less than n, and s1m stuttering equivalent to s21 with



s1k = s10 for all k less than m, it is immediate that s1 and s2 are stuttering equivalent
as well. Our idea then is to define stuttering equivalence co-inductively as the largest
relation which satisfies this property. In particular, we define a stuttering relation as any
relation on behaviors which satisfies these properties and then say two behaviors are
stuttering equivalent if they are related by some stuttering relation (see Figure 17). We
can then show that stuttering equivalence is indeed an equivalence relation and that it
is a stuttering relation. Finally, the meta theorem that the truth value of a formula is
always stuttering invariant.

However, stuttering invariance is not just an interesting theorem about our seman-
tics, it also is a useful property in constructing proofs. In Figure 15 we give the core
induction principle for proving that properties always hold given a specification which
takes advantage of the fact that we do not need to consider stuttering steps because all
formulae are stuttering invariant.

Our type of expressions is parameterized by a type of states. And, we would expect
that different specification would use different state types we cannot necessarily simply
use implication in modeling refinement. Instead, we may need to consider implication
under some refinement mapping. To make this notion precise we have a function for

F i x p o i n t map (C A : Type ) ( f : C −> A) ( e : Expr A) : Expr C :=
match e wi th

| E _ P r e d i c a t e P => E _ P r e d i c a t e ( fun s t => P ( f s t ) )
| E_AlwaysAction g R =>

E_AlwaysAction ( fun s t => g ( f s t ) )
( fun s t s t ’ => R ( f s t ) ( f s t ’ ) )

| E _ E v e n t u a l l y A c t i o n g R =>
E _ E v e n t u a l l y A c t i o n ( fun s t => g ( f s t ) )
( fun s t s t ’ => R ( f s t ) ( f s t ’ ) )

| ‘~ P => ‘~ ( map f P )
| P ‘ / \ Q => ( map f P ) ‘ / \ ( map f Q)
| P ‘ \ / Q => ( map f P ) ‘ \ / ( map f Q)
| P ‘=> Q => ( map f P ) ‘=> ( map f Q)
| P ‘<=> Q => ( map f P ) ‘<=> ( map f Q)
| [ ] P => [ ] ( map f P )
| <> P => <> ( map f P )
| E _ F o r a l l R i g i d g => E _ F o r a l l R i g i d ( fun x => map f ( g x ) )
| E _ E x i s t s R i g i d g => E _ E x i s t s R i g i d ( fun x => map f ( g x ) )

end .

Fig. 18. Mapping over an expression to change the state type

mapping a state change function over a formula (given in Figure 18). This mapping
procedure satisfies the important property which is that mapping over formula is equiv-
alent to mapping over behaviors.

Lemma map_id : f o r a l l (A : Type ) ( e : Expr A) ,
map ( fun x => x ) e = e .



As the mathematical language in our embedding is Coq instead of ZFC, our system
differs somewhat from TLA+. In particular, Coq is always typed and so the state of
formulae we work with be given as some type. This differs from TLA+ where the state
is always a mapping which assigns each (of countably many) variables an arbitrary set.
However, from the type theoretic perspective these TLA+ states can be given a type:
namely the type of functions from the type of variables to the type of sets. We can
therefore represent TLA+ specification directly without assigning types to the variables
if we can simply exhibit a type in Coq which behaves like the collection of all sets in
set theory. As a proof of concept of this idea we have constructed such a type using a
variant of the canonical model of constructive set theory in type theory as well founded
trees indexed by a universe due to Martin-Löf and Aczel [2]. A full version of ZFC can
be then derived by assuming additional axioms for choice and classicality. However,
our experience has been that working with typed representations of states works better
in practice than encoding everything into sets. Indeed, it seems that variables in actual
TLA models are almost always “typed" in the sense that their values do not range over
arbitrary sets but rather some more restricted collection of values such as numbers or
lists. Furthermore, these types are an inherent part of the specification known to design-
ers from the beginning and it simplifies things significantly if they hold definitionally
rather than as a theorem which must be shown. However, it may make sense to at some
future time to parse models written for the TLA+ toolset and then automatically pro-
duce TLACoq specifications from these models. Using the type of sets may be helpful
in this situation.
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C Implementation of the TLACoq

C.1 Behavior.v

Require Import Arith.
Require Import FunctionalExtensionality.
Require Import Program.
Require Import Omega.

Set Implicit Arguments.

Definition Behavior (A : Type) := nat→ A.

Section shift.



Variable A : Type.

Implicit Types s : Behavior A.

Definition shift s n : Behavior A :=
fun t⇒ s (t + n).

Lemma unshift : ∀ s n i, shift s n i = s (i+n).
Proof. unfold shift. auto. Qed.

Lemma shift 0 : ∀ s, shift s 0 = s.
Proof.
intros s; extensionality x; replace (s x) with (s (x + 0)) by auto;

apply unshift.
Qed.

Lemma contraction : ∀ s n m, shift (shift s n) m = shift s (m + n).
Proof.
unfold shift; intros s n m; extensionality x; rewrite plus assoc;

auto.
Qed.

End shift.

Delimit Scope behavior scope with behavior.

Notation "s @ n" :=
(shift s n)

(at level 1, no associativity) : behavior scope.

Definition stutter relation {A : Type} (R : Behavior A→ Behavior A→ Prop)
:=

(∀ s s’, R s s’→ s 0 = s’ 0) ∧
(∀ s s’, R s s’→ ∃ m, R (shift s 1) (shift s’ m) ∧ ∀ k, k < m→ s’ 0 = s’ k) ∧
(∀ s s’, R s s’→ ∃ m, R (shift s m) (shift s’ 1) ∧ ∀ k, k < m→ s 0 = s k).

Definition stutter equiv {A : Type} (s s’ : Behavior A) : Prop :=
∃ R, R s s’ ∧ stutter relation R.

Lemma stutter equiv stuttering relation : ∀ A, stutter relation (stutter equiv : Behav-
ior A→ Behavior A→ Prop).
Proof.
intros A.
repeat split; intros s s’ H; destruct H as (R,(H,(H0,(H1,H2)))); auto.
apply H1 in H. destruct H as (m,(H,H3)); ∃ m; split; auto; ∃ R; repeat

split; auto.
apply H2 in H. destruct H as (m,(H,H3)); ∃ m; split; auto; ∃ R; repeat

split; auto.
Qed.

Lemma stutter relation univ : ∀ A (R : Behavior A→ Behavior A→ Prop),
stutter relation R→
∀ s s’,

R s s’→



∀ n, ∃ m, R (shift s n) (shift s’ m).
Proof.
intros A R H s s’ H0 n.
generalize dependent s. generalize dependent s’.
induction n.
intros s’ s H0. ∃ 0. do 2 rewrite shift 0. auto.
intros s’ s H0. destruct H as (H,(H1,H2)).
apply H1 in H0. destruct H0 as (m,(H0,H3)).
apply IHn in H0. destruct H0 as (m0,H0).
do 2 rewrite contraction in H0.
∃ (m0 + m). replace (S n) with (n + 1) by omega. auto.

Qed.

Theorem stutter equiv univ : ∀ A (s s’ : Behavior A), stutter equiv s s’→
∀ n, ∃ m,

stutter equiv
(shift s n) (shift s’ m).
Proof.
intros A s s’ H n.
apply stutter relation univ; trivial.
apply stutter equiv stuttering relation.

Qed.

Lemma id stutter prop : ∀ A, stutter relation (fun (s s’: Behavior A)⇒ s = s’).
Proof.
intros A.
repeat split; intros s s’ H; rewrite H; auto; ∃ 1; split; auto;
intros k H0; replace k with 0 by omega; auto.

Qed.

Theorem refl stutter equiv : ∀ A (s : Behavior A), stutter equiv s s.
Proof.
intros A s.
∃ (fun s s’⇒ s = s’). split; trivial.
apply id stutter prop.

Qed.

Lemma flip stutter relation : ∀ A (R : Behavior A→ Behavior A→ Prop),
stutter relation R→
stutter relation (fun s s’⇒ R s’ s).

Proof.
intros A R H.
destruct H as (H,(H0,H1)).
repeat split; auto.
intros s s’ H2. symmetry. auto.

Qed.

Theorem sym stutter equiv : ∀ A (s s’ : Behavior A),
stutter equiv s s’



→ stutter equiv s’ s.
Proof.
intros A s s’ H.
destruct H as (R,(H,RS)).
∃ (fun s s’⇒ R s’ s).
split; trivial.
apply flip stutter relation; trivial.

Qed.

Lemma le difference : ∀ n m, n ≤ m→ ∃ r, m = n + r.
Proof.
intros n m H.
generalize dependent n.
induction m.
intros n H. inversion H. ∃ 0; omega.
intros n H.
inversion H.
∃ 0; omega.
assert (T : ∃ r, m = n + r). apply IHm; auto.
destruct T as (r, T). ∃ (S r). omega.

Qed.

Lemma stutter relation univ small : ∀ A R (s s’ : Behavior A) n,
stutter relation R→
R s s’→
(∀ k, k < n→ s 0 = s k)→
∃ m, R (shift s n) (shift s’ m) ∧

(∀ k, k < m→ s’ 0 = s’ k).
Proof.
intros A R s s’ n H H0 H1.
generalize dependent s. generalize dependent s’.
induction n.
intros s’ s H0 H1. ∃ 0. split. do 2 rewrite shift 0. auto.
intros k H2. exfalso. omega.
intros s’ s H0 H1.
destruct H as (R zero,(R left,R right)).
assert (H2 : ∃ m, R (shift s n) (shift s’ m) ∧ (∀ k, k < m→ s’ 0 = s’ k)).
apply IHn; auto.
destruct H2 as (m,(H2,H3)).
assert (H4 : ∃ m0,

R (shift (shift s n) 1) (shift (shift s’ m) m0)
∧ ∀ k, k < m0→ (shift s’ m) 0 = (shift s’ m) k).

apply R left; auto.
destruct H4 as (m0,(H4,H5)).
unfold shift in H5. simpl in H5.
assert (H6 : s 0 = (shift s’ m) 0). transitivity ((shift s n) 0). unfold shift.

simpl. apply H1.



omega. apply R zero; auto.
unfold shift in H6. simpl in H6.
∃ (m0 + m). split.
do 2 rewrite contraction in H4. simpl in H4. auto.
intros k H.
assert (H7 : k < m ∨ m ≤ k). omega.
destruct H7 as [H7|H7]. apply H3; auto.
apply le difference in H7.
destruct H7 as (r,H7).
assert (H8 : k = r + m). omega. clear H7.
rewrite H8 in *.
transitivity (s’ m). transitivity (s 0); auto. symmetry. apply R zero;

auto.
apply H5. omega.

Qed.

Lemma comp stutter prop : ∀ A (R1 R2 : Behavior A→ Behavior A→ Prop),
stutter relation R1→
stutter relation R2→
stutter relation (fun s s’⇒ ∃ s’’, R1 s s’’ ∧ R2 s’’

s’).
Proof.
intros A R1 R2 H H0.
repeat split; intros s s’ H1; destruct H1 as (t,(H1,H2)).
destruct H as (H, ). destruct H0 as (H0, ). transitivity (t 0); auto.
destruct H as (R1 zero,(R1 right,R1 left)).
apply R1 right in H1. destruct H1 as (m,(H1,H3)).
assert (H4 : ∃ m0, R2 (shift t m) (shift s’ m0) ∧ ∀ k, k < m0→ s’ 0 = s’ k).
apply stutter relation univ small; auto.
destructH4 as (m0,(H4,H5)). ∃m0. split; auto. ∃ (shift t m). split; auto.
destruct H0 as (R2 zero,(R2 right,R2 left)).
assert (H3 : ∃ m : nat,

R2 (shift t m) (shift s’ 1) ∧
(∀ k : nat, k < m→ t 0 = t k)). apply R2 left; auto.

destruct H3 as (m,(H3,H4)).
set (R1 flip := fun a b⇒ R1 b a).
assert (H5 : ∃ m0, R1 flip (shift t m) (shift s m0) ∧

(∀ k, k < m0→ s 0 = s k)).
apply stutter relation univ small; auto.
unfold R1 flip.
apply flip stutter relation. auto.
unfold R1 flip in *. clear R1 flip.
destruct H5 as (m0,(H5,H6)).
∃ m0. split; auto. ∃ (shift t m); split; auto.

Qed.

Theorem trans stutter equiv : ∀ A (s t s’ : Behavior A),



stutter equiv s t→
stutter equiv t s’→
stutter equiv s s’.

Proof.
intros A s t s’ H H0.
destruct H as (R1,(H,R1 rel)).
destruct H0 as (R2,(H0,R2 rel)).
∃ (fun a b⇒ ∃ c, R1 a c ∧ R2 c b).
split. ∃ t. split; auto.
apply comp stutter prop; auto.

Qed.

Definition prop extension {A} (R : Behavior A→ Behavior A→ Prop) :=
fun s s’⇒ R s s’ ∨ (s 0 = s’ 0 ∧ R (shift s 1) (shift s’ 1)).

Lemma extend stutter relation : ∀ A (R : Behavior A→ Behavior A→ Prop),
stutter relation R→
stutter relation (prop extension R).

Proof.
intros A R H.
destruct H as (H,(H0,H1)).
repeat split; intros s s’ H2; destruct H2 as [H2|(H2,H3)]; auto.
apply H0 in H2. destruct H2 as (m,(H2,H3)). ∃ m. split; auto. left;

auto.
∃ 1. split. left. auto. intros k H4. replace k with 0 by omega; auto.
apply H1 in H2. destruct H2 as (m,(H2,H3)). ∃ m. split; auto. left;

auto.
∃ 1. split. left. auto. intros k H4. replace k with 0 by omega; auto.

Qed.

Theorem extend stutter equiv : ∀ A (s s’ : Behavior A), s 0 = s’ 0→
stutter equiv (shift s 1) (shift s’

1)→
stutter equiv s s’.

Proof.
intros A s s’ H H0.
destruct H0 as (R,(H0,H1)).
∃ (prop extension R). split.
right; split; auto.
apply extend stutter relation; auto.

Qed.

Definition front relation {A} (s s’ : Behavior A) := ∃ m n, s 0 = s’ 0 ∧
(∀ k, k

≤ m→ s 0 = s k) ∧
(∀ k, k

≤ n→ s’ 0 = s’ k) ∧



shift s
m = shift s’ n.

Lemma front relation refl : ∀ A (s : Behavior A), front relation s s.
Proof.
intros A s.
∃ 0. ∃ 0. repeat split; auto; intros k H; replace k with 0 by omega;

auto.
Qed.

Lemma front relation step : ∀ A (s s’ : Behavior A), front relation s s’→
∃ m : nat,

front relation s @ 1%behavior s’ @ m%behavior ∧
(∀ k : nat, k < m→ s’ 0 = s’ k).

Proof.
intros A s s’ H.
destruct H as (m,(n,(same zero,(lt m,(lt n,same tail))))).
destruct m. ∃ (S n). split. rewrite shift 0 in same tail.
rewrite same tail. rewrite contraction. simpl. apply front relation refl.
intros k H. apply lt n; omega.
∃ n. split. ∃ m. ∃ 0.
assert (same one : s 0 = s 1). apply lt m; omega.
repeat split.
unfold shift. simpl. transitivity (s 0). auto.
transitivity (s’ 0); auto.
intros k H. unfold shift. simpl. transitivity (s 0); auto.
apply lt m; omega.
intros k H. replace k with 0 by omega. auto.
do 2 rewrite contraction. simpl. replace (m + 1) with (S m) by omega.

auto.
intros k H. apply lt n; omega.

Qed.

Lemma front relation sym : ∀ A (s s’ : Behavior A), front relation s s’→
front relation s’

s.
Proof.
intros A s s’ H.
destruct H as (m,(n,(same refl,(lt m,(lt n,same tail))))).
∃ n. ∃ m. repeat split; auto.

Qed.

Lemma front stutter relation : ∀ A, stutter relation (front relation : Behavior A →
Behavior A→ Prop).
Proof.
intros A.
repeat split; intros s s’ H.
destruct H as (m,(n,(same zero,(lt m,(lt n,same tail))))); auto.



apply front relation step; auto.
apply front relation sym in H. apply front relation step in H.
destruct H as (m,(H,H0)).
∃ m. split; auto. apply front relation sym; auto.

Qed.

Lemma front relation shift 1 : ∀ A (s : Behavior A), s 0 = s 1→
front relation (shift

s 1) s.
Proof.
intros A s H.
∃ 0. ∃ 1. repeat split; auto.
intros k H0. replace k with 0 by omega; auto.
intros k H0. assert (H1 : k = 0 ∨ k = 1). omega. destruct H1 as [H1|H1];

rewrite H1; auto.
rewrite contraction. auto.

Qed.

Theorem stutter equiv shift 1 : ∀ A (s : Behavior A), s 0 = s 1→
stutter equiv (shift

s 1) s.
Proof.
intros A s H.
∃ front relation. split.
apply front relation shift 1; auto.
apply front stutter relation; auto.

Qed.

Theorem stutter equiv induct next : ∀ A (s s’ : Behavior A) R,
stutter equiv s s’→
(∀ n, R (s n) (s (S n)) ∨ s n = s (S n))→
(∀ n, R (s’ n) (s’ (S n)) ∨ s’ n = s’ (S n)).

Proof.
intros A s s’ R H H0 n.
assert (H1 : ∃ m, stutter equiv (shift s’ n) (shift s m)).
apply stutter equiv univ. apply sym stutter equiv; auto.
destruct H1 as (m,H1).
assert (H2 : stutter relation (stutter equiv : Behavior A→ Behavior A→ Prop)).
apply stutter equiv stuttering relation.
destruct H2 as (same zero,(step left,step right)).
assert (H2 : (shift s’ n) 0 = (shift s m) 0). apply same zero. auto.
unfold shift in H2. simpl in H2.
rewrite H2.
apply step left in H1.
destruct H1 as (m0,(H1,H3)).
destruct m0.
assert (H4 : (shift (shift s’ n) 1) 0 = (shift (shift s m) 0) 0). apply same zero;

auto.



unfold shift in H4. simpl in H4.
rewrite H4. right; auto.
assert (H4 : (shift s m) 0 = (shift s m) m0). apply H3; omega.
unfold shift in H4. simpl in H4.
assert (H5 : (shift (shift s’ n) 1) 0 = (shift (shift s m) (S m0)) 0). apply same zero;

auto.
unfold shift in H5. simpl in H5.
rewrite H4. rewrite H5.
apply H0.

Qed.

Theorem stutter equiv same first : ∀ A (s s’ : Behavior A),
stutter equiv s s’→
s 0 = s’ 0.

Proof.
intros A s s’ H.
destruct H as (r,(H,(same zero, ))).
auto.

Qed.

Theorem stutter equiv induct next’ base
: ∀ (A : Type) (s s’ : Behavior A) (R : A→ A→ Prop),

stutter equiv s s’→
R (s 0) (s 1)→ s 0 6= s 1→
∃ n : nat, R (s’ n) (s’ (S n)).

Proof.
intros A s s’ R H H1 H2.
pose (H3 := stutter equiv stuttering relation A).
destruct H3 as (H3,(H4,H5)).
assert (H6 : ∃ m, stutter equiv s @ 1%behavior s’ @ m%behavior ∧

(∀ k : nat, k < m→ s’ 0 = s’ k)). apply H4; auto.
destruct H6 as (m,(H6,H7)).
assert (H0 : s 0 = s’ 0). apply H3; auto.
destruct m.
apply H3 in H6. unfold shift in H6. simpl in H6.
rewrite H0 in H2. rewrite H6 in H2. exfalso. apply H2; auto.
∃ m.
apply H3 in H6. unfold shift in H6. simpl in H6.
rewrite← H6.
specialize H7 with m. rewrite← H7; auto.
rewrite← H0.
auto.

Qed.

Theorem stutter equiv induct next’
: ∀ (A : Type) (s s’ : Behavior A) (R : A→ A→ Prop),

stutter equiv s s’→
(∃ n : nat, R (s n) (s (S n)) ∧ s n 6= s (S n))→



∃ n : nat, R (s’ n) (s’ (S n)).
Proof.
intros A s s’ R H H1.
destruct H1 as (n,(H1,H2)).
assert (H3 : ∃ m, stutter equiv (shift s n) (shift s’ m)). apply stutter equiv univ;

auto.
destruct H3 as (m,H3).
assert (H4 : ∃ n0, R ((s’ @ m%behavior) n0) ((s’ @ m%behavior) (S n0))).
apply stutter equiv induct next’ base with (s @ n%behavior); auto.
destruct H4 as (n0,H4).
unfold shift in H4. simpl in H4.
∃ (n0 + m); auto.

Qed.

Theorem stutter equiv induct next’’
: ∀ (A : Type) (s s’ : Behavior A) (R : A→ A→ Prop) (B : Type) (f : A→ B),

stutter equiv s s’→
(∃ n : nat, R (s n) (s (S n)) ∧ f (s n) 6= f (s (S n)))→
∃ n : nat, R (s’ n) (s’ (S n)) ∧ f (s’ n) 6= f (s’ (S n)).

Proof.
intros A s s’ R B f H H1.
destruct H1 as (n,(H1,H2)).
set (M := fun x y⇒ R x y ∧ f x 6= f y).
assert (H3 : ∃ m, M (s’ m) (s’ (S m))).
apply stutter equiv induct next’ with s; auto.
∃ n. unfold M. repeat split; auto. intros N. apply H2; rewrite N;

auto.
auto.

Qed.

Require Import Relations.
Require Import Setoid.
Require Import Morphisms.
Import RelationClasses.

Add Parametric Relation A : (Behavior A) (@stutter equiv A)
reflexivity proved by (fun s⇒ refl stutter equiv s)
symmetry proved by (fun s s’ H⇒ sym stutter equiv H)
transitivity proved by (fun s t s’ H0 H1⇒ trans stutter equiv H0 H1)
as stutter equiv rel.

C.2 Expr.v

Set Implicit Arguments.

Require Import Logic.FunctionalExtensionality.
Require Import Behavior.
Local Open Scope behavior.



Section Syntax.

Variable A : Type.

Definition Predicate := A→ Prop.
Definition Action := A→ A→ Prop.

Inductive Expr :=
| E Predicate : Predicate→ Expr
| E AlwaysAction : ∀ {B : Type}, (A→ B)→ Action→ Expr
| E EventuallyAction : ∀ {B : Type}, (A→ B)→ Action→ Expr
| E Neg : Expr→ Expr
| E Conj : Expr→ Expr→ Expr
| E Disj : Expr→ Expr→ Expr
| E Impl : Expr→ Expr→ Expr
| E Equiv : Expr→ Expr→ Expr
| E Always : Expr→ Expr
| E Eventually : Expr→ Expr
| E ForallRigid : ∀ {B : Type}, (B→ Expr)→ Expr
| E ExistsRigid : ∀ {B : Type}, (B→ Expr)→ Expr.

Definition E Enabled (r : Action) :=
E Predicate (fun st⇒ ∃ st’, r st st’).

End Syntax.

Delimit Scope tla scope with tla.

Notation "P ‘<=> Q" :=
(E Equiv P Q) (at level 95, no associativity) : tla scope.

Notation "P ‘=> Q" :=
(E Impl P Q) (at level 90, right associativity) : tla scope.

Notation "P ‘\/ Q" :=
(E Disj P Q) (at level 85, right associativity) : tla scope.

Notation "P ‘/\ Q" :=
(E Conj P Q) (at level 80, right associativity): tla scope.

Notation "‘˜ P" :=
(E Neg P) (at level 75, right associativity) : tla scope.

Notation "[] P" :=
(E Always P) (at level 75, right associativity) : tla scope.

Notation "<> P" :=
(E Eventually P) (at level 75, right associativity) : tla scope.

Definition E LeadsTo {T} (P Q : Expr T) := E Always (E Impl P (E Eventually
Q)).

Notation "P ‘˜> Q" :=
(E LeadsTo P Q) (at level 90, right associativity) : tla scope.

Notation "’ENABLED’ r" :=



(E Enabled r) (at level 70, no associativity) : tla scope.

Notation "[][ R ]" := (E AlwaysAction (fun x⇒ x) R) : tla scope.

Notation "<>< R >" := (E EventuallyAction (fun x⇒ x) R) : tla scope.

Notation "‘ P" :=
(E Predicate P) (at level 0, right associativity) : tla scope.

Notation "’FORALL’ p" := (E ForallRigid p) (at level 70, right associativity)
: tla scope.

Notation "’EXISTS’ p" := (E ForallRigid p) (at level 70, right associativity)
: tla scope.

Local Open Scope tla.

Definition WF {T} (A : Action T) : Expr T :=
([] (E EventuallyAction (fun x⇒ x) A)) ‘\/ ([]<>(‘˜ ENABLED A)).

Definition SF {T} (A : Action T) : Expr T :=
([] (E EventuallyAction (fun x⇒ x) A)) ‘\/ (<>[](‘˜ ENABLED A)).

Arguments WF A%tla.
Arguments SF A%tla.

Fixpoint eval (A : Type) (e : Expr A) : Behavior A→ Prop :=
match e with
| E Predicate p⇒ fun s⇒ p (s 0)
| E AlwaysAction f r⇒ fun s⇒ ∀ n, (r (s@n 0) (s@n 1)) ∨ f (s@n 0) = f (s@n

1)
| E EventuallyAction f r ⇒ fun s⇒ ∃ n, (r (s@n 0) (s@ n 1)) ∧ f (s@n 0) 6= f

(s@n 1)
| ‘˜ e⇒ fun s⇒¬ eval e s
| e1 ‘/\ e2⇒ fun s⇒ eval e1 s ∧ eval e2 s
| e1 ‘\/ e2⇒ fun s⇒ eval e1 s ∨ eval e2 s
| e1 ‘=> e2⇒ fun s⇒ eval e1 s→ eval e2 s
| e1 ‘<=> e2⇒ fun s⇒ eval e1 s↔ eval e2 s
| [] e⇒ fun s⇒ ∀ n, eval e (s@n)
| 6= e⇒ fun s⇒ ∃ n, eval e (s@n)
| E ForallRigid f ⇒ fun s⇒ ∀ x, eval (f x) s
| E ExistsRigid f ⇒ fun s⇒ ∃ x, eval (f x) s

end.

Definition valid (A : Type) (e : Expr A) : Prop :=
∀ s, eval e s.

Arguments valid e%tla.
Arguments eval e%tla s%behavior.

Fixpoint map (C A : Type) (f : C→ A) (e : Expr A) : Expr C :=
match e with
| E Predicate P⇒ E Predicate (fun st⇒ P (f st))



| E AlwaysAction g R⇒ E AlwaysAction (fun st⇒ g (f st)) (fun st st’⇒ R (f
st) (f st’))

| E EventuallyAction g R⇒ E EventuallyAction (fun st ⇒ g (f st)) (fun st st’
⇒ R (f st) (f st’))

| ‘˜ P⇒ ‘˜ (map f P)
| P ‘/\ Q⇒ (map f P) ‘/\ (map f Q)
| P ‘\/ Q⇒ (map f P) ‘\/ (map f Q)
| P ‘=> Q⇒ (map f P) ‘=> (map f Q)
| P ‘<=> Q⇒ (map f P) ‘<=> (map f Q)
| [] P⇒ [] (map f P)
| 6= P⇒ 6= (map f P)
| E ForallRigid g⇒ E ForallRigid (fun x⇒ map f (g x))
| E ExistsRigid g⇒ E ExistsRigid (fun x⇒ map f (g x))

end.

Lemma same args same res : ∀ A, ∀ B, ∀ (f : A→ B), ∀ x y, x = y→ f x = f y.
intros A B f x y H; rewrite H; auto.

Qed.

Lemma map id :
∀ (A : Type) (e : Expr A),

map (fun x⇒ x) e = e.
Proof.
assert (arg : ∀ A, ∀ B, ∀ (f : A→ B), ∀ x y, x = y→ f x = f y). intros A B f x y

H; rewrite H; auto.
induction e; simpl;
try (rewrite IHe1; rewrite IHe2; trivial);
try (rewrite IHe; trivial);
try trivial;
try (apply same args same res; extensionality x; auto).

Qed.

Lemma map map :
∀ (A B C : Type) (f : A→ B) (g : B→ C) (e : Expr C),

map f (map g e) = map (fun x⇒ g (f x)) e.
Proof.
induction e; simpl;
try (rewrite IHe1; rewrite IHe2; trivial);
try (rewrite IHe; trivial);
try trivial;
try (apply same args same res; extensionality x; auto).

Qed.

Lemma slide shift : ∀ A B (f : A→ B) s n, (fun x⇒ f (s x)) @ n = fun x⇒ f ((s @
n) x).
Proof.
intros A B f s n.
extensionality x.



induction n; auto.
Qed.

Lemma map eval :
∀ (A B : Type) (f : A→ B) (e : Expr B) (s : Behavior A),
eval (map f e) s↔ eval e (fun x⇒ f (s x)).

Proof.
intros A B f e s. generalize dependent s.
induction e; simpl; intros;
try (rewrite IHe1; rewrite IHe2; solve [intuition]);
try (rewrite IHe; solve [intuition]);
try solve [intuition].
split; intros H n;
[ try (rewrite slide shift; apply IHe; trivial) |
specializeH with n; rewrite slide shift inH; apply IHe inH; trivial].

split; intros H; destruct H as (n,H); ∃ n;
[ rewrite slide shift; apply IHe; trivial |
rewrite slide shift in H; apply IHe in H; trivial].

split; intros H0 x; apply H; trivial.
split; intros H0; destruct H0 as (x,H0); ∃ x; apply H; trivial.

Qed.

Theorem stutter equiv eval : ∀ A (e : Expr A) (s s’ : Behavior A), stutter equiv s s’
→

eval
e s↔

eval
e s’.
Proof.
intros A e.
induction e; intros s s’ H0; simpl.
apply stutter equiv same first in H0; rewrite H0; split; auto.
split; intros H1 n; unfold shift in *; simpl in *;
set (a’ := fun x y⇒ a x y ∨ b x = b y).
assert (H2 : a’ (s’ n) (s’ (S n)) ∨ s’ n = s’ (S n)).
apply stutter equiv induct next with s; auto. intros n0.
specialize H1 with n0. destruct H1 as [H1|H1]; left. left; auto.

right; auto.
destruct H2 as [[H2|H2]|H2]. left; auto. right; auto. rewrite H2;

right; auto.
assert (H2 : a’ (s n) (s (S n)) ∨ s n = s (S n)).
apply stutter equiv induct next with s’; auto. symmetry; auto. intros n0.
specialize H1 with n0. destruct H1 as [H1|H1]; left. left; auto.

right; auto.
destruct H2 as [[H2|H2]|H2]. left; auto. right; auto. rewrite H2;

right; auto.
split; intros H1.



apply stutter equiv induct next’’ with s; auto.
apply stutter equiv induct next’’ with s’; auto.
assert (H : s = fun n⇒ s @ n 0). extensionality n; auto.
rewrite← H. symmetry. auto.
split; intros H1 H2; apply H1. apply IHe with s’; auto. apply IHe

with s; auto. symmetry; auto.
assert (H3 : stutter equiv s s’); auto.
apply IHe1 in H0. apply IHe2 in H3.
intuition.
assert (H3 : stutter equiv s s’); auto.
apply IHe1 in H0. apply IHe2 in H3.
split; intros H1; destruct H1; intuition.
assert (H3 : stutter equiv s s’); auto.
apply IHe1 in H0. apply IHe2 in H3.
intuition.
assert (H3 : stutter equiv s s’); auto.
apply IHe1 in H0. apply IHe2 in H3.
intuition.
split; intros H1 n.
assert (H2: ∃ m, stutter equiv (s’ @ n) (s @ m)). apply stutter equiv univ.

symmetry; auto.
destruct H2 as (m,H2). apply IHe in H2. intuition.
assert (H2 : ∃ m, stutter equiv (s @ n) (s’ @ m)). apply stutter equiv univ;

auto.
destruct H2 as (m,H2). apply IHe in H2. intuition.
split; intros H1; destruct H1 as (n,H1).
assert (H2 : ∃ m, stutter equiv (s @ n) (s’ @ m)). apply stutter equiv univ;

auto.
destruct H2 as (m,H2). apply IHe in H2. ∃ m; intuition.
assert (H2 : ∃ m, stutter equiv (s’ @ n) (s @ m)). apply stutter equiv univ.

symmetry; auto.
destruct H2 as (m,H2). apply IHe in H2. ∃ m; intuition.
split; intros H1 x; specialize H with x s s’; intuition.
split; intros H1; destruct H1 as (x,H1); specialize H with x s s’; ∃

x; intuition.
Qed.

C.3 ExprEquiv.v

Require Import Behavior.
Require Import Expr.

Definition expr equiv {A : Type} (s : Behavior A) (P Q : Expr A) : Prop :=
eval (P ‘<=> Q) s.

Require Import Relations.
Require Import Setoid.



Require Import Morphisms.
Import RelationClasses.

Lemma expr equiv refl :
∀ A s, reflexive (@expr equiv A s).

Proof. firstorder. Qed.

Lemma expr equiv sym :
∀ A s, symmetric (@expr equiv A s).

Proof. firstorder. Qed.

Lemma expr equiv trans :
∀ A s, transitive (@expr equiv A s).

Proof. firstorder. Qed.

Add Parametric Relation A s : (Expr A) (@expr equiv A s)
reflexivity proved by (expr equiv refl A s)
symmetry proved by (expr equiv sym A s)
transitivity proved by (expr equiv trans A s)
as expr equiv rel.

Add Parametric Morphism A s : (fun e⇒@eval A e s) with
signature @expr equiv A s ==> iff as expr eval mor.

Proof. firstorder. Qed.

Add Parametric Morphism A s : (@E Neg A) with
signature @expr equiv A s ==> @expr equiv A s as expr neg mor.

Proof. firstorder. Qed.

Add Parametric Morphism A s : (@E Conj A) with
signature @expr equiv A s ==> @expr equiv A s ==> @expr equiv A s as expr conj mor.

Proof. firstorder. Qed.

Add Parametric Morphism A s : (@E Disj A) with
signature @expr equiv A s ==> @expr equiv A s ==> @expr equiv A s as expr disj mor.

Proof. firstorder. Qed.

Add Parametric Morphism A s : (@E Impl A) with
signature @expr equiv A s ==> @expr equiv A s ==> @expr equiv A s as expr impl mor.

Proof. firstorder. Qed.

Add Parametric Morphism A s : (@E Equiv A) with
signature @expr equiv A s ==> @expr equiv A s ==> @expr equiv A s as expr equiv mor.

Proof. firstorder. Qed.

Add Parametric Morphism (A B : Set) s (f : A→ B) : (@map A B f ) with
signature @expr equiv B (fun i⇒ f (s i)) ==> @expr equiv A s as expr map mor.

Proof.
unfold expr equiv, valid. simpl. intros e1 e2 H.
do 2 try (rewrite map eval).
assumption.

Qed.

Section simpl map.



Local Open Scope tla.

Variables A B : Type.
Variable f : A→ B.

Lemma simpl map always :
∀ s e, eval (map f ([] e)) s↔ eval ([] (map f e)) s.

Proof.
reflexivity.

Qed.

Lemma simpl map conj :
∀ s e1 e2, eval (map f (e1 ‘/\ e2)) s↔ eval (map f e1 ‘/\ map f e2) s.

Proof.
reflexivity.

Qed.

Lemma simpl map disj :
∀ s e1 e2, eval (map f (e1 ‘\/ e2)) s↔ eval (map f e1 ‘\/ map f e2) s.

Proof.
reflexivity.

Qed.

End simpl map.

Ltac simpl map :=
repeat (rewrite simpl map always || rewrite simpl map conj || rewrite

simpl map disj).

C.4 Invariant.v

Require Import Behavior.
Require Import Expr.

Require Import Arith.
Require Import Omega.
Require Import FunctionalExtensionality.

Local Open Scope behavior.
Local Open Scope tla.

Theorem tla inv :
∀ (A : Type) (Init P : Predicate A) (Next : Action A),

(∀ x, Init x→ P x)→
(∀ x y, P x→ Next x y→ P y)→
valid (‘Init ‘/\ [][Next] ‘=> [] ‘P).

Proof.
unfold valid. simpl. unfold shift. simpl.
intros A Init P Next Hinv1 Hinv2 s (Hini,Hnxt) n.
induction n; auto.
specialize (Hnxt n).
destruct Hnxt as [H | H].



apply Hinv2 with (s n); auto.
rewrite← H; auto.

Qed.

Theorem tla inv gen :
∀ (A : Type) (Init : Predicate A) (Next : Action A) (F P : Expr A),

(valid (‘Init ‘/\ [][Next] ‘/\ F ‘=> P))→
(∀ s, eval P s→ Next (s 0) (s 1)→ eval P (s @ 1))→
valid (‘Init ‘/\ [][Next] ‘/\ F ‘=> [] P).

Proof.
intros A Init Next F P H H0 s.
intros H1 n.
destruct H1 as (H1,(H2,H3)).
generalize dependent s.
induction n.
intros s H1 H2 H3.
apply H. simpl. rewrite shift 0. repeat split; auto.
intros s H1 H2 H3.
assert (R : s @ (S n) = (s @ n) @ 1). extensionality x. unfold shift.
assert (R’ : x + S n = x + 1 + n). omega.
rewrite R’. trivial.
rewrite R. clear R.
assert (H4 : Next (s @ n 0) (s @ n 1) ∨ s @ n 0 = s @ n 1). apply H2.
destruct H4 as [H4|H4].
apply H0; trivial.
apply IHn; trivial.
apply stutter equiv shift 1 in H4.
rewrite contraction in *. simpl in H4.
assert (H5 : eval P (s @ (S n))↔ eval P (s @ n)). apply stutter equiv eval;

auto.
simpl. apply H5. apply IHn; auto.

Qed.

C.5 Refinement.v

Set Implicit Arguments.

Require Import Behavior.
Require Import Expr.

Local Open Scope behavior.
Local Open Scope tla.

Definition refines (A C : Type)
(m : C→ A)
(P : Expr A)
(Q : Expr C)
:= valid (Q ‘=> map m P).



Theorem refines refl :
∀ (A : Type) (P : Expr A),

refines (fun x⇒ x) P P.
Proof.
unfold refines, valid. simpl.
intros.
rewrite map id.
assumption.

Qed.

Theorem refines trans :
∀ (A B C : Type) (m1 : B→ A) (m2 : C→ B) P Q R,

refines m1 P Q→
refines m2 Q R→
refines (fun x⇒ m1 (m2 x)) P R.

Proof.
unfold refines, valid. simpl.
intros A B C m1 m2 P Q R HQP HRQ s H.
rewrite← map map.
rewrite map eval.
apply HQP.
rewrite← map eval.
apply HRQ.
assumption.

Qed.

Theorem refinement preserves invariant :
∀ (A C : Type)

(m : C→ A)
(P : Expr A)
(Q : Expr C)
(I : Predicate A),

refines m P Q→
valid (P ‘=> [] ‘I)→
valid (Q ‘=> [] map m ‘I).

Proof.
unfold refines, valid. simpl. unfold shift. simpl.
intros A C m P Q I Hrefines Hinv s H n.
specialize (Hinv (fun x⇒ m (s x))).
apply Hinv.
rewrite← map eval.
intuition.

Qed.

Lemma refine conj :
∀ (A C : Type) s (m : C→ A) Pa Pc Qa Qc,
eval (Qc ‘=> map m Qa) s→
eval (Pc ‘=> map m Pa) s→



eval (Pc ‘/\ Qc) s→
eval (map m (Pa ‘/\ Qa)) s.

Proof. firstorder. Qed.

Theorem refine predicate :
∀ (A C : Type) (m : C→ A) (Pa : Predicate A) (Pc : Predicate C),

(∀ x, Pc x→ Pa (m x))→
refines m ‘Pa ‘Pc.

Proof. firstorder. Qed.

Theorem refine always :
∀ (A C : Type) (m : C→ A) P Q,

refines m P Q→
refines m ([]P) ([]Q).

Proof. firstorder. Qed.
Theorem refine always box :
∀ (A C : Type) (m : C→ A) (ra : Action A) (rc : Action C),

(∀ x y, rc x y→ ra (m x) (m y))→
refines m ([][ra]) ([][rc]).

Proof.
intros.
unfold refines, valid. intros s. simpl.
intros H0 n. specialize H0 with n.
destruct H0 as [H0|H0]; [left; auto | right; rewrite H0; trivial].

Qed.

Lemma disj pw impl :
∀ P1 Q1 P2 Q2 : Prop,

(P1→ P2)→
(Q1→ Q2)→
(P1 ∨ Q1)→
(P2 ∨ Q2).

Proof. firstorder. Qed.

C.6 Rules.v

Set Implicit Arguments.

Require Import Arith.
Require Import FunctionalExtensionality.
Require Import Omega.
Require Import Setoid.

Require Import Behavior.
Require Import Expr.
Require Import ExprEquiv.

Local Open Scope behavior.
Local Open Scope tla.

Hint Unfold valid.



Theorem STL1 :
∀ (A : Type) (P : Expr A),

valid P→ valid ([] P).
Proof.
firstorder.

Qed.

Theorem STL2 :
∀ (A : Type) (P : Expr A),

valid ([]P ‘=> P).
Proof.
unfold valid. simpl.
intros A P s H.
rewrite← shift 0.
apply H.

Qed.

Theorem STL3 :
∀ (A : Type) (P : Expr A),

valid ([]([]P) ‘<=> []P).
Proof.
unfold valid. simpl.
intros A P s. split.
intros H n; specialize (H n 0); rewrite shift 0 in H; assumption.
intros H n m; specialize (H (m + n)); rewrite contraction; assumption.

Qed.

Theorem STL4 :
∀ (A : Type) (P Q : Expr A),

valid (P ‘=> Q)→
valid ([]P ‘=> []Q).

Proof.
firstorder.

Qed.

Theorem STL5 :
∀ (A : Type) (P Q : Expr A),

valid ([] (P ‘/\ Q) ‘<=> []P ‘/\ []Q).
Proof.
firstorder.

Qed.

Theorem STL6 :
∀ (A : Type) (P Q : Expr A),

valid (<>[] (P ‘/\ Q) ‘<=> <>[]P ‘/\ <>[]Q).
Proof.
split; try (solve [firstorder]).
intros ((n,HP),(m,HQ)).
∃ (n + m). intros o. split.



specialize (HP (m+o)).
replace ((s@(n+m))@o) with ((s@n)@(m+o))
by (unfold shift; extensionality t; intuition).

assumption.

specialize (HQ (n+o)).
replace (s@(n+m)@o) with ((s@m)@(n+o))
by (unfold shift; extensionality t; intuition).

assumption.
Qed.

Theorem ImplicationIntroduction : ∀ (A : Type) (P Q : Expr A) s,
(eval P s→ eval Q s)
→ eval (P ‘=> Q) s.

Proof.
auto.

Qed.

Theorem ModusPonens : ∀ (A : Type) (P Q : Expr A) s, (eval (P ‘=> Q) s)→ eval
P s→ eval Q s.
Proof.
auto.

Qed.

Theorem RefineWF : ∀ (A B : Type) (mapping : A→ B) (P : Action A) (Q : Action B),
(∀ s s’, P s s’→ Q (mapping s) (mapping s’))
→ (∀ s s’, mapping s = mapping s’→¬ P s s’ ∨ s = s’)
→ (∀ s, (∃ s’, Q (mapping s) s’)→ (∃ s’, P s s’))
→ ∀ s, eval (WF P) s→ eval (WF Q) (fun x⇒ mapping (s x)).

Proof.
intros A B mapping P Q H diseq H2 s H0.
assert (H1 : ∀ s, eval (ENABLED P) s → eval (ENABLED Q) (fun x ⇒

mapping (s x))).
intros s0 H1. destruct H1 as (s1,H1).
∃ (mapping s1). apply H; auto.

assert (H3 : ∀ s, ¬ (∃ s’, P s s’)→¬ (∃ s’, Q (mapping s) s’)).
intros st N R. apply N. apply H2. auto.

assert (wfP : eval (WF P) s). assumption.
destruct wfP as [wfP|noAct].
left. intros n. simpl in wfP. specialize wfP with n.
destruct wfP as (m,(Pm,dif )).
∃ m. split. apply H. simpl. apply Pm.
intros H4. apply diseq in H4. destruct H4; auto.

right. intros n. simpl in noAct. specialize noAct with n.
destruct noAct as (n0,noAct). ∃ n0. apply H3; auto.

Qed.

Theorem DeriveAlwaysEventually : ∀ (A : Type) (P Q : Expr A) s,



(∀ n, eval P (s @ n)→ eval (P ‘\/ Q) (s @ (S n)))→
(∀ n, eval (<> Q) (s @ n) ∨ ¬ eval (<> Q) (s @ n))→
eval ([] (P ‘=> ([] P) ‘\/ (<> Q))) s.

Proof.
intros A P Q s H class n H0.
assert (T : ∀ m, (∀ k, k ≤ m→ eval P ((s @ n) @ k)) ∨ eval (<> Q) (s @ n)).
intros m. induction m.
left. intros k H1. inversion H1. rewrite shift 0. auto.
destruct IHm as [IHm|IHm].
assert (H1 : eval P (s @ (m + n))). rewrite ← contraction. apply IHm;

auto.
apply H in H1. destruct H1 as [H1|H1].
left. intros k H2. inversion H2. rewrite contraction. simpl. auto.
apply IHm; auto.
right. ∃ (S m). rewrite contraction. auto.
right; auto. specialize class with n.
destruct class. right; auto.
left. intros m. specialize T with m. destruct T as [T|T].
apply T; auto.
exfalso. apply H1. auto.

Qed.

Theorem mapEventuall : ∀ T (P Q : Expr T), valid (P ‘=> Q)→
valid (<> P ‘=> 6= Q).

Proof.
intros T P Q H s eP.
simpl in *. destruct eP as (n,eP).
∃ n. apply H; auto.

Qed.

Theorem deriveLeadsTo’ : ∀ T (P Q : Expr T) s,
(∀ n, eval P (s @ n)→ eval (P ‘\/ Q) (s @ (S n)))
→ eval (<> ‘˜ P) s→ eval (P ‘=> 6= Q) s.

Proof.
intros T P Q s H neP.
assert (H0 : eval P s→ ∀ m, (∀ k, k ≤ m→ eval P (s @ k)) ∨ eval (<> Q)

s).
introsH0 m. inductionm. left; intros k H1. inversionH1. rewrite

shift 0; auto.
destruct IHm as [IHm|IHm].
assert (H1 : eval P s @ m). apply IHm; auto.
apply H in H1. destruct H1 as [H1|H1].
left. intros k H2. inversion H2; auto.
right. ∃ (S m); auto.
right; auto.
intros H1. destruct neP as (m,neP).
assert (H2 : (∀ k : nat, k ≤ m→ eval P s @ k) ∨ eval (<> Q) s). auto.



destruct H2 as [H2|H2] ; auto.
simpl in *. exfalso. apply neP. apply H2; auto.

Qed.

Theorem deriveLeadsTo : ∀ T (P Q : Expr T) s,
(∀ n, eval P (s @ n)→ eval (P ‘\/ Q) (s @ (S n)))
→ eval ([] 6= ‘˜ P) s→ eval (P ‘˜> Q) s.

Proof.
intros T P Q s H neP n.
apply deriveLeadsTo’; auto.
intros m H0.
rewrite contraction. simpl. apply H.
rewrite← contraction. auto.

Qed.

C.7 ValidEquiv.v

Require Import Expr.

Definition valid equiv {A : Type} (P Q : Expr A) : Prop :=
valid (P ‘<=> Q).

Require Import Relations.
Require Import Setoid.
Require Import Morphisms.
Import RelationClasses.

Lemma valid equiv refl :
∀ A, reflexive (@valid equiv A).

Proof. firstorder. Qed.

Lemma valid equiv sym :
∀ A, symmetric (@valid equiv A).

Proof. firstorder. Qed.

Lemma valid equiv trans :
∀ A, transitive (@valid equiv A).

Proof. firstorder. Qed.

Add Parametric Relation A : (Expr A) (@valid equiv A)
reflexivity proved by (valid equiv refl A)
symmetry proved by (valid equiv sym A)
transitivity proved by (valid equiv trans A)
as valid equiv rel.

Add Parametric Morphism A : (@valid A) with
signature valid equiv ==> iff as valid mor.

Proof. firstorder. Qed.

Add Parametric Morphism A : (@E Neg A) with
signature valid equiv ==> valid equiv as valid neg mor.

Proof. firstorder. Qed.



Add Parametric Morphism A : (@E Conj A) with
signature valid equiv ==> valid equiv ==> valid equiv as valid conj mor.

Proof. firstorder. Qed.

Add Parametric Morphism A : (@E Disj A) with
signature valid equiv ==> valid equiv ==> valid equiv as valid disj mor.

Proof. firstorder. Qed.

Add Parametric Morphism A : (@E Impl A) with
signature valid equiv ==> valid equiv ==> valid equiv as valid impl mor.

Proof. firstorder. Qed.

Add Parametric Morphism A : (@E Equiv A) with
signature valid equiv ==> valid equiv ==> valid equiv as valid equiv mor.

Proof. firstorder. Qed.

Add Parametric Morphism A : (@E Always A) with
signature valid equiv ==> valid equiv as valid always mor.

Proof. firstorder. Qed.

Add Parametric Morphism A : (@E Eventually A) with
signature valid equiv ==> valid equiv as valid eventually mor.

Proof. firstorder. Qed.

Module Examples.
Local Open Scope tla.

Variable A : Type.
Implicit Types P Q : Expr A.

Goal ∀ P Q, valid equiv P Q→ valid equiv Q P.
intros. symmetry. assumption.

Qed.

Goal ∀ P Q, valid equiv P Q→ valid P→ valid Q.
Proof.
intros. rewrite← H. assumption.

Qed.

Goal
∀ P Q,

valid equiv P Q→
∀ R, valid ([] P ‘/\ R)→ valid ([] Q ‘/\ R).

Proof.
intros P Q Heq.
setoid rewrite← Heq. trivial.

Qed.

End Examples.

C.8 TLA.v

Require Export Behavior Expr Invariant Refinement.



D Implementation of the AWG in TLACoq

D.1 Basic.v

Require Import TLA.
Require Import Rules.
Require Import Arith.
Require Import ZArith.
Require Import Omega.
Require Import Setoid.
Require Import FunctionalExtensionality.

Open Scope Z.
Open Scope tla.

Definition ignore {A : Type} (x : A) := True.

Module Type BasicParams.
Parameter PatternIsh : Type.
Parameter IsPattern : PatternIsh→ Prop.
Parameter NilPattern : PatternIsh.
Parameter NilPatternPattern : IsPattern NilPattern.
Parameter EqNilPatternClassical : ∀ p, IsPattern p → p = NilPattern ∨ p 6=

NilPattern.
End BasicParams.

Inductive MemStatus : Type := Valid | InValid.

Module Basic (Params : BasicParams).
Import Params.
Hint Resolve NilPatternPattern.

Record St := {
ready : bool;
status : MemStatus;
memory : PatternIsh;
output : PatternIsh}.

Section Model.
Variable st st’ : St.

Let ready’ := (st’).(ready). Let ready := st.(ready).
Let status’ := (st’).(status). Let status := st.(status).
Let memory’ := (st’).(memory). Let memory := st.(memory).
Let output’ := (st’).(output). Let output := st.(output).

Definition TypeInvariant :=
IsPattern memory
∧ IsPattern output.

Definition Initialize :=
ready = false
∧ ready’ = true



∧ match status’ with
| Valid⇒ memory’ = NilPattern
| ⇒ memory = memory’ end

∧ output = output’.

Definition Reset :=
ready’ = false
∧ IsPattern memory’
∧ output’ = NilPattern
∧ ignore st.

Definition Flush :=
ready = true
∧ status = Valid
∧ memory’ = NilPattern
∧ output’ = NilPattern
∧ ready = ready’ ∧ status = status’.

Definition Write p :=
ready = true
∧ status = Valid
∧ (p 6= NilPattern→ memory’ = p)
∧ (p = NilPattern→ memory’ = memory)
∧ ready’ = ready ∧ status’ = status ∧ output’ = output.

Definition Run :=
ready = true
∧ status = Valid
∧ (memory 6= NilPattern→ (output’ = memory ∧ memory’ = NilPattern))
∧ (memory = NilPattern→ (output’ = output ∧ memory’ = memory))
∧ ready’ = ready ∧ status’ = status.

Definition PowerOn :=
ready = false
∧ output = NilPattern
∧ IsPattern memory.

Definition Next :=
Initialize
∨ Reset
∨ Flush
∨ (∃ p, IsPattern p ∧ Write p)
∨ Run.

End Model.

Definition Fairness := WF Initialize.

Definition Spec := ‘PowerOn ‘/\ [][Next] ‘/\ Fairness.

Definition ResetEnabled := ENABLED Reset.

Definition CommandEnabled := ENABLED Run



‘/\ ENABLED Flush
‘/\ FORALL (fun p⇒

(‘ (fun ⇒ IsPat-
tern p))

‘=> ENABLED (fun
st st’⇒ Write st st’ p)).

Definition CommandsEnabledIffValid := CommandEnabled ‘<=> ‘ (fun st ⇒
st.(ready) = true ∧ st.(status) = Valid).

Lemma Next TypeInvariant : ∀ s s’, Next s s’→ TypeInvariant s→ TypeInvariant
s’.
Proof.
intros s s’ H H0.
destruct H0 as (H0,H1).
destruct H as [(H,(H2,(H3,H4)))

|[(H,(H2,(H3, )))
|[(H,(H2,(H3,(H4,(H5,H6)))))

|[(p,(H,(H2,(H3,(H4,(H5,(H6,(H7,H8))))))))
|(H,(H2,(H3,(H4,(H5,H6)))))]]]]; split; auto.

destruct (status s’).
rewrite H3; auto. rewrite← H3; auto.

rewrite← H4; auto.
rewrite H3; auto.
rewrite H3; auto.
rewrite H4; auto.
pose (H9 := EqNilPatternClassical p H).
destruct H9 as [H9|H9]. apply H5 in H9. rewrite H9; auto.
apply H4 in H9. rewrite H9; auto.
rewrite H8; auto.
pose (H7 := EqNilPatternClassical (memory s) H0).
destruct H7 as [H7|H7]. apply H4 in H7.
destruct H7 as (H7,H8). rewrite H8; auto.
apply H3 in H7. destruct H7 as (H7,H8).
rewrite H8. auto.
pose (H7 := EqNilPatternClassical (memory s) H0).
destruct H7 as [H7|H7]. apply H4 in H7.
destruct H7 as (H7,H8). rewrite H7; auto.
apply H3 in H7. destruct H7 as (H7,H8).
rewrite H7. auto.

Qed.

Theorem Spec then TypeInvariant : valid (Spec ‘=> [] ‘TypeInvariant).
Proof.
apply tla inv gen.
intros s H.
destruct H as ((H,(H0,H1)), ).
repeat split; auto. rewrite H0; auto.



intros s H H0.
simpl.
assert (R: s @ 1%behavior 0%nat = s 1%nat). auto.
rewrite R.
apply Next TypeInvariant with (s 0%nat); auto.

Qed.

Theorem Spec then ResetEnabled : valid (Spec ‘=> [] ResetEnabled).
Proof.
intros s H.
apply ModusPonens with (‘PowerOn ‘/\ [][Next]).
apply tla inv.
intros x H0. unfold Reset, PowerOn, ignore in *. ∃ x.
destruct H0 as (H0,(H1,H2)). rewrite H1. repeat split; trivial.
intros x y H0 H1. destruct H0 as (st’,H0).
∃ st’. destruct H0 as (H0,(H2,(H4,H5))). repeat split; trivial.
destruct H as (H,(H1,H2)).
split; trivial.

Qed.

Lemma Next CommandsEnabledIffValid : ∀ s, TypeInvariant (s 0%nat)→
evalCommandsEnabled-

IffValid s→
Next (s 0%nat) (s 1%nat)

→
evalCommandsEnabled-

IffValid (s @ 1).
Proof.
intros s H H0 H1.
simpl in *.
destruct H as (is pat mem,is pat out).
destruct H0 as (H0,H2).
split.
intros H.
destruct H as ((st’,(H,(H3, ))), ). split; auto.
intros H.
destruct H as (ready next true,status next valid).
assert (H3 : TypeInvariant (s 1%nat)). apply Next TypeInvariant with (s

0%nat); auto; split; auto.
destruct H3 as (is pat next mem,is pat next out).
assert (H3 : memory (s @ 1%behavior 0%nat) = NilPattern ∨ memory (s @

1%behavior 0%nat) 6= NilPattern). apply EqNilPatternClassical; auto.
repeat split.
unfold Run. destruct H3 as [H3|H3]. rewrite H3.
set (nst := {|

ready := ready (s @ 1%behavior 0%nat);
status := status (s @ 1%behavior 0%nat);



memory := NilPattern;
output := output (s @ 1%behavior 0%nat)|}).

∃ nst; repeat split; unfold nst; auto; intuition.
set (nst := {|

ready := ready (s @ 1%behavior 0%nat);
status := status (s @ 1%behavior 0%nat);
memory := NilPattern;
output := memory (s @ 1%behavior 0%nat)|}).

∃ nst; repeat split; unfold nst; auto; intuition.
unfold Flush.
set (nst := {|

ready := ready (s @ 1%behavior 0%nat);
status := status (s @ 1%behavior 0%nat);
memory := NilPattern;
output := NilPattern|}).

∃ nst; repeat split; unfold nst; auto.
intros x H.
unfold Write.
assert (H4 : x = NilPattern ∨ x 6= NilPattern). apply EqNilPatternClassical;

auto.
destruct H4 as [H4|H4].
set (nst := {|

ready := ready (s @ 1%behavior 0%nat);
status := status (s @ 1%behavior 0%nat);
memory := memory (s @ 1%behavior 0%nat);
output := output (s @ 1%behavior 0%nat)|}).

∃ nst; repeat split; unfold nst; auto; intuition.
set (nst := {|

ready := ready (s @ 1%behavior 0%nat);
status := status (s @ 1%behavior 0%nat);
memory := x;
output := output (s @ 1%behavior 0%nat)|}).

∃ nst; repeat split; unfold nst; auto; intuition.
Qed.

Theorem Spec then CommandsEnabledIffValid : valid (Spec ‘=> [] CommandsEn-
abledIffValid).
Proof.
assert (G : valid (Spec ‘=> [] (CommandsEnabledIffValid ‘/\ ‘TypeInvariant))).
apply tla inv gen.
intros s H.
split. simpl. simpl in H. destruct H as ((H,(H0,H1)),(H2,H3)).
rewrite H.
split; intros H4. destruct H4 as ((st’,(H4, )), ).
rewrite H4 in H. inversion H.
destruct H4 as (H4, ). inversion H4.



assert (H0 : ∀ n, eval ‘ TypeInvariant (s @ n)). apply Spec then TypeInvariant;
auto.

specialize H0 with 0%nat. auto.
intros s H H0.
destruct H as (H,H1).
split.
apply Next CommandsEnabledIffValid; auto.
apply Next TypeInvariant with (s 0%nat); auto.
intros s H n.
apply G in H.
simpl in H.
specialize H with n. destruct H as (H,H1).
auto.

Qed.

End Basic.

D.2 Memory.v

Require Import TLA.
Require Import Rules.
Require Import Arith.
Require Import ZArith.
Require Import Omega.
Require Import Setoid.
Require Import FunctionalExtensionality.
Require Import Basic.
Require Import Rules.

Open Scope tla.

Inductive Mode := Record | Play.

Module Type MemParams <: BasicParams.
Parameter PatternIsh : Type.
Parameter IsPattern : PatternIsh→ Prop.
Parameter NilPattern : PatternIsh.
Parameter NilPatternPattern : IsPattern NilPattern.
Parameter EqNilPatternClassical : ∀ p, IsPattern p → p = NilPattern ∨ p 6=

NilPattern.
Parameter MaxMemoryLen : nat.
Parameter MaxMemoryLenGtZ : (0 < MaxMemoryLen)%nat.

Fixpoint IsListPattern (ls : list PatternIsh) : Prop :=
match ls with
| nil⇒ True
| (cons h tl)⇒ IsPattern h ∧ IsListPattern tl

end.

End MemParams.



Module ParamsFromMem (Params : MemParams) <: BasicParams.
Definition PatternIsh := list Params.PatternIsh.
Definition IsPattern := Params.IsListPattern.
Definition NilPattern : PatternIsh := nil.
Theorem NilPatternPattern : IsPattern NilPattern.
Proof.
unfold IsPattern, NilPattern.
simpl. auto.

Qed.
Theorem EqNilPatternClassical : ∀ p, IsPattern p→ p = NilPattern∨ p 6= NilPattern.
Proof.
intros p H.
unfold NilPattern, IsPattern.
destruct p. left; auto. right; intros F; inversion F.

Qed.
End ParamsFromMem.

Module Memory (Params : MemParams).
Import Params.

Hint Resolve NilPatternPattern.

Record St := {
ready : bool;
status : MemStatus;
mode : Mode;
memory : list PatternIsh;
output : list PatternIsh}.

Section Model.
Variable st st’ : St.
Let ready’ := (st’).(ready). Let ready := st.(ready).
Let status’ := (st’).(status). Let status := st.(status).
Let mode’ := (st’).(mode). Let mode := st.(mode).
Let memory’ := (st’).(memory). Let memory := st.(memory).
Let output’ := (st’).(output). Let output := st.(output).

Definition TypeInvariant := IsListPattern memory ∧ IsListPattern output.

Definition Initialize :=
ready = false
∧ ready’ = true
∧ (mode = Play→ output = nil)
∧ match status’ with

| Valid⇒ mode’ = Record ∧ memory’ = nil
| ⇒ mode’ = mode ∧ memory’ = memory
end

∧ output’ = output.

Definition Reset :=
ready’ = false



∧ memory’ = nil
∧ output’ = nil
∧ ignore st.

Definition Flush :=
ready = true
∧ status = Valid
∧ mode = Record
∧ memory’ = nil
∧ output’ = nil
∧ ready’ = ready
∧ status’ = status
∧ mode’ = mode.

Definition Write p :=
ready = true
∧ status = Valid
∧ mode = Record
∧ (length memory < MaxMemoryLen)%nat
∧ (p 6= NilPattern→ memory’ = cons p memory)
∧ (p = NilPattern→ memory’ = memory)
∧ ready’ = ready
∧ status’ = status
∧ mode’ = mode
∧ output’ = output.

Definition StartPlay :=
ready = true
∧ status = Valid
∧ mode = Record
∧ output = nil
∧ memory 6= nil
∧ mode’ = Play
∧ ready’ = ready ∧ status’ = status ∧ memory’ = memory ∧ output’ = output.

Definition DoPlay :=
ready = true
∧ status = Valid
∧ mode = Play
∧ ∃ h t, memory = cons h t
∧ memory’ = t
∧ output’ = cons h output
∧ ready’ = ready ∧ status’= status ∧ mode’ = mode.

Definition EndPlay :=
ready = true
∧ status = Valid
∧ mode = Play
∧ memory = nil



∧ mode’ = Record
∧ output’ = output
∧ ready’ = ready ∧ status’ = status ∧ memory’ = memory.

Definition PowerOn :=
ready = false
∧ IsListPattern memory
∧ (length memory ≤ MaxMemoryLen)%nat
∧ output = nil.

Definition Next :=
Initialize
∨ Reset
∨ Flush
∨ (∃ p, IsPattern p ∧ Write p)
∨ StartPlay
∨ DoPlay
∨ EndPlay.

End Model.

Definition Fairness :=
WF Initialize
‘/\ WF DoPlay
‘/\ WF EndPlay.

Definition Spec := ‘ PowerOn ‘/\ [][Next] ‘/\ Fairness.

Lemma Next TypeInvariant : ∀ st st’, TypeInvariant st
→ Next st st’→ TypeInvariant st’.

Proof.
intros st st’ tst next.
unfold TypeInvariant in *.
destruct tst as (memst,patst).
destruct st, st’. simpl in *.
destruct next as [

(H0,(H1,(H2,(H3,H4))))
|[(H0,(H1,(H2,H3)))
|[(H0,(H1,(H2,(H3,(H4,(H5,(H6,H7)))))))
|[(p,(isPatP,(H0,(H1,(H2,(H3,(H4,(H5,(H6,(H7,(H8,H9)))))))))))
|[(H0,(H1,(H2,(H3,(H4,(H5,(H6,(H7,(H8,H9)))))))))
|[(H0,(H1,(H2,(h,(t,(H4,(H5,(H6,(H7,(H8,H9))))))))))
|(H0,(H1,(H2,(H3,(H4,(H5,(H6,(H7,H8))))))))

]]]]]];
simpl in *.
destruct status1; destruct H3 as (H3,H5); rewrite H5; rewrite H4;

repeat split; auto.
rewrite H1, H2; repeat split; auto.
rewrite H3, H4; repeat split; auto.
rewrite H9; split; auto.



assert (H : p = NilPattern ∨ p 6= NilPattern). apply EqNilPatternClassical.
auto.

destruct H as [H|H]. apply H5 in H. rewrite H. auto.
apply H4 in H. rewrite H. split; auto.
rewrite H8, H9; repeat split; auto.
rewrite H4 in memst. destruct memst as (iPt,memst).
rewrite H6, H5; repeat split; auto.
rewrite H8. rewrite H5. repeat split; auto.

Qed.

Theorem Spec TypeInvariant : valid (Spec ‘=> [] ‘ TypeInvariant).
Proof.
apply tla inv gen.
intros s H. destruct H as (H, ).
unfold PowerOn, TypeInvariant in *; simpl in *.
destruct H as ( ,(H,( ,H0))). rewrite H0. repeat split; auto.
intros s. apply Next TypeInvariant.

Qed.
Module FROMMEM := ParamsFromMem (Params).
Module BASIC := Basic.Basic (FROMMEM).

Definition refinement mapping (st : St) : BASIC.St :=
match st with
| {| ready := ready0;

status := status0;
memory := memory0;
mode := mode0;
output := output0 |}⇒

{| BASIC.ready := ready0;
BASIC.status := status0;
BASIC.memory := match mode0 with

| Record⇒ memory0
| Play⇒ ((List.rev output0) ++ memory0)%list
end;

BASIC.output := match mode0 with
| Record⇒ List.rev output0
| Play⇒ nil
end |}

end.

Lemma Next refinement : ∀ st st’, TypeInvariant st→ Next st st’→
(BASIC.Next (refinement mapping st) (refinement mapping st’) ∨
(refinement mapping st = refinement mapping st’)).

Proof.
intros st st’ typInv next.
unfold Next, BASIC.Next in *.
destruct next as [

(H0,(H1,(H2,(H3,H4))))



|[(H0,(H1,(H2,H3)))
|[(H0,(H1,(H2,(H3,(H4,(H5,(H6,H7)))))))
|[(p,(isPatP,(H0,(H1,(H2,(H3,(H4,(H5,(H6,(H7,(H8,H9)))))))))))
|[(H0,(H1,(H2,(H3,(H4,(H5,(H6,(H7,(H8,H9)))))))))
|[(H0,(H1,(H2,(h,(t,(H4,(H5,(H6,(H7,(H8,H9))))))))))
|(H0,(H1,(H2,(H3,(H4,(H5,(H6,(H7,H8))))))))

]]]]]].

left. left.
unfold BASIC.Initialize.
destruct st, st’; simpl in *. rewrite← H0, H1, H4.
destruct status1; repeat split; auto; destruct H3 as (H3,H5);
try (rewrite H3); try (rewrite H5); auto.
destruct mode0; auto; intuition; rewrite H; auto.

left. right. left.
unfold BASIC.Reset, ignore.
destruct st, st’; simpl in *. rewrite H0, H1, H2; simpl.
destruct mode1; repeat split; auto.

left. right. right. left.
unfold Flush, BASIC.Flush in *.
destruct st, st’; simpl in *.
rewrite H7.
rewrite H6, H5, H4, H3, H2, H1. repeat split; auto.

left. right. right. right. left.
unfold Write, BASIC.Write in *.
assert (H10 : p = NilPattern ∨ p 6= NilPattern). apply EqNilPatternClassical;

auto.
destruct st, st’; simpl in *.
rewrite H8. rewrite H0, H1, H2, H6, H7, H9, H1.
destruct H10 as [H10|H10].
apply H5 in H10.
rewrite H10. ∃ FROMMEM.NilPattern; intuition.
apply H4 in H10. rewrite H10.
destruct typInv as (ty, ). simpl in ty.
∃ ((p :: memory0)%list). repeat split; auto. intros H; inversion H.

right.
destruct st, st’. simpl in *.
rewrite H9, H8, H7, H6, H5, H3, H2, H1, H0. simpl in *.
auto.

right.
destruct st, st’. simpl in *.
rewrite H9, H8, H7, H6, H5, H4, H2, H1, H0.
simpl.
rewrite← List.app assoc.
simpl. auto.



left. right. right. right. right.
unfold BASIC.Run.
destruct st, st’; simpl in *.
rewrite H8, H7, H6, H5, H4, H3, H2, H1, H0.
repeat split; auto.
rewrite List.app nil r. auto.
rewrite List.app nil r in H. auto.

Qed.

End Memory.

D.3 Command.v

Require Import TLA.
Require Import Rules.
Require Import Arith.
Require Import ZArith.
Require Import Omega.
Require Import Setoid.
Require Import FunctionalExtensionality.
Require Import Basic.
Require Import Rules.

Open Scope Z.
Open Scope tla.

Definition ignore {A : Type} (x : A) := True.

Module Command (Params : BasicParams).
Import Params.

Hint Resolve NilPatternPattern.

Inductive Control : Type := Ready | Busy | Done.
Inductive Command : Type :=
| Flush : Command
| Write : PatternIsh→ Command
| Run : Command.
Definition IsCommand (c : Command) : Prop := match c with

| Write p⇒ IsPattern p
| ⇒ True
end.

Record St := {
ready : bool;
status : MemStatus;
ctrl : Control;
cmd : Command;
memory : PatternIsh;
output : PatternIsh}.



Section Model.
Variable st st’ : St.

Let ready’ := (st’).(ready). Let ready := st.(ready).
Let status’ := (st’).(status). Let status := st.(status).
Let ctrl’ := (st’).(ctrl). Let ctrl := st.(ctrl).
Let cmd’ := (st’).(cmd). Let cmd := st.(cmd).
Let memory’ := (st’).(memory). Let memory := st.(memory).
Let output’ := (st’).(output). Let output := st.(output).

Definition TypeInvariant :=
IsCommand cmd
∧ IsPattern memory
∧ IsPattern output.

Definition Initialize :=
ready = false
∧ ready’ = true
∧ ctrl’ = Ready
∧ match status’ with
| Valid⇒ memory’ = NilPattern
| ⇒ memory = memory’ end

∧ output = output’
∧ cmd = cmd’.

Definition Reset :=
ready’ = false
∧ IsPattern memory’
∧ IsCommand cmd’
∧ output’ = NilPattern
∧ ignore st. Definition Req c :=
ready = true
∧ status = Valid
∧ ctrl = Ready
∧ cmd’ = c
∧ ctrl’ = Busy
∧ ready = ready’ ∧ status = status’ ∧ memory = memory’ ∧ output = output’.

Definition DoFlush :=
cmd = Flush
∧ memory’ = NilPattern
∧ output’ = NilPattern.

Definition DoWrite :=
(∃ p, cmd = Write p

∧ (p 6= NilPattern→ memory’ = p)
∧ (p = NilPattern→ memory’ = memory))

∧ output = output’.

Definition DoRun :=
cmd = Run



∧ (memory 6= NilPattern→ (output’ = memory ∧ memory’ = NilPattern))
∧ (memory = NilPattern→ (output’ = output ∧ memory’ = memory)).

Definition Do :=
ready = true
∧ status = Valid
∧ ctrl = Busy
∧ (DoFlush ∨ DoWrite ∨ DoRun)
∧ ctrl’ = Done
∧ (ready’ = ready ∧ status’ = status ∧ cmd’ = cmd).

Definition Resp :=
ready = true
∧ status = Valid
∧ ctrl = Done
∧ ctrl’ = Ready
∧ (ready’ = ready

∧ status’ = status
∧ cmd’ = cmd
∧ memory’ = memory
∧ output’ = output).

Definition PowerOn :=
ready = false
∧ IsCommand cmd
∧ IsPattern memory
∧ output = NilPattern.

Definition Next :=
Initialize
∨ Reset
∨ (∃ c, IsCommand c ∧ Req c)
∨ Do
∨ Resp.

End Model.

Definition Fairness :=
WF Initialize
‘/\ WF Do
‘/\ WF Resp.

Definition Spec := ‘PowerOn ‘/\ [][Next] ‘/\ Fairness.

Lemma Next TypeInvariant : ∀ st st’, TypeInvariant st→ Next st st’→ TypeInvari-
ant st’.
Proof.
intros st st’ H H0.
destruct st.
destruct st’.
unfold TypeInvariant in H. simpl in H.



destruct H as (IsCmd cmd0,(IsPat memy0,IsPat out0)).
destruct H0 as [( ,( ,( ,(H0,(out unchanged,cmd unchanged)))))

|[( ,(IsPat mem1,(IsPat cmd1,(out1 nilPat, ))))
|[(c,(isCommand c,( ,( ,( ,(cmd1 c,( ,( ,( ,(mem unchanged,out unchanged))))))))))

|[( ,( ,( ,([( ,(mem1 nilPat,out1 nilPat))
|[((p,(cmd0 writeP,(p ifnotnilPat,p ifNilPat))),out unchanged)

|( ,(mem0 ifnotnilPat,mem0 ifNilPat))]],( ,( ,( ,cmd unchanged)))))))
|( ,( ,( ,( ,( ,( ,(cmd unchanged,(mem unchanged,out unchanged))))))))]]]];

simpl in *; unfold TypeInvariant; simpl;

try (rewrite cmd unchanged in *);
try (rewrite out unchanged in *);
try (rewrite mem unchanged in *);
try (rewrite out1 nilPat);
try (rewrite mem1 nilPat);
try (rewrite cmd1 c);
try (rewrite cmd0 writeP in *); repeat split; auto.

destruct status1; rewrite H0 in *; auto.

unfold IsCommand in *.
assert (H : p = NilPattern ∨ p 6= NilPattern). apply EqNilPatternClassical;

auto.
destruct H as [H|H].
apply p ifNilPat in H; rewrite H; auto.
apply p ifnotnilPat in H; rewrite H; auto.

assert (H : memory0 = NilPattern ∨ memory0 6= NilPattern). apply EqNilPat-
ternClassical; auto.

destruct H as [H|H].
apply mem0 ifNilPat in H. destruct H as (H,H0). rewrite H0; auto.
apply mem0 ifnotnilPat in H. destruct H as (H,H0). rewrite H0; auto.

assert (H : memory0 = NilPattern ∨ memory0 6= NilPattern). apply EqNilPat-
ternClassical; auto.

destruct H as [H|H].
apply mem0 ifNilPat in H. destruct H as (H,H0). rewrite H; auto.
apply mem0 ifnotnilPat in H. destruct H as (H,H0). rewrite H; auto.

Qed.

Theorem Spec TypeInvariant : valid (Spec ‘=> [] ‘ TypeInvariant).
Proof.
apply tla inv gen.
intros s H.
destruct H as ((H,(H0,(H1,H2))), ). simpl in *.
repeat split; auto; rewrite H2; auto.
intros s H H0. apply Next TypeInvariant with (s 0%nat); auto.

Qed.

Module BASIC := Basic.Basic Params.



Definition refinement mapping : St→ BASIC.St :=
fun x⇒ match x with

| {| ready := ready0;
status := status0;
output := output0;
memory := memory0 |}⇒

{|
BASIC.ready := ready0;
BASIC.status := status0;
BASIC.memory := memory0;
BASIC.output := output0 |}

end.

Lemma refines Next : ∀ st st’,
TypeInvariant st
→ Next st st’
→ (BASIC.Next

(refinement mapping st)
(refinement mapping st’) ∨

refinement mapping st = refinement mapping st’).
Proof.
intros st st’ typeInvSt H.
destruct typeInvSt as (isCommandSt,(isPatternMemSt,isPatternOutSt)).
unfold Next in *.
unfold BASIC.Next in *.
Ltac break up := unfold BASIC.Initialize, BASIC.Reset, BASIC.Flush, BA-

SIC.Write, BASIC.Run in *;
unfold Initialize, Reset, Req, Do, Resp in *.

destruct H as [H|[H|[(c,(isComc,H))|[H|H]]]].
left. left. break up; destruct st, st’; simpl in *.
destruct H as (H,(H1,(H2,(H3,(H4,H5))))).
destruct status1; repeat split; auto.
left. right. left. break up; destruct st, st’; simpl in *.
destruct H as (H,(H1,(H2,(H3,H4)))); repeat split; auto.
right. break up; destruct st, st’; simpl in *.
destruct H as ( ,( ,( ,( ,( ,(H4,(H5,(H6,H7)))))))).
rewrite H4, H5, H6, H7; auto.
destruct st. simpl.
destruct H as (H,(H0,(H1,([H2|[H2|H2]],(H3,(H4,(H5,H6))))))); destruct

cmd0 as [|p|];
unfold DoFlush,DoWrite,DoRun in *; simpl in *.
left. right. right. left.
break up; destruct st’; simpl in *.
destruct H2 as ( ,(H2,H7)).
repeat split; auto.
destruct H2 as (H2, ); inversion H2.



destruct H2 as (H2, ); inversion H2.
destruct H2 as ((p0,(H2, )), ); inversion H2.
destruct H2 as ((p0,(H2,(H7,H8))),H9).
left. right. right. right. left. ∃ p.
assert (H10 : p = p0). inversion H2; auto.
rewrite H10 in *.
repeat split; auto; destruct st’; simpl in *; auto.
destruct H2 as ((p0,(H2, )), ); inversion H2.
destruct H2 as (H2, ); inversion H2.
destruct H2 as (H2, ); inversion H2.
destruct H2 as ( ,(H2,H7)).
left. do 4 right.
destruct st’; repeat split; simpl in *; auto; intuition.
right.
destruct H as (H,(H1,(H2,(H3,(H4,(H5,(H6,(H7,H8)))))))).
destruct st, st’; simpl in *. rewrite H4, H5, H7, H8. auto.

Qed.

Lemma refines init : ∀ st, PowerOn st→ BASIC.PowerOn (refinement mapping st).
Proof.
intros st H.
unfold PowerOn, BASIC.PowerOn in *.
destruct H as (H,(H0,(H1,H2))).
destruct st; simpl in *.
repeat split; auto.

Qed.

Theorem refines : valid (Spec ‘=> (map refinement mapping BASIC.Spec)).
Proof.
intros s H.
assert (tyInv : eval ([] ‘TypeInvariant) s). apply Spec TypeInvariant in H;

auto.
destruct H as (init,(next,fairness)).
rewrite map eval.
unfold BASIC.Spec.
split. rewrite← map eval. apply refines init; auto.
split. rewrite← map eval. simpl.
intros n. simpl in next. specialize next with n.
destruct next as [H|H].
apply refines Next; auto; apply tyInv.
right; rewrite H; trivial.
assert (H : ∀ s s’,Initialize s s’
→ BASIC.Initialize (refinement mapping s) (refinement mapping s’)).

intros s0 s1 H. destruct s0. destruct s1.
unfold Initialize in H. unfold BASIC.Initialize. simpl in *.
destruct H as (H,(H1,(H2,(H3,(H4,H5))))).
destruct status1; repeat split; auto.



apply RefineWF with Initialize.
assumption.
intros s0 s1 H0. left. intros H2. destruct H2 as (H2,(H3,H4)).
destruct s0. destruct s1. simpl in *. rewrite H2 in *.
rewrite H3 in *. inversion H0.
intros s0 H1.
destruct H1 as (s’,(H1,(H3,(H4,H5)))).
∃ ({|ready := true;

status := BASIC.status s’;
ctrl := Ready;
cmd := cmd s0;
memory := BASIC.memory s’;
output := output s0|}).

destruct s0, s’. simpl in *.
repeat split; auto.
destruct fairness as (WF init, ); auto.

Qed.

Definition ResetEnabled := ENABLED Reset.

Lemma Next ResetEnabled : ∀ st st’,
(∃ s, Reset st s)
→ Next st st’
→ ∃ s, Reset st’ s.

Proof.
intros st st’ H next.
destruct st, st’.
unfold Reset.
destruct H as (s,H). ∃ s. unfold Reset in H.
repeat split; intuition; auto.

Qed.

Theorem Spec ResetEnabled : valid (Spec ‘=> [] ResetEnabled).
Proof.
apply tla inv gen.
intros s H. destruct H as ((H,(H1,(H2,H3))), ).
simpl.
∃ ({|ready := false;

status := (s 0%nat).(status);
ctrl := (s 0%nat).(ctrl);
cmd := (s 0%nat).(cmd);
memory := (s 0%nat).(memory);
output := NilPattern|}).

unfold Reset; simpl; repeat split; auto.
intros s. apply Next ResetEnabled.

Qed.

Definition IsCommand’ {T} c := ‘ fun (x : T)⇒ IsCommand c.



Definition CommandsEnabled := E ForallRigid (fun c⇒ IsCommand’ c
‘=> ENABLED (fun a b⇒ Req a b c)).

Definition CommandsEnabledIffValidAndReady := CommandsEnabled ‘<=>
‘ fun st⇒ st.(ready) = true

∧ st.(status) = Valid
∧ st.(ctrl) = Ready.

Lemma Next CommandsEnabledIffValidAndReady : ∀ st st’,
((∀ c, IsCommand c→ ∃ s, Req st s c)↔ (st.(ready) = true

∧ st.(status) = Valid
∧ st.(ctrl) = Ready))

→ Next st st’
→ (∀ c, IsCommand c→ ∃ s, Req st’ s c)↔ ((st’).(ready) = true

∧ (st’).(status) =
Valid

∧ (st’).(ctrl) = Ready).
Proof.
intros st st’ H next.
split.

intros H0.
assert (H1 : ∃ s : St, Req st’ s Flush). apply H0; simpl; auto.
destruct H1 as (s,H1). unfold Req in H1. repeat split; intuition;

auto.

intros H0 c isCmdC. destruct H0 as (H0,(H1,H2)).
∃ ({| ready := ready st’;

status := status st’;
ctrl := Busy;
cmd := c;
memory := memory st’;
output := output st’|}).

repeat split; simpl; auto.
Qed.

Theorem Spec CommandsEnabledIffValidAndReady : valid (Spec ‘=> [] Command-
sEnabledIffValidAndReady).
Proof.
apply tla inv gen.
intros s H. destruct H as (H, ).
split. intros H1. simpl in H1.
assert (H2 : ∃ st’ : St, Req (s 0%nat) st’ Flush). apply H1; auto; unfold

IsCommand; auto.
destructH2 as (st’, H2). unfold Req inH2. repeat split; intuition;

auto.
intros H1 c H2. simpl in H2.
destruct H1 as (H1,(H3,H4)).
unfold Req.



∃ ({| ready := ready (s O);
status := status (s O);
ctrl := Busy;
cmd := c;
memory := memory (s O);
output := output (s O)|}).

repeat split; simpl; auto.
intros s. apply Next CommandsEnabledIffValidAndReady.

Qed.

Definition CommandsComplete := ‘ (fun st⇒ st.(ctrl) = Busy) ‘˜> ‘ (fun st⇒
st.(ctrl) = Ready).

Lemma Spec NotBad : valid (Spec ‘=> [] ‘ fun st⇒¬ (st.(ready) = true
∧ st.(status) = In-

Valid
∧ (st.(ctrl) = Busy

∨ st.(ctrl) = Done))).
Proof.
apply tla inv gen.
intros s H F. destruct H as (H, ).
destructH as (H, ). destruct F as (F, ). rewrite F inH. inversion

H.
intros s H next F.
destruct F as (rt,(si,cb)). simpl in H.
destruct next as [( ,( ,(F, )))

|[(F, )
|[(c,(isC,( ,(F0,( ,( ,( ,( ,(F1, )))))))))
|[( ,(F0,( ,( ,( ,( ,(F1, )))))))
|( ,(F0,( ,( ,( ,(F1, ))))))]]]]; unfold shift in *; simpl

in *.
destruct cb as [cb|cb].
assert (W : Busy = Ready). rewrite← cb; rewrite← F; auto. inversion

W.
assert (W : Done = Ready). rewrite← cb; rewrite← F; auto. inversion

W.
assert (W : true = false). rewrite← rt; rewrite← F; auto. inversion

W.
assert (W : InValid = Valid). rewrite← si; rewrite← F0; rewrite F1;

auto. inversion W.
assert (W : InValid = Valid). rewrite← si; rewrite← F0; rewrite←

F1; auto. inversion W.
assert (W : InValid = Valid). rewrite← si; rewrite← F0; rewrite←

F1; auto. inversion W.
Qed.

Definition IsReady st := st.(ctrl) = Ready.
Definition IsBusy st := st.(ctrl) = Busy.



Definition IsDone st := st.(ctrl) = Done.
Definition IsValid st := st.(status) = Valid.
Definition IsInvalid st := st.(status) = InValid.
Definition ReadyTrue st := st.(ready) = true.
Definition ReadyFalse st := st.(ready) = false.

Lemma Spec ReadyFalseLeadstoReady : valid (Spec ‘=> ((‘ ReadyFalse) ‘˜> ‘ Is-
Ready)).
Proof.
intros s spec.
assert (H : eval (([]<> ‘ IsReady) ‘\/ ([]<> ‘ReadyTrue)) s).
destruct spec as ( ,( ,([wfI|wfI], ))); simpl in *; unfold Initialize in *;
unfold IsReady; unfold ReadyFalse.
left. intros n. specializewfI with n. destructwfI as (m,(( ,( ,(wfI, ))), )).
∃ (S m). rewrite← wfI; auto.
right. intros n. specialize wfI with n.
destruct wfI as (m,wfI).
assert (F : ready ((s @ n) @ m%behavior 0%nat) = true ∨ ready ((s @ n) @

m%behavior 0%nat) = false).
destruct (ready ((s @ n) @ m%behavior 0%nat)); auto.
destruct F as [F|F]. ∃ m; auto.
exfalso. apply wfI.
∃ ({| ready := true;

ctrl := Ready;
status := Valid;
memory := NilPattern;
output := output ((s @ n) @ m%behavior 0%nat);
cmd := cmd ((s @ n) @ m%behavior 0%nat)|}).

repeat split; simpl; auto.
destruct H as [H|H].
simpl in *; intros n; specialize H with n; auto.
apply deriveLeadsTo.
intros n H0.
destruct spec as ( ,(spec, )).
simpl in *. unfold ReadyFalse in *. unfold IsReady in *. specialize

spec with n.
destruct spec as [
[next
|[next
|[(c,( ,(H1, )))
|[(H1, )
|(H1, )]]]]
|next].
firstorder.
firstorder.
rewrite H0 in H1. inversion H1.



rewrite H0 in H1. inversion H1.
rewrite H0 in H1. inversion H1.
left. rewrite next in H0. rewrite← H0. auto.
clear spec.
simpl in *. intros n. specialize H with n.
destruct H as (m,H). ∃ m. unfold ReadyTrue in *. unfold ReadyFalse

in *.
rewrite H; intros F; inversion F.

Qed.

Lemma Spec ValidAndDoneLeadsToReady : valid (Spec ‘=>
((‘ ReadyTrue ‘/\ ‘ IsValid ‘/\ ‘ IsDone) ‘˜> ‘ IsReady)).

Proof.
intros s spec.
assert (T : eval (‘ ReadyTrue ‘/\ ‘ IsValid ‘/\ ‘ IsDone ‘˜> (‘ IsReady ‘\/ ‘

ReadyFalse)) s
→ eval (‘ ReadyTrue ‘/\ ‘ IsValid ‘/\ ‘ IsDone ‘˜> ‘ IsReady) s).

intros H n H0.
apply H in H0.
destruct H0 as (m,[H0|H0]).
∃ m; auto.
apply Spec ReadyFalseLeadstoReady in spec.
apply spec in H0. destruct H0 as (m0,H0).
∃ ((m0 + m)%nat). unfold IsReady in *. simpl in *.
rewrite← H0. do 2 rewrite← contraction; auto.
apply T. clear T.
assert (H : eval (([]<> ‘ IsReady) ‘\/ ([]<> ‘˜ (‘ ReadyTrue ‘/\ ‘ IsValid ‘/\ ‘

IsDone))) s).
destruct spec as ( ,( ,( ,( ,[fair|fair]))));
unfold IsReady, ReadyTrue, IsValid, IsDone, Resp in *.
left. intros n. simpl in *. specialize fair with n.
destruct fair as (m,(( ,( ,( ,(H, )))), )).
∃ (S m). rewrite← H; auto.
right. simpl in *. intros n. specialize fair with n.
destruct fair as (m,fair). ∃ m.
intros H. destruct H as (H,(H0,H1)).
destruct (ready ((s @ n) @ m%behavior 0%nat)).
destruct (status ((s @ n) @ m%behavior 0%nat)).
destruct (ctrl ((s @ n) @ m%behavior 0%nat)).
inversion H1. inversion H1.
apply fair.
∃ ({| ctrl := Ready;

ready := true;
status := Valid;
cmd := cmd ((s @ n) @ m%behavior 0%nat);
memory := memory ((s @ n) @ m%behavior 0%nat);



output := output ((s @ n) @ m%behavior 0%nat) |}). repeat split;
auto.

inversion H0.
inversion H.
destruct H as [H|H].
clear spec. intros n . simpl in *. specialize H with n. destruct

H as (m,H).
∃ m. left; auto.
apply deriveLeadsTo; auto.
intros n H0.
destruct spec as ( ,(next, )).
simpl in next. specialize next with n. clear H.
unfold ReadyTrue, IsValid, IsDone, IsReady, ReadyFalse in *.
simpl in *.
destruct H0 as (H0,(H1,H2)).
destruct next as [
[(H3, )
|[next
|[(c,( ,( ,( ,(H3, )))))
|[( ,( ,(H3, )))
|( ,( ,( ,(H3, ))))]]]]
|next].
assert (W : true = false). rewrite←H3. rewrite H0. auto. inversion

W.
right. right. firstorder.
assert (W : Ready = Done). rewrite←H3. rewrite←H2. auto. inversion

W.
assert (W : Busy = Done). rewrite←H3. rewrite←H2. auto. inversion

W.
right. left. rewrite← H3. auto.
rewrite next in *. rewrite← H0. rewrite← H1. rewrite← H2.
left; repeat split; auto.

Qed.

Lemma Spec ValidAndBusyLeadsToReady : valid (Spec ‘=>
((‘ ReadyTrue ‘/\ ‘ IsValid ‘/\ ‘ IsBusy) ‘˜> ‘ IsReady)).

Proof.
intros s spec.
assert (T : eval (‘ ReadyTrue ‘/\ ‘ IsValid ‘/\ ‘ IsBusy

‘˜> ((‘ ReadyTrue ‘/\ ‘ IsValid ‘/\ ‘ IsDone) ‘\/ (‘ IsReady ‘\/ ‘
ReadyFalse))) s

→ eval (‘ ReadyTrue ‘/\ ‘ IsValid ‘/\ ‘ IsBusy ‘˜> ‘ IsReady) s).
intros H n H0. apply H in H0.
destruct H0 as (m,[H0|[H0|H0]]).
apply Spec ValidAndDoneLeadsToReady in spec.
apply spec in H0. unfold IsReady in *.



destruct H0 as (n0,H0). ∃ ((n0 + m)%nat).
simpl in *. rewrite← H0. do 2 rewrite← contraction. auto.
∃ m. auto.
apply Spec ReadyFalseLeadstoReady in spec. apply spec in H0.
destruct H0 as (m0,H0). ∃ ((m0 + m)%nat).
unfold IsReady in *.
simpl in *. rewrite← H0. do 2 rewrite← contraction. auto.
apply T. clear T.
assert (H: eval (([]<> (‘ IsReady ‘\/ ‘ ReadyFalse))

‘\/ []<> ‘˜ (‘ ReadyTrue ‘/\ ‘ IsValid ‘/\ ‘ IsBusy)) s).
assert (H0 : eval (‘ ReadyTrue ‘/\ ‘ IsValid ‘/\ ‘ IsDone ‘˜> ‘IsReady) s).
apply Spec ValidAndDoneLeadsToReady; auto.
assert (TY : eval ([] ‘ TypeInvariant) s). apply Spec TypeInvariant in

spec. auto.
destruct spec as ( ,( ,( ,([fair|fair], )))).
unfold Do in fair.
simpl in fair. left. intros n. specialize fair with n.
destruct fair as (m,fair).
assert (H1 : eval (‘ ReadyTrue ‘/\ ‘IsValid ‘/\ ‘IsDone) ((s @ n) @ (S m)%behavior)).
unfold ReadyTrue, IsValid, IsDone. simpl.
destruct fair as ((H1,(H2,( ,( ,(H3,(H4,(H5, ))))))), ).
rewrite←H1. rewrite←H2. rewrite←H3. rewrite←H4. rewrite

← H5.
repeat split; auto.
apply H0 in H1. destruct H1 as (m0,H1). ∃ ((m0 + S m)%nat).
left. unfold IsReady in *. rewrite← H1.
unfold eval. do 2 rewrite← contraction. simpl. auto.
right. intros n. simpl in fair.
specialize fair with n. destruct fair as (m,fair).
clear H0. ∃ m. unfold ReadyTrue, IsValid, IsBusy, Do in *. simpl in *.
intros F. destruct F as (H,(H0,H1)).
destruct (ready ((s @ n) @ m%behavior 0%nat)).
destruct (status ((s @ n) @ m%behavior 0%nat)).
destruct (ctrl ((s @ n) @ m%behavior 0%nat)).
inversion H1.
unfold DoFlush, DoWrite, DoRun in *.
apply fair.
assert (IsC : IsCommand (cmd ((s @ n) @ m%behavior 0%nat))).
specialize TY with ((m + n)%nat). rewrite contraction.
destruct TY as (TY0,(TY1,TY2)). auto.
destruct (cmd ((s @ n) @ m%behavior 0%nat)).
∃ ({| ctrl := Done;

ready := true;
status := Valid;
cmd := Flush;



output := NilPattern;
memory := NilPattern|}).

repeat split; simpl; auto.
simpl in IsC.
apply EqNilPatternClassical in IsC. destruct IsC as [IsC|IsC].
∃ ({| ctrl := Done;

ready := true;
status := Valid;
cmd := Write p;
output := (output ((s @ n) @ m%behavior 0%nat));
memory := (memory ((s @ n) @ m%behavior 0%nat))|}).

repeat split; simpl; auto. right. left. split; auto. ∃ p. repeat
split; auto.

intros F. exfalso. apply F; auto.
∃ ({| ctrl := Done;

ready := true;
status := Valid;
cmd := Write p;
output := (output ((s @ n) @ m%behavior 0%nat));
memory := p|}).

repeat split; simpl; auto. right. left. split; auto. ∃ p. repeat
split; auto.

intros F. exfalso. apply IsC; auto.
assert (Q : IsPattern (memory ((s @ n) @ m%behavior 0%nat))).
specialize TY with ((m + n) % nat). unfold TypeInvariant in TY.
rewrite contraction. destruct TY as ( ,(TY, )). auto.
apply EqNilPatternClassical in Q.
destruct Q as [Q|Q].
∃ ({| ctrl := Done;

ready := true;
status := Valid;
cmd := Run;
output := output ((s @ n) @ m%behavior 0%nat);
memory := memory ((s @ n) @ m%behavior 0%nat)|}).

repeat split; simpl; auto. right. right. repeat split; auto.
exfalso; apply H2; auto.
∃ ({| ctrl := Done;

ready := true;
status := Valid;
cmd := Run;
output := memory ((s @ n) @ m%behavior 0%nat);
memory := NilPattern|}).

repeat split; simpl; auto. right. right. repeat split; auto.
exfalso; apply Q; auto.
inversion H1.



inversion H0.
inversion H.
destruct H as [H|H].
intros n . simpl in *. specialize H with n. destruct H as (m,H).
∃ m. right. auto.
apply deriveLeadsTo; auto. clear H.
intros n H. destruct spec as ( ,(next, )).
simpl in next. specialize next with n.
destruct H as (H,(H0,H1)).
unfold ReadyTrue, IsValid, IsBusy, IsDone, IsReady, ReadyFalse in *.
simpl in *.
unfold Next in *.
destruct next as [
[(H2, )
|[(H2, )
|[(c,( ,( ,( ,(H2, )))))
|[(H2,(H3,( ,( ,(H4,(H5,(H6, )))))))
|( ,( ,(H2, )))]]]]
|next].
assert (W : true = false). rewrite←H2. rewrite←H. auto. inversion

W.
right. right. right. rewrite← H2. auto.
assert (W : Ready = Busy). rewrite←H2. rewrite←H1. auto. inversion

W.
right. left. rewrite← H2. rewrite← H3. rewrite← H4.
rewrite← H5. rewrite← H6. repeat split; auto.
assert (W : Done = Busy). rewrite←H2. rewrite←H1. auto. inversion

W.
rewrite next in *. left. rewrite ← H. rewrite ← H0. rewrite ←

H1.
repeat split; auto.

Qed.

Theorem Spec CommandsComplete : valid (Spec ‘=> CommandsComplete).
Proof.
intros s spec.
pose (H1 := Spec NotBad s spec).
intros n H0.
assert (H2 : eval ( (‘ ReadyTrue ‘/\ ‘ IsValid ‘/\ ‘ IsBusy)

‘\/ (‘ ReadyTrue ‘/\ ‘ IsValid ‘/\ ‘ IsDone)
‘\/ ‘ ReadyFalse ‘\/ ‘ IsReady) s @ n).

unfold IsValid, IsBusy, IsReady, IsDone, ReadyTrue, ReadyFalse in *.
simpl. simpl in H1. specialize H1 with n.
destruct (ctrl (s @ n%behavior 0%nat)).
right; right. right. auto.

destruct (ready (s @ n%behavior 0%nat)).



destruct (status (s @ n%behavior 0%nat)).
left. repeat split; auto.
exfalso. apply H1. repeat split; auto.
right. right. left. auto.

destruct (ready (s @ n%behavior 0%nat)).
destruct (status (s @ n%behavior 0%nat)).
right. left. repeat split; auto.
exfalso. apply H1. repeat split; auto.
right. right. left. auto.

destruct H2 as [H2|[H2|[H2|H2]]].
pose (H3 := Spec ValidAndBusyLeadsToReady s spec).
apply H3; auto.
pose (H3 := Spec ValidAndDoneLeadsToReady s spec).
apply H3; auto.
pose (H3 := Spec ReadyFalseLeadstoReady s spec).
apply H3; auto.
unfold IsReady in H2. simpl in *.
∃ O. rewrite shift 0. auto.

Qed.

Definition InitializeAfterReset := ‘ (fun st⇒ st.(ready) = false)
‘˜>
‘ fun st⇒ st.(ready) = true.

Theorem Spec InitializeAfterReset : valid (Spec ‘=> InitializeAfterReset).
Proof.
intros s H.
destruct H as (init,(next,([wfI|wfI],fairness))).
intros n H. simpl in wfI. specialize wfI with n.
destruct wfI as (m,(wfI,H0)).
∃ (S m). simpl. unfold Initialize in wfI.
destruct wfI as ( ,(wfI, )). auto.
simpl in wfI.
intros n H. specialize wfI with n.
destruct wfI as (m,imp).
∃ m. simpl.
assert (B : ready ((s @ n) @ m%behavior 0%nat) = true ∨ ready ((s @ n) @

m%behavior 0%nat) = false).
destruct (ready ((s @ n) @ m%behavior 0%nat)); intuition.
destruct B as [B|B]; auto.
exfalso. apply imp. unfold Initialize.
∃ ({| ready := true;

ctrl := Ready;
status := Valid;
memory := NilPattern;
output := output ((s @ n) @ m%behavior 0%nat);



cmd := cmd ((s @ n) @ m%behavior 0%nat) |}).
simpl. repeat split; auto.

Qed.

End Command.

D.4 Total.v

Require Import TLA.
Require Import Rules.
Require Import Arith.
Require Import ZArith.
Require Import Omega.
Require Import Setoid.
Require Import FunctionalExtensionality.
Require Import Memory.
Require Import Command.
Require Import Rules.

Module Total (Params : MemParams).
Module MEMORY := Memory (Params).
Module COMMAND := Command (MEMORY.FROMMEM).
Print MEMORY.BASIC.St.
Print COMMAND.BASIC.St.
Definition castSt1 (st : MEMORY.BASIC.St) : COMMAND.BASIC.St :=
match st with
| {| MEMORY.BASIC.ready := ready;

MEMORY.BASIC.status := status;
MEMORY.BASIC.memory := memory;
MEMORY.BASIC.output := output |}⇒

{|
COMMAND.BASIC.ready := ready;
COMMAND.BASIC.status := status;
COMMAND.BASIC.memory := memory;
COMMAND.BASIC.output := output |}

end.

Definition castSt2 (st : COMMAND.BASIC.St) : MEMORY.BASIC.St :=
match st with
| {| COMMAND.BASIC.ready := ready;

COMMAND.BASIC.status := status;
COMMAND.BASIC.memory := memory;
COMMAND.BASIC.output := output |}⇒

{|
MEMORY.BASIC.ready := ready;
MEMORY.BASIC.status := status;
MEMORY.BASIC.memory := memory;
MEMORY.BASIC.output := output |}



end.
Lemma castStInv1 : ∀ st, st = castSt2 (castSt1 st).
Proof.
intros st. destruct st; auto.

Qed.

Lemma castStInv2 : ∀ st, st = castSt1 (castSt2 st).
Proof.
intros st. destruct st; auto.

Qed.

Definition sameSt (st1 : MEMORY.BASIC.St) (st2 : COMMAND.BASIC.St) :
Prop :=

castSt1 st1 = st2.

Definition sameStAlt : ∀ st1 st2, sameSt st1 st2↔ st1 = castSt2 (st2).
Proof.
intros st1 st2. unfold sameSt.
destruct st1, st2. split; intros H; inversion H; auto.

Qed.

Inductive St : Type := Make St : ∀ st1 st2,
sameSt (MEMORY.refinement mapping st1) (COMMAND.refinement mapping st2)

→ St.

Definition p1 (st : St) : MEMORY.St :=
match st with
| Make St m ⇒ m
end.

Definition p2 (st : St) : COMMAND.St :=
match st with
| Make St m ⇒ m
end.

Definition Spec : Expr St := (map p1 MEMORY.Spec) ‘/\ (map p2 COMMAND.Spec).

End Total.
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