SAND2016-4937C

Verification by way of refinement: a case study in the use
of Coq and TLA in the design of a safety critical system

Philip Johnson-Freyd!, Geoffrey C. Hulette?, and Zena M. Ariola’

! University of Oregon, Eugene OR
{philipjf,ariola}@cs.uoregon.edu
2 Sandia National Laboratories, Livermore CA

ghulett@sandia.gov

Abstract. Sandia engineers use the Temporal Logic of Actions (TLA) early in
the design process for digital systems where safety considerations are critical.
TLA allows us to easily build models of interactive systems and prove (in the
mathematical sense) that those models can never violate safety requirements, all
in a single formal language. TLA models can also be refined, that is, extended
by adding details in a carefully prescribed way, such that the additional details
do not break the original model. Our experience suggests that engineers using
refinement can build, maintain, and prove safety for designs that are significantly
more complex than they otherwise could. We illustrate the way in which we have
used TLA, including refinement, with a case study drawn from a real safety-
critical system. This case exposes a need for refinement by composition, which
is not currently provided by TLA. We have extended TLA to support this kind
of refinement by building a specialized version of it in the Coq theorem prover.
Taking advantage of Coq’s features, our version of TLA exhibits other benefits
over stock TLA: we can prove certain difficult kinds of safety properties using
mathematical induction, and we can certify the correctness of our proofs.

1 Introduction

Sandia Laboratories builds extremely high consequence systems. Logical errors in these
systems could incur enormous costs both financially and in loss of life. It is of course
natural then to want to apply formal methods to verify such systems. However, histori-
cally, the use of formal methods in digital system design at Sandia has been limited. To
rectify this, Sandia engineers are implementing a new methodology to integrate formal
methods into the specification and design phase of high consequence systems. However,
we need specification languages which comport with the way designers think about the
systems they are designing and which are easy enough to use for engineers who are
not formal methods experts. At the same time, we need tools which make verification
tractable at scale.

Sandia engineers have begun to make use of the Temporal Logic of Actions (TLA)
[9] for formalizing specifications. TLA has proven itself to be an effective formalism for
describing the evolution of digital systems over time. However, TLA™ and its associated
tooling still faces limitations. TLA™ comes with a model checker [17], but this model
checker, while fully automated, is insufficient for proving many properties. Often times

engineers need to work over infinite state spaces and want to verify properties beyond
the capability of any model checker. Such properties require instead interactive theorem
proving with human supplied lemmas and inductive hypotheses. What is more, model
checkers are complex pieces of software and could contain bugs. We want to be able
to independently verify claims made by verification tools. In short, we want proofs and
we want those proofs to be easily, and independently, machine checkable.

In order to overcome some of these limitations we have embedded a version of TLA
inside the proof assistant Coq [7]. Coq is a highly advanced tool, however, its logic is not
specialized to our application domain. Further, Coq’s flexibility comes at the expense of
usability as it is a tool which is geared primarily to formal method experts. We needed a
way to leverage Coq’s power while retaining TLA’s ease of use and this has driven the
design of our embedding, TLA®™.

The initial problem which motivated the design of TLA® is the specification of
a component of a high consequence digital system produced by Sandia. We initially
developed a formal model of this component, called the Arbitrary Waveform Generator
(AWG), in TLA™. After running into limitations with TLA™ we developed TLA*Y and
transitioned the AWG model to our embedding. Doing so allowed us to prove properties
which we could otherwise only partially verify by way of bounded model checking. It
also enabled us to adopt a development approach where we composed orthogonal re-
finements to construct a complete model. The compositional approach is crucial: dif-
ferent refinements reveal different aspects of the system, we need to be able to work
with refinements individually or in combination while managing complexity. We be-
lieve even larger gains will appear as we apply these techniques to bigger systems.

In Section 2 we describe the high level specification of the Arbitrary Waveform
Generator. In Section 3 we discuss our initial attempts to formalize this specification
in TLA™ and the challenges we encountered. In Section 4 we describe how we use our
embedding TLA* and how we structured the AWG development in it. In Section 5 we
cover the design decisions and technical details of our embedding. We conclude with
lessons learned.

2 Application: Arbitrary Waveform Generator (AWG)

The Arbitrary Waveform Generator (AWG) is a component of a high consequence dig-
ital system being developed at Sandia. The AWG is used for storing “patterns" in mem-
ory which are later played out as timed waveforms. While relatively simple, the AWG
component is a real circuit that is being incorporated into silicon in production. Its
specification presented in this paper was developed as a collaboration between formal
methods experts and domain engineers with an eye towards more broadly introduc-
ing certain formal methods techniques at Sandia. This process of collaboration proved
helpful early on in clarifying details of the AWG’s original requirements document that
otherwise might have been missed. And, the act of formalizing the resulting specifica-
tion revealed weak spots and avenues to improve our formal method techniques.

Our ultimate application domain demands a very high level of assurance in order
to avoid loss of life. However, there is nothing intrinsic about the AWG that is unique
to our application domain. Indeed, similar systems are likely to be used in a host of

start —

Reset

Reset
Write
i Output(p) Run
Init \ f Flush
Interface AWG
Wavef
Reset Write(& Ready | Vvavelorm
@ Status

Fig. 1. Simplified AWG staty hi
i e sle machine Fig. 2. AWG logical interface

applications. The timed input/output behavior of the AWG will appear in any system
where precise playback of programmed in patterns is required and so could be used
for anything from a musical alarm clock to an autonomous vehicle. Given both the
generality of the AWG and its importance in a concrete high consequence system we
believe it serves as a suseful demonstration for digital system formalization.

The AWG needs to support two main operations. The first is to read in a pattern
from its input and store that pattern in its memory. The second is to, upon receiving a
special signal, begin playing out the value in its memory. At any time the AWG can
also be “reset" by passing in a certain signal, clearing its memory. Thus, the AWG can
be conceptually thought of as a state machine (see Figure 1) that can be in one of three
modes: initially, or upon being reset, the AWG will not have a meaningful value in
its memory and thus not be able to be played. From the cleared state, the AWG can
receive an input pattern which it will encode into memory leaving it ready to play out
the pattern. Finally, the AWG can play out the pattern stored in its memory. This process
of playing out the pattern will happen in a timed manner, removing bits from its pattern
buffer as they are output, and so eventually leaving the AWG with its buffer erased.
From either the “Ready” or “Written" states the AWG can be “reset" returning it to a
“Clear" state.

This description of the AWG is, of course, much more abstract than what would
suffice to describe an implementation. For example, it does not include the intermediate
states that will be encountered as the pattern is played out in a timed manner or while
initiating the machine with a new pattern. We will therefore need to refine this specifica-
tion. But, it is worth emphasizing that a formalization of the specification at this level of
abstraction also is insufficiently detailed for those building components which interact
with the AWG. The protocols a component uses to communicate with other components
are very relevant to the design of those other components. Nonetheless, it is still impor-
tant to have conceptual models, and we believe formal models as well, which operate at
these higher levels of abstraction. This leads to an important observation: refinement of
component specifications matters not just in the design of individual components but in
systems of components as well. We must refine protocols in addition to state machines.
And, this is necessary to build tractable high level specifications.

Thus we will refine our model to clarify that the pattern is played out not all at once
but as a sequence of states, requiring an internal memory. Additionally we need to re-

fine our model to describe the channels on which it communicates (See Figure 2). One
of these channels will carry signals we will call commands and will take one of three
forms: a “Run" command instructing the AWG to play out its memory, a “Write" com-
mand containing a pattern, or a “Flush" command asking the AWG to be flushed. The
other input channel is a simple wire used for sending “Reset" signals. There are three
output channels: the waveform lines on which the pattern will be played, the “Ready"
line, and a “Status" line used for such things as error codes. The AWG is only ex-
pected to handle commands while it reads as having a “Valid" status and a true “Ready"”
line. And, we would expect it to take multiple clock cycles for initiation after receiving
a command or resetting before it was ready to accept another command. However, it
should be able to “Reset" at any time. This then illustrates the difference between the
“Flush" command and the “Reset" signal-while ultimately serving a similar purpose,
the “Flush" command will only come when our system is ready to receive commands
and so can take advantage of this stronger precondition in its implementation while a
“Reset" must be possible in any state of the system.

The addition of memory and timed output is mostly independent from the issue of
the communication protocol. When we think about the details of one refinement of the
initial basic model we need not think about the details of the other.

3 Expressing the AWG in TLA™

In order to formalize the AWG system we turned to the Temporal Logic of Actions
(TLA). TLA has desirable properties for formulating a system like the AWG. Fore-
most, TLA specifications are not sensitive to the rate of the passage of time, i.e. it is
stuttering invariant [3]. This enables the development of formal TLA specification using
a process of refining more abstract specifications into more concrete ones in much the
same way we approach designs like the AWG informally [6]. TLA takes a logic centric
view: specifications and theorems about specifications are both just logical formulae
and the statement that one specification refines another is interpreted simply as that the
more refined specification implies the more abstract one, perhaps along some “refine-
ment mapping” of their underlying state spaces [1]. Stuttering invariance implies that
refinements can in many instances slow down time through the addition of intermediate
states in the refined specification which are not observable in the more abstract one.

3.1 Models and Refinements

We took a refinement based approach to formalizing the AWG in TLA™ . Our initial
specification, therefore, only modeled some very basic properties of the AWG system.
The model (Figure 3) is parameterized by a set called Pattern which serves to ab-
stract away the details of the patterns stored in memory and played out by the AWG.
The constant NilPattern represents the “empty” pattern. The memory status fol-
lowing self-check may be Valid or Invalid. The specification variable memory
is a Pattern representing the state of memory. The variables ready, status, and
output represent the output lines.

Run = ready = TRUE

Next £ Initialize A status =Valid

\ Reset A IF memory # NilPattern
V Flush THEN
V dp € Pattern.Write(p) output’ =memory
V Run memory’ = NilPattern
ELSE UNCHANGED << output,
Write(p) £ ready = TRUE memory >>
A status =Valid A UNCHANGED << ready, status >>

ANIF p#NilPattern
r —
THENmemory” =p Reset £ ready’ = FALSE
ELSE UNCHANGED memory
A UNCHANGED << ready,

status, output >>

N status’ € MemStatus
A memory’ € Pattern

Aoutput’ = NilPattern

vars £<< ready, status,memory,output >>
Fairness = WEyars(Initialize)

Spec = PowerOn A[J[Next]vars AFairness

Fig. 3. Excerpt of Basic Model in TLA™

The Next relation is then defined as the conjunction of five actions. These actions
specify relations between a current and a next state. In TLA the apostrophe at an end
of a variable means it refers to the next value of that variable and can only occur in an
action. WEy.,<(A) is the TLA formula which asserts weak fairness for the action A and
means that A either keeps happening or is eventually impossible. ([A], .5 means that
at every step A happens or the value of vars is unchanged.

Some desired properties of this specification are shown in Figure 4. The notation
~ is pronounced “leads to” [11] and is an example of a liveness property. Namely,
that ready keeps becoming TRUE. Thus, the AWG will keep accepting and playing
out new patterns and so we can rule out whole classes of anomalous and potentially
dangerous behavior such as playing out one waveform forever.

One of the areas of missing details in the Basic model is in the handling of com-
mands. In the basic model, Run, Flush, and Write(p) are treated simply as events.
However, we know that they are actually commands which come as input to the system
and might take multiple steps to handle. Therefore, our first refinement is to incorporate
the more detailed notion of commands.

In the new model our state consists of the four variables from the Basic model plus
variables cmd and ctrl. The idea is that cmd will store the command the machine is
currently processing while ct r1 will store its status in that process.

THEOREM Spec = UTypeInvariant

CommandsEnabled £ ENABLED Run A ENABLED Flush
AVp € Pattern.ENABLED Write(p)

THEOREM Spec = [CommandsEnabled

THEOREM Spec = J(ENABLED Reset)

THEOREM Spec = (ready = FALSE ~» ready = TRUE)

Fig. 4. Properties of Basic Model in TLA™

DoFlush £ cmd.op = Flush A
Do = ready = TRUE

Amemory’ = NilPattern ,
Y A status =Valid

Aoutput’ =NilPattern
P A ctrl = Busy

A DoFlush V DoWrite V DoRun
Actrl’” =Done

Next £ Initialize V Reset
V Do V Resp

V dc € Command.Reqg(c) A UNCHANGED

Spec £ PowerOn A O[Next]yars A Fairness < ready, status, cmd >>

Fig. 5. Excerpt from Command Module

In place of the actions F1lush, Run, and Write(p) from the Basic model, we have
a more complicated implementation of commands by way of the actions Do, Resp,
and Reg(c). A client issuing a command is represented by Req (c) actions. The AWG
processes the command and updates its internal data structures in a Do action. Finally,
the AWG resets its interface to accept further commands in the Resp action. These
actions are defined such that the desired order of operations is strictly enforced and,
moreover, that the correspondence with the Basic model is maintained.

The new model allows us to define properties related to commands. We also want
to ensure that what we have described really is a refinement of the Basic model, so
that all the properties we established about the Basic model hold automatically in the
Command model. Formally, we must demonstrate that our new Spec formula implies
the Spec from the Basic model.

In addition to the more detailed theory of commands, we must consider the playing
of patterns in more detail. The AWG should not play patterns to the output all at once,
but rather play them slowly. In order to handle this we can modify our original basic
specification to store the memory not as a single element of the abstract set Pattern
but rather as a finite sequence of elements from such an abstract set. Playing a pattern
will now be a multi-step process so we also add a variable mode, the type invariant for
which will be that it is a member of the set containing only the constants Record and
Play. The Flush and Write actions are modified to only fire when the mode is in
Record (which they also preserve).

Playback is now implemented with three events. The StartPlay event can occur
when the mode is Record, the status is Valid, and the ready flag is TRUE. It
requires the new state have the mode P1ay but is otherwise unmodified. The DoPlay

event can only fire when the status is Valid, the ready flag is TRUE, and has the
effect of popping the first element of the memory sequence into the output leaving
everything else unchanged. EndP lay becomes possible instead of DoP1lay when the
memory is the empty sequence and simply switches the mode back to Record.

3.2 Limitations of the TLAT framework

At this point we have described a set of TLA" models, each describing a different aspect
of the AWG. We have extended the Basic model in two different ways incorporating
different aspects of the full system we care about. We have also stated, and model
checked, a number of properties. We would therefore like to complete the picture by
combining all the various aspects of the three models into a single complete model. We
would also like to verify the various correctness theorems we have stated.

However, we encounter challenges in both these goals. Both the Command model
and the Memory model were developed by extending the Basic model, but in doing so
we had to restate essentially the entire model. It would be undesirable indeed to have
to fully write out yet another model. Instead, we would like to simply be able to assert
that our full specification is exactly the refinement of the basic model which extends the
Basic model in the way the Command model does and the way Memory model does.

We are able to use the TLA' model checker to check the theorems we have stated,
but only by first instantiating the abstract set pattern with a concrete, finite, set. The
model checker tells us that our theorems are true, but only for this concrete set. How
can we be sure they hold for any instantiation of Pattern? Moreover, the model
checker will claim that the properties hold, but it does not provide any sort of witness
or reason as to why this is true. Instead, we gain confidence in correctness only relative
to our confidence in the correctness of the model checker. While a TLA™ proof system
(TLAPS) [5] which might help rectify some of these issues has been partially developed
it is incomplete and does not currently support temporal reasoning.

4 Expressing the AWG in TLA®*

We want to be able to prove properties about our models using inductive reasoning.
Moreover, we want to support parametric reasoning — it should be possible for us to
consider some aspects of a model as abstract parameters and still be able to prove prop-
erties about that model which hold for any instantiation of those parameters. Further,
we want proof witnesses and a small trusted base so we do not have to depend on the
correctness of complex pieces of machinery like model checkers. Moreover, we would
like a framework which not only provides these things but which also has good support
for “programming in the large" and building abstractions.

Interactive theorem provers based on type theory excel at precisely this point. By
using a small core logic they separate the problems of finding proofs and interacting
with the system with the problem of checking a proof already found. Systems like Coq
and Isabelle [16] come equipped with fully powerful fully automated methods (such as
Coq’s Presburger solver which uses the Omega test [12]) as well as tools for developing

Section Model.
Variables hr hr’ : Z.

Definition Init := 1 <= hr <= 12.
Definition Next := hr’ = hr mod 12 + 1.
End Model.
Definition Spec := ‘Init ‘/\ [][Next].

Fig. 6. A model of a clock in our embedding of the TLA in Coq

new domain specific automation, but these capabilities are kept separate from the logic
kernel.

Coq in particular seems like a close match to our needs. Its type theory not only
extends higher order logic with dependent types, it also allows for quantification over
universes providing the ability to abstract over types. Moreover, Coq has a rich module
system, and the Coq tool has proven to scale to very large scale projects such as a
fully certified C compiler [4] and the proof of the four color theorem [8]. However,
unlike what we see with TLA™, Coq’s logic is not geared specifically toward expressing
systems which evolve over time. While TLA is well suited to describing systems like
the AWG, vanilla Coq is not.

TLA® is an embedding of TLA into Coq. It allows us to take advantage of Coq’s
features which make scalable verification tractable while presenting an interface sim-
ilar to TLA. Moreover, while Coq is a highly advanced tool requiring a great deal of
time to master, one of our goals on the AWG project has been to support collaboration
between subject matter experts and system designers with formal methods experts. As
such, we have aimed to make the embedding relatively straightforward to use even for
non experts. For example, we can use our embedding to formalize a model of a simple
clock akin to that considered by Lamport [10, 11]. The Coq code in Figure 6 provides
a complete specification of the clock using our library. The Init and Next defini-
tions inside the Model section describe the initial configuration and evolution of the
state of the clock which we encode as a single integer hr. Init requires this vari-
able have a value between one and twelve. Next relates the variable hr to the variable
hr’ (representing the next time) whenever hr’ is equal to one plus the value of hr
modded out by twelve. These definitions are simply predicates in Coq and so involve
no temporal operators. However, the definition of Spec below them occurs within the
embedded TLA. Spec is simply the temporal logic conjunction of the requirement that
Init holds for the initial state and that every future change in state happens accord-
ing to the Next predicate. Note the use of /A instead of A in the definition of Spec.
This is because we are constructing the conjunction of two TLA formulae and not the
meta logical conjunction of two Coq propositions. Similarly, the quote in *Init lifts
Init, a Coq predicate, into a TLA formula. While exceedingly simple, the clock al-
ready demonstrates the main features we need to specify the AWG. In particular, we
can not only state properties of interest about the Coq model, but prove them as well.
For example, an important property we can prove about the clock is that the value of hr

Theorem hour_inv : valid (Spec ‘=> [] ‘Init).
Proof.

unfold Spec, Init, Next.

apply tla_inv.

(x Base case x)
intuition .

(* Inductive case)

intros .

assert (0 <= x mod 12 < 12) by (apply Z.mod_pos_bound; intuition).
intuition .

Qed.

Fig. 7. Proof of Type Invariant for the Clock

will always be between one and twelve. The proof in Figure 7 of this property demon-
strates a standard style of proofs in our system, where TLA specific reasoning tools and
theorems are used to handle the temporal backbone of formulae but standard Coq tac-
tics are used for the non-temporal leaves. In this case we need to instruct Coq to prove
our property by induction. Then, a fully automated method (intuition) becomes
sufficient for handling the base case. The inductive step is almost fully automated, but
not quite, requiring a small amount of guidance and appeal to a general mathematical
theorem from Coq’s standard library. The availability of theorems such as these is one
of the benefits of working with Coq.

Using TLA®Y we formulated the specification of the AWG module. Following the
original version in TLA we approached this through a series of modules corresponding
to the Basic, Command, and Memory refinements. As in the original Basic specification
we took the set of patterns to be abstract. We describe the parameters to the Basic mod-

Module Type BasicParams.

Parameter Patternlsh : Type.

Parameter IsPattern : Patternlsh —> Prop.

Parameter NilPattern : Patternlsh.

Parameter NilPatternPattern : IsPattern NilPattern.

Parameter EqNilPatternClassical : forall p,

IsPattern p — p = NilPattern \/ p <> NilPattern.

End BasicParams.

Module Basic (Params : BasicParams).

Import Params.
Hint Resolve NilPatternPattern.

Fig. 8. Basic AWG Module Structure

Inductive MemStatus : Type := Valid | InValid.

Record St := {
ready : bool; status : MemStatus;
memory : PatternIsh; output : PatternlIsh}.

Fig. 9. Basic State Type

Section Model.

Variable st st’ : St.
Let ready’ := (st’).(ready). Let ready := st.(ready).
Let status’ := (st ’).(status). Let status := st.(status).

Let memory’
Let output’

(st’).(memory). Let memory := st.(memory).
(st ’).(output). Let output st.(output).

Definition Typelnvariant :=
IsPattern memory /\ IsPattern output.

(¥ action definitions elided x)
Definition Next :=
Initialize \/ Reset \/ Flush \/ Run
\/ (exists p, IsPattern p /\ Write p).

End Model.
(* definition elided x)
Definition Spec := ‘PowerOn ‘/\ [][Next] ‘/\ Fairness.

Fig. 10. Outline of Basic Model in Coq

ule (Figure 8) by way of a module type BasicParams which has a type representing
patterns.

We defined our states as coming from the type St containing a memory, the output,
a boolean ready flag, and the status. The status variable is defined as coming from the
type containing only the constants Valid and InValid. Using this definition we can
then define the various events of the model in much the same way as we encountered in
pure TLA. For example, the Next event is defined simply as the conjunction of smaller
events in Coq. To express these events in a clear way we define a Section and using
the Variable keyword to lambda abstract over the the current and next states in the
section. Then, we can give names to the variables as projections into the states as can
be seen in Figure 10. On the other hand, the definition of the whole specification is an
element of our expr data type and does not live in the model section. Observe that
with the definition of St much of what we considered a “type invariant property" of
the model in the pure set theoretic model will now hold automatically. For example,
that status is in the type MemoryStatus is definitionally true rather than being a
theorem which must be proved about the specification. However, because we encode

Inductive Control : Type := Ready | Busy | Done.
Inductive Command : Type

| Flush : Command
| Write : Patternlsh —> Command
| Run : Command.
Definition IsCommand (¢ : Command) : Prop :=

match ¢ with

| Write p => IsPattern p
| _ => True

end .

Fig. 11. Start of Command Module

membership in the pattern set as a predicate, we still have a type invariant that simply
states that output and memory remain valid patterns. However, by switching to the Coq
representation we can now prove that the type invariant always holds as an inductive

property.

Theorem Spec_then_Typelnvariant
valid (Spec ‘=> [] ‘Typelnvariant).

And, indeed, we can state and prove the other properties from the TLA™ version of the
specification.

After the Basic model we construct the two refinements. The Command model
works similarly to the Basic model. It is again constructed as a module functor pa-
rameterized by a module of the BasicParams type. Using Coq’s inductive type sys-
tem makes it easy to express the type of the control variable as well as the type of
commands. But, we only consider a Write command to be valid if the stored pattern
data is, in fact, a pattern. We can express this by defining a predicate on commands by
pattern matching. Beyond this, the definition of the command module works as direct
translation of our early TLA™ specification following the same approach as we used for
translating the Basic module.

The last module to translate is the memory module. Here we have as parameters not
merely a base type of patterns and its associated properties, but also a maximal length
of the vector of these which will be stored in memory. To represent this we use a new
module type which extends the BasicParams.

The main idea then is to instantiate the Basic module with a representation in which
patterns from the Basic module correspond to sequences of patterns in the Memory
module. We do this by way of a module functor as in Figure 12. As before the Coq
code is mostly a direct translation of the original TLA™ specification. The refinement
mapping from Memory to Basic, however, depends on instantiating Basic with a differ-
ent, and more specific, set of parameters.

Now, we have constructed two modules in Coq which each refine our original Basic
specification. We want a specification which incorporates the details from each. We
would like to be able to do this in a general way: we should not have to fully describe
the combined refinement at the same level of detail as the others, but rather simply
declare it as the combination of the memory and command refinements.

Module ParamsFromMem (Params : MemParams) <: BasicParams.

Definition PatternIsh := list Params.Patternlsh.
Definition IsPattern := Params.IsListPattern.
Definition NilPattern : PatternlIsh := nil.

Theorem NilPatternPattern : IsPattern NilPattern.
Proof.

unfold IsPattern, NilPattern. simpl. auto.
Qed.
Theorem EqNilPatternClassical : forall p, IsPattern p

—> p = NilPattern \/ p <> NilPattern.

Proof.

intros p H.

unfold NilPattern, IsPattern.

destruct p. left; auto. right; intros F; inversion F.
Qed.

End ParamsFromMem .

Fig. 12. Memory Module Functor

Record St := {
ready : bool; status : MemStatus; mode : Mode;
memory : list PatternIsh; output : list Patternlsh}.

Fig. 13. State type for Memory Refinement

One option, available to us from TLA™, is to simply combine the two models as
a conjunction [2]. However, a complexity arises in that the two models have different
types to represent their states and we need to be explicit about what states we are using.
Using the product of the two state spaces would lead to a model, but not the one we
intend. Specifically, we would have, for example, two separate variables encoding the
status.

Instead we construct the combined specification as the conjunction of the two re-
finements restricted to the case where they map to the same thing in Basic. The details
are provided in an appendix.

5 Implementing TLA

There are a number of ways to use a meta logic as rich as Coq to host another logic
or language. Often when considering embedded languages we contrast so-called “shal-
low" and “deep" embeddings [14]. In a shallow embedding each construct of the target
language is directly mapped to a construct of the meta language. By contrast, in a deep
embedding the target language constructs are considered as data representing syntax.
Existing work includes examples of both deep and shallow embeddings of TLA into
Coq. In [15] a shallow embedding of TLA in Coq was constructed to prove a meta re-
sult that all TLA specifications of a certain form satisfy a “machine closed" property

Module FROMMEM := ParamsFromMem (Params).

Module BASIC := Basic.Basic (FROMMEM).

Definition refinement_mapping (st : St) : BASIC.St :=
match st with

[{I ready := readyO; status := statusO;
memory := memory0); mode := mode0;
output := outputO |} =>

{I BASIC.ready := readyO;
BASIC. status := statusO;
BASIC.memory := match mode0 with

| Record => memory0
| Play => ((List.rev output0) ++ memory0)

end;

BASIC. output := match mode0 with

| Record => List.rev output0
| Play => nil

end |}

end .

Fig. 14. Memory Refinement of Basic

Theorem tla_inv_gen
forall (A : Type) (Init : Predicate A) (Next : Action A)
(F P : Expr A), (valid (‘Init ‘/\ [][Next] ‘/\ F ‘=> P)) —>
(forall s, eval P s — Next (s 0) (s 1) — eval P (s @ 1))
—> valid (‘Init ‘/\ [][Next] ‘/\ F ‘=> [] P).

Fig. 15. Induction Rule

in which the liveness part of the specification does not constrain the reachable states
of the system. As such, TLA formulae are interpreted simply as predicates on infinite
sequences of states. A deep approach to embedding a TLA like logic in Coq was used
more recently as part of the VeriDrone project [13]. VeriDrone combines discrete digital
components with continuous physical ones in a hybrid cyber-physical system, and so
their logic combines continuous time with the discrete transition semantics of TLA. Fol-
lowing Lamport, they use a two step approach where their logical syntax corresponds
to a full set of “RTLA" formulae of which the stuttering invariant TLA formulae are
only a subset.

We take what is mostly a deep embedding approach to the handling of TLA formu-
lae in Coq. The set of TLA expressions is encoded as an inductive datatype parameter-
ized by the type of states . The advantage of our design is that it yields simpler proofs for
safety properties by ensuring that all formulae are stuttering invariant by construction.
Safety properties are demonstrated via the induction rule in Figure 15 without having
to think about stuttering steps. On top of this data type we use Coq’s notations facilities
to build a more convenient syntax for writing TLA formulae. We rely on Coq’s exten-
sive standard library for the mathematical language used in formulae, rather than going
through the trouble of embedding set theory.

Coq has a very flexible and configurable parser, which we use to provide a con-
venient syntax for writing TLA formulae. This allows our Coq code to look a lot like
regular TLA™ .

Instead of encoding TLA’s proof theory directly, we provide a semantic account of
the truth of TLA formulae in Coq and then we use Coq to prove the truth of a formula.
Following Lamport [9], TLA formulae are interpreted as being predicates over infinite
sequences of states called behaviors. Our implementation “compiles” an Expr value
to a Coq function from behaviors to Coq’s Prop type of propositional values. From
there, proofs are done in Coq as per usual, and in particular may use Coq’s standard
automation facilities.

6 Conclusions

Our use of Coq to embed a TLA-like language yielded several practical benefits. Us-
ing refinement for composition, we were able to construct a model of a critical system
component in stages, adding detail as we went. The use of Coq allowed us to construct
proofs of correctness properties using an interactive theorem proving approach, combin-
ing automation where possible with human insight where necessary. Unlike approaches
based on bespoke model checkers, Coq also lends a very high level of confidence to our
proofs.

The designers and engineers involved in the specification and verification of the
AWG component found the effort to be worthwhile. Using a TLA-style specification
forced us to consider details about how the high-level design worked early on. Without
it, we probably would not have considered those details until they were encountered by
programmers or revealed in testing, at which point changing the design would have been
much more difficult. We estimate that the cost of performing the formal specification
and model checking was justified by the time saved later in the process, and that those
costs will decrease in the future as we gain experience with the tools and techniques.

The use of interactively-developed proofs rather than automated model checking
comes at a cost in terms of development time and required expertise. Improved automa-
tion within Coq would be helpful and we are planning future work in this area. One
obvious path is to replicate the capabilities of the TLA™ model checker within Coq. We
might even be able to prove the correctness of the model checker within Coq itself.

Further work could involve connecting TLA® with other Coq based verification
approaches, with the goal of “full stack verification,” where low level implementations
are proven to correspond to our high level models. One can imagine a world in which
design, development, and specification happen in tandem, such that implementations
are fully verified and correct by construction. Formalizing the high level descriptions of
systems as we have done with TLA®Y is an essential step in this effort.

Acknowledgement

Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energy’s National Nuclear Security Administration (NNSA)

under contract DE-AC04-94AL85000. This work was funded by NNSA’s Advanced
Simulation and Computing (ASC) Program.

References

10.

11.

12.

13.

14.

15.

16.
17.

. ABADI, M., AND LAMPORT, L. The existence of refinement mappings. Theor. Comput. Sci.

82,2 (May 1991), 253-284.

. ABADI, M., AND LAMPORT, L. Conjoining specifications. ACM Trans. Program. Lang.

Syst. 17, 3 (May 1995), 507-535.

. ABADI, M., AND MERZ, S. On TLA as a logic. In Proceedings of the NATO Advanced

Study Institute on Deductive Program Design (Secaucus, NJ, USA, 1996), Springer-Verlag
New York, Inc., pp. 235-271.

. BOLDO, S., JOURDAN, J.-H., LEROY, X., AND MELQUIOND, G. A formally-verified C

compiler supporting floating-point arithmetic. In ARITH, 21st IEEE International Sympo-
sium on Computer Arithmetic (2013), IEEE Computer Society Press, pp. 107-115.

. CHAUDHURI, K., DOLIGEZ, D., LAMPORT, L., AND MERZ, S. The TLA+ proof sys-

tem: Building a heterogeneous verification platform. In Proceedings of the 7th International
Colloquium Conference on Theoretical Aspects of Computing (Berlin, Heidelberg, 2010),
ICTAC’ 10, Springer-Verlag, pp. 44—44.

. COHEN, E., AND LAMPORT, L. Reduction in TLA. In CONCUR’98 Concurrency Theory,

vol. 1466 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1998, pp. 317—
331.

. DEVELOPMENT TEAM, T. C. The Coq proof assistant reference manual. LogiCal Project,

2004. Version 8.0.

. GONTHIER, G. Formal proof the four-color theorem. Notices of the AMS 55, 11 (Dec. 2008),

1382-1393. http://www.ams.org/notices/200811/tx081101382p.pdf.

. LAMPORT, L. The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16, 3 (May

1994), 872-923.

LAMPORT, L. Refinement in state-based formalisms. Tech. rep., DEC Systems Research
Center, 1996.

LAMPORT, L. Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.
PUGH, W. The omega test: A fast and practical integer programming algorithm for depen-
dence analysis. In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (New
York, NY, USA, 1991), Supercomputing 91, ACM, pp. 4-13.

RICKETTS, D., MALECHA, G., ALVAREZ, M. M., GOWDA, V., AND LERNER, S. Towards
verification of hybrid systems in a foundational proof assistant. In /3. ACM/IEEE Interna-
tional Conference on Formal Methods and Models for Codesign, MEMOCODE 2015, Austin,
TX, USA, September 21-23, 2015 (2015), IEEE, pp. 248-257.

SVENNINGSSON, J., AND AXELSSON, E. Combining deep and shallow embedding for
edsl. In Trends in Functional Programming: 13th International Symposium, TFP 2012, St.
Andrews, UK, June 12-14, 2012, Revised Selected Papers (2013), pp. 21-36.

WAN, H., HE, A., YOU, Z., AND ZHAO, X. Formal proof of a machine closed theorem in
Coq. Journal of Applied Mathematics (2014).

WENZEL, M. The Isabelle/Isar Reference Manual, 2012.

Yu, Y., MANOLIOS, P., AND LAMPORT, L. Model checking TLA+ specifications. In
Correct Hardware Design and Verification Methods (1999), Springer-Verlag, pp. 54-66.

http://www.ams.org/notices/200811/tx081101382p.pdf

A Composition From Refinement

We have two models which both refine basic along functions of their state spaces. We
want a fourth model which refines both of them, but in a way in which those refinements
are compatible, in that either function from the combined model to basic is identical.
Further, we want the best such combined model in a particular sense: any model which
refines both command and memory in such a way that the two refinements yield the
same refinement should refine our combined total model. This general picture should

Fig. 16. Composition as Push-out

be familiar to those who have encountered category theory as it is what is called, in cat-
egorical language, a “push-out" (Figure 16). Indeed, more than 20 years ago, Goguen
suggested push-outs as an abstract, formalism independent, definition for the combina-
tion of components [3]. And, Fiadeiro and Maibaum already demonstrated the use of
push-outs for combining specifications in a temporal logic setting in the early 1990s [1].
Unfortunately, it seems this work has been largely neglected and not previously applied
to TLA.

However, push-outs of refinements have a simple definition in TLA®. We simply
take the pull-back of the underlying state spaces in the underlying category of types or
sets (that is, the push-out in the opposite category recognizing that functions go from
more concrete to more abstract while we have written refinement arrows from abstract
to concrete) and use the conjunction of the specifications along their specifications. That
is, the state space of the total model should, intuitively, be the subtype of the product of
state spaces of Memory and Command where the two refinement mappings yield the
same value in the state space of basic. The combined specification is constructed then
as the conjunction of the two refined specifications mapped along the projections from
the combined state space.

As mentioned, we can construct the pushout of two TLA®® refinements by way of
the pullback of the underlying state spaces together with the conjunction of specifica-
tion. The pullback of the state spaces would usually be the subset of the pairs of the
values from the refined state spaces where those values map to the same element in the
original unrefined model.

However, this intuitive definition does not quite work for us because Coq’s mod-
ule system is generative rather than applicative and so when Memory and Command

instantiate Basic they generate different types. To get around this, we must define a
projection between them. First, we define the total model parametrically as a module
functor and instantiate Basic and Command.

Module Total (Params : MemParams).
Module MEMORY := Memory (Params).
Module COMMAND := Command (MEMORY.FROMMEM) .

Then we define an isomorphism between their underlying state spaces.

Definition castStl (st : MEMORY.BASIC. St)
COMMAND. BASIC. St :=
match st with
I {I MEMORY.BASIC.ready := ready;
MEMORY.BASIC. status status ;
MEMORY . BASIC . memory := memory;
MEMORY . BASIC. output := output |} =>
{1
COMMAND. BASIC . ready := ready;
COMMAND. BASIC. status status ;
COMMAND. BASIC . memory := memory;
COMMAND. BASIC. output output |}

end.
This allows us to say when the two states are the same.

Definition sameSt (stl : MEMORY.BASIC. St)
(st2 : COMMAND.BASIC.St) : Prop :=
castStl stl = st2.

With this in place, we can define the full specification of the total model.

Inductive St : Type := Make_St : forall stl st2,
sameSt (MEMORY.refinement_mapping stl)
(COMMAND. refinement_mapping st2)
—> St.

Definition pl (st : St) : MEMORY. St :=
match st with
| Make_Stm _ _ =>m
end.

Definition p2 (st : St) : COMMAND. St :=
match st with
| Make_St _ m _ =>m
end.

Definition Spec : Expr St :=
(map pl MEMORY. Spec) ‘/\ (map p2 COMMAND. Spec).

B Details of Embedding

An essential notion in TLA is the idea of stuttering invariance. The idea is that “stut-
tering steps", those steps where the state does not change, are irrelevant. Therefore,
two behaviors which differ only by the addition and removal of stuttering steps should
validate the same formulae. However, formalizing this idea is a bit of a challenge. Lam-
portOs solution is to define a function # from behaviors to behaviors which eliminates
any stuttering steps except for those at the end (when all remaining steps are stuttering
steps) [4]. Then, two behaviors s; and s, are stuttering equivalent if #s1 = #so.

Unfortunately, this definition does not work very well in a constructive setting such
as Cog. The problem is that # function is not generally computable as equality of states
is not necessarily decidable and, even when use a type of states where it is, we can
not decide if all remaining steps in a behavior are stuttering steps as that would require
examining an infinite number of states.

We thus use an alternative account of stuttering equivalence. Our idea is to observe
that if two behaviors s; and so are stuttering equivalent then they must have the same
first state (s;m = son). Moreover, if the first step in s; is a stuttering step then s; @1 is
stuttering equivalent to s while if it is not then there must be some n such that s; @1
is stuttering equivalent so@Qn and where all the steps in s5 up to n are stuttering steps
meaning all the states of s, before so@n are equal. In either case there is some n such
that s;@1 is stuttering equivalent to so@n and where for all £ less than n, s90 = ssk.
And, because stuttering equivalence is symmetric, it works the other way also: there is
some m such that s;@m is stuttering equivalent to so@1 and where for all k less than
m, s10 = s1k.

Definition stutter_relation {A : Type}
(R : Behavior A —> Behavior A — Prop) :=
(forall s s, Rs s’ —> s 0 =5’ 0) /\
(forall s s, R's s’ —> exists m, R (s @ 1) (s’ @ m)
/\ forall k, k <m—> s’ 0 =5’ k) /\
(forall s s, R s s’ —> exists m, R (s @m) (s’ @ 1)
/\ forall k, k <m -—>3s 0 = s k).

Definition stutter_equiv {A : Type} (s s’ : Behavior A) : Prop
= exists R, R s s’ /\ stutter_relation R.

Theorem stutter_equiv_eval : forall A (e : Expr A) s s’,
stutter_equiv s s’ —> eval e s <—> eval e s’

Fig. 17. Stuttering Equivalence as Largest Stuttering Relation

Further, it follows that not only is this a true fact about stuttering equivalent behav-
iors but it is a complete account as well. Given any two behaviors s; and s which have
the same first element and where there are n and m such that s;1 is stuttering equivalent
to som with s50 = sk for all k less than n, and sym stuttering equivalent to so1 with

s1k = s10 for all k£ less than m, it is immediate that s; and s, are stuttering equivalent
as well. Our idea then is to define stuttering equivalence co-inductively as the largest
relation which satisfies this property. In particular, we define a stuttering relation as any
relation on behaviors which satisfies these properties and then say two behaviors are
stuttering equivalent if they are related by some stuttering relation (see Figure 17). We
can then show that stuttering equivalence is indeed an equivalence relation and that it
is a stuttering relation. Finally, the meta theorem that the truth value of a formula is
always stuttering invariant.

However, stuttering invariance is not just an interesting theorem about our seman-
tics, it also is a useful property in constructing proofs. In Figure 15 we give the core
induction principle for proving that properties always hold given a specification which
takes advantage of the fact that we do not need to consider stuttering steps because all
formulae are stuttering invariant.

Our type of expressions is parameterized by a type of states. And, we would expect
that different specification would use different state types we cannot necessarily simply
use implication in modeling refinement. Instead, we may need to consider implication
under some refinement mapping. To make this notion precise we have a function for

Fixpoint map (C A : Type) (f : C —> A) (e : Expr A) : Expr C :=
match e with
| E_Predicate P => E_Predicate (fun st => P (f st))
| E_AlwaysAction g R =>
E_AlwaysAction (fun st => g (f st))
(fun st st’ => R (f st) (f st’))
| E_EventuallyAction g R =>
E_EventuallyAction (fun st => g (f st))
(fun st st’ => R (f st) (f st’))
‘~ P => ‘~ (map f P)
P /A Q=> (map f P) */\ (map f Q)
P ‘\/ Q= (map f P) ‘\/ (map f Q)
P ‘=>Q => (map f P) ‘=> (map f Q)
P ‘<=> Q => (map f P) ‘<=> (map f Q)
[1 P=>[] (map f P)
<> P => <> (map f P)
E_ForallRigid g => E_ForallRigid (fun x => map f (g x))
E_ExistsRigid g => E_ExistsRigid (fun x => map f (g x))

4

o — — — — — — - = —

Fig. 18. Mapping over an expression to change the state type

mapping a state change function over a formula (given in Figure 18). This mapping
procedure satisfies the important property which is that mapping over formula is equiv-
alent to mapping over behaviors.

Lemma map_id : forall (A : Type) (e : Expr A),
map (fun x => x) e = e.

As the mathematical language in our embedding is Coq instead of ZFC, our system
differs somewhat from TLA+. In particular, Coq is always typed and so the state of
formulae we work with be given as some type. This differs from TLA+ where the state
is always a mapping which assigns each (of countably many) variables an arbitrary set.
However, from the type theoretic perspective these TLA+ states can be given a type:
namely the type of functions from the type of variables to the type of sets. We can
therefore represent TLA+ specification directly without assigning types to the variables
if we can simply exhibit a type in Coq which behaves like the collection of all sets in
set theory. As a proof of concept of this idea we have constructed such a type using a
variant of the canonical model of constructive set theory in type theory as well founded
trees indexed by a universe due to Martin-Lof and Aczel [2]. A full version of ZFC can
be then derived by assuming additional axioms for choice and classicality. However,
our experience has been that working with typed representations of states works better
in practice than encoding everything into sets. Indeed, it seems that variables in actual
TLA models are almost always “typed" in the sense that their values do not range over
arbitrary sets but rather some more restricted collection of values such as numbers or
lists. Furthermore, these types are an inherent part of the specification known to design-
ers from the beginning and it simplifies things significantly if they hold definitionally
rather than as a theorem which must be shown. However, it may make sense to at some
future time to parse models written for the TLA+ toolset and then automatically pro-
duce TLA®™ specifications from these models. Using the type of sets may be helpful
in this situation.

References

1. FIADEIRO, J., AND MAIBAUM, T. Temporal theories as modularisation units for concurrent
system specification. Formal Aspects of Computing 4, 3 (1992), 239-272.

2. GAMBINO, N., AND ACZEL, P. The generalised type-theoretic interpretation of constructive
set theory. Journal of Symbolic Logic 71 (3 2006), 67-103.

3. GOGUEN, J. A. A categorical manifesto. Mathematical structures in computer science 1, 01
(1991), 49-67.

4. LAMPORT, L. The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16, 3 (May
1994), 872-923.

C Implementation of the TLA®*

C.1 Behavior.v

Require Import Arith.

Require Import FunctionalExtensionality.
Require Import Program.

Require Import Omega.

Set Implicit Arguments.
Definition Behavior (A : Type) := nat — A.
Section shift.

Variable A : Type.
Implicit Types s: Behavior A.

Definition shift s n: Behavior A :=
funt=s(t+n).

Lemma unshift : ¥V s n i, shift sn i =s (i+n).
Proof.unfold shift. auto. Qed.

Lemma shift_0:V s, shift s 0 = s.
Proof.
intros s; extensionality x; replace (s x) with (s (x + 0)) by auto;
apply unshift.
Qed.

Lemma contraction : ¥ s n m, shift (shift s n) m = shift s (m + n).
Proof.
unfold shift; intros s n m; extensionality x; rewrite plus_assoc;
auto.
Qed.

End shift.
Delimit Scope behavior_scope with behavior.

Notation'"s @ n":=
(shift s n)
(at level 1, no associativity) : behavior_scope.

Definition stutter_relation {A : Type} (R : Behavior A — Behavior A — Prop)
Vss,Rss"—s0=s5"0)A
Vss’,Rss”— dm, R (shift s 1) (shift s m) A\VNk,k<m — s’ 0=5"k) A
(Vss’,Rss’— Im, R (shift s m) (shift s’ 1)) A\VNk,k<m — s0=sk).

Definition stutter_equiv {A : Type} (s s’ : Behavior A) : Prop =
dR, R s s’ A stutter_relation R.

Lemma stutter_equiv_stuttering _relation : ¥V A, stutter_relation (stutter_equiv : Behav-
ior A — Behavior A — Prop).
Proof.
introsA.
repeat split;introsss’ H;destruct H as (R,(H,(HO,(HI,H2)))); auto.
apply HI in H. destruct H as (m,(H,H3)); 3m; split;auto; IR; repeat
split;auto.
apply H2 in H. destruct H as (m,(H,H3)); 3m; split;auto; IR; repeat
split;auto.
Qed.
Lemma stutter_relation_univ : ¥ A (R : Behavior A — Behavior A — Prop),
stutter_relation R —
Vss’,
Rss —

V n, 3 m, R (shift s n) (shift s’ m).

Proof.

intros ARHss HOn.

generalize dependent s. generalize dependent s’.

induction n.

intross’s HO.30.do 2 rewrite shift_0. auto.

intros s’ s HO. destruct H as (H,(HI,H2)).

apply HI in HO. destruct HO as (m,(HO,H3)).

apply IHn in HO. destruct HO as (m0,HO).

do 2 rewrite contraction in HO.

34 (m0 + m). replace (Sn)with (n+ 1) by omega. auto.
Qed.

Theoremn stutter_equiv_univ : ¥ A (s s’ : Behavior A), stutter_equiv s s’ —
Vn,dm,
Stutter _equiv

(shift s n) (shift s’ m).
Proof.

introsAss Hn.

apply stutter_relation_univ; trivial.

apply stutter_equiv_stuttering _relation.
Qed.

Lemma id_stutter_prop : ¥ A, stutter_relation (fun (s s”: Behavior A) = s =s’).
Proof.
intros A.
repeat split;introsss’ H;rewrite H;auto;3d1;split;auto;
intros k HO; replace kwith 0 by omega; auto.
Qed.

Theoremn refl_stutter_equiv : ¥ A (s : Behavior A), stutter_equiv s s.
Proof.

introsAs.

d(funss’ = s=s"). split; trivial.

apply id_stutter_prop.
Qed.

Lenma flip_stutter_relation : ¥V A (R : Behavior A — Behavior A — Prop),
stutter _relation R —
stutter_relation (fun s s’ = R s’ s).
Proof.
intros ARH.
destruct H as (H,(HO,HI)).
repeat split; auto.
intros ss’ H2. symmetry. auto.
Qed.

Theorem sym_stutter_equiv : ¥V A (s s’ : Behavior A),
Stutter_equiv s s’

— stutter_equiv s’ s.

Proof.

introsAss H.

destruct H as (R,(H,RS)).

J(funss = Rs’s).

split;trivial.

apply flip_stutter_relation; trivial.
Qed.

Lemma le_difference :YNnm,n <m — 3r,m=n+r.
Proof.
introsnmH.
generalize dependent n.
induction m.
introsn H. inversion H. 30; omega.
introsn H.
inversion H.
30; omega.
assert (T:3r,m=n+r). apply IHm; auto.
destruct T as (r, T). 3 (S r). omega.
Qed.

Lemma stutter_relation_univ_small : ¥ A R (s s’ : Behavior A) n,
stutter _relation R —
Rss —
~Vkk<n—>s0=sk) —
3 m, R (shift s n) (shift s’ m) A
Vkk<m—s 0=s"k).
Proof.
introsARss'nHHOHI.
generalize dependent s. generalize dependent s’.
inductionn.
intross’s HOHI.30.split.do 2 rewrite shift_0. auto.
intros k H2. exfalso. omega.
intross’ s HOHI.
destruct H as (R-zero,(R_left,R_right)).
assert (H2:3m, R (shift s n) (shift s’ m) N(Vk,k<m — s’ 0=s"k)).
apply [Hn; auto.
destruct H2 as (m,(H2,H3)).
assert (H4 : 4 mo,
R (shift (shift s n) 1) (shift (shift s’ m) m0)
AY k, k <m0 — (shift s’ m) 0 = (shift s’ m) k).
apply R_left; auto.
destruct H4 as (m0,(H4,H)5)).
unfold shift in H5. simpl in H5.
assert (H6 : s 0= (shift s’m)0). transitivity ((shift s n) 0). unfold shift.
simpl. apply HI.

omega. apply R_zero; auto.

unfold shift in H6. simpl in H6.

3 (m0 + m). split.

do 2 rewrite contraction in H4. simpl in H4. auto.

intros k H.

assert (H7 :k<mV m < k). omega.

destruct H7 as [H7|H7]. apply H3; auto.

apply le_difference in H7.

destruct H7 as (r,H7).

assert (H8 :k=r+m). omega. clear H7.

rewrite H8 in *.

transitivity(s’m).transitivity (s0);auto.symmetry.apply R_zero;
auto.

apply HS5. omega.
Qed.

Lemma comp_stutter_prop : ¥ A (Rl R2 : Behavior A — Behavior A — Prop),
stutter _relation R1 —
stutter_relation R2 —
stutter _relation (fun ss’ = 3s”’,Rl ss’ AR2s"’
s).
Proof.
intros A RI R2 H HO.
repeat split;introsss’ Hl; destruct HI as (t,(HI,H2)).
destruct H as (H,-). destruct HO as (HO,-). transitivity (¢ 0); auto.
destruct H as (RI_zero,(RI_right,R1_left)).
apply RI_right in HI. destruct HI as (m,(HI,H3)).
assert (H4: A mO0, R2 (shift t m) (shift s’ m0) AV k, k<m0 — s’ 0=s"k).
apply stutter_relation_univ_small; auto.
destruct H4 as (m0,(H4,H5)). 3m0. split; auto. 3 (shift t m). split;auto.
destruct HO as (R2_zero,(R2_right,R2_left)).
assert (H3:dm: nat,
R2 (shift t m) (shift s” 1) A
Vk:nat,k<m—t0=tk)). apply R2_left; auto.
destruct H3 as (m,(H3,H4)).
set (RI_flip .= funab = RI b a).
assert (HS5 : AmO0, RI _flip (shift t m) (shift s m0) A
Mk, k<mO— s0=sk)).
apply stutter_relation_univ_small; auto.
unfold RI_flip.
apply flip_stutter_relation. auto.
unfold RI_flip in *. clear RI_flip.
destruct HS as (m0,(H5,H6)).
dm0. split; auto. d (shift t m); split; auto.
Qed.

Theorem trans_stutter_equiv : ¥ A (s t s’ : Behavior A),

stutter_equiv s t —
stutter_equivt s’ —
Stutter_equiv s s’.
Proof.
intros Asts’ H HO.
destruct H as (R1,(H,RI_rel)).
destruct HO as (R2,(HO,R2_rel)).
d(funab=3dc,RlacAR2cbh).
split.3dt split;auto.
apply comp_stutter_prop; auto.
Qed.

Definition prop_extension {A} (R : Behavior A — Behavior A — Prop) :=
funss’=Rss V(s0=s"0AR (shift s 1) (shift s’ 1)).

Lemma extend_stutter_relation : ¥ A (R : Behavior A — Behavior A — Prop),
stutter _relation R —
stutter_relation (prop_extension R).
Proof.
intros ARH.
destruct H as (H,(HO,HI)).
repeat split;intros ss’ H2; destruct H2 as [H2I(H2,H3)]; auto.
apply HO in H2. destruct H2 as (m,(H2,H3)). 3 m. split; auto. left;
auto.
J1.split.left.auto.intros k H4. replace kwith 0 by omega; auto.
apply HI in H2. destruct H2 as (m,(H2,H3)). 3 m. split; auto. left;
auto.
d1.split. left. auto. intros k H4. replace kwith 0 by omega; auto.
Qed.

Theorem extend_stutter_equiv : ¥ A (s s’ : Behavior A),s0=s"0 —
stutter _equiv (shift s 1) (shift s’
1) —
stutter_equiv s s’.
Proof.
intros Ass’ H HO.
destruct HO as (R,(HO,HI)).
3 (prop_extension R). split.
right; split; auto.
apply extend_stutter_relation; auto.

Qed.
Definition front_relation {A} (s s’ : Behavior A):=dmn,s0=s5"0A

~Vk k
<m—>s0=sk)A

Vk, k

<n—=>s'0=s5"k)A

shift s
m = shift s’ n.

Lemma front_relation_refl : ¥ A (s : Behavior A), front_relation s s.
Proof.
introsAs.
30.30. repeat split; auto; intros k H; replace kwith 0 by omega;
auto.
Qed.

Lemma front_relation_step : ¥ A (s s : Behavior A), front_relation s s’ —
dm : nat,
front_relation s @ 1%behavior s’ @ m%behavior \
~Vk:nat,k<m— s’ 0=s"k).
Proof.
introsAss H.
destruct H as (m,(n,(same_zero,(Ilt_m,(It_n,same_tail))))).
destruct m. 3 (Sn). split. rewrite shift_0 in same_tail.
rewrite same_tail. rewrite contraction. simpl. apply front_relation_refl.
intros k H. apply lt_n; omega.
dn. split.3dm.30.
assert (same_one : s 0=s1). apply lt_m; omega.
repeat split.
unfold shift. simpl. transitivity (s 0). auto.
transitivity (s’ 0); auto.
intros k H.unfold shift. simpl. transitivity (s 0); auto.
apply lt_m; omega.
intros k H. replace kwith 0 by omega. auto.
do 2 rewrite contraction. simpl. replace (m + 1) with (S m) by omega.
auto.
intros k H. apply lt_n; omega.
Qed.

Lemma front_relation_sym : ¥ A (s s’ : Behavior A), front_relation s s’ —
front_relation s’
s.
Proof.
introsAss H.
destruct H as (m,(n,(same_refl,(It_m,(lt_n,same _tail))))).
dn. dm. repeat split;auto.
Qed.

Lemma front_stutter_relation : ¥ A, stutter_relation (front_relation : Behavior A —
Behavior A — Prop).
Proof.

intros A.

repeat split;introsss’ H.

destruct H as (m,(n,(same_zero,(lt_m,(It_n,same_tail))))); auto.

apply front_relation_step; auto.
apply front_relation_sym in H. apply front_relation_step in H.
destruct H as (m,(H,H0)).
dm. split; auto. apply front_relation_sym; auto.
Qed.

Lemma front_relation_shift_1 : ¥ A (s : Behavior A),s0=s1 —
front_relation (shift

s1)s.
Proof.

intros AsH.

0.3 1. repeat split; auto.

intros k HO. replace kwith 0 by omega; auto.

intros k HO. assert (HI : k=0V k=1). omega. destruct HI as [HI|HI];
rewrite HI; auto.

rewrite contraction. auto.
Qed.

Theorem stutter_equiv_shift_1 : ¥ A (s : Behavior A),s0=5s1 —
stutter _equiv (shift

s1)s.
Proof.

intros AsH.

3 front_relation. split.

apply front_relation_shift_1; auto.

apply front_stutter_relation; auto.
Qed.

Theorem stutter_equiv_induct_next : ¥ A (s s’ : Behavior A) R,
Stutter_equiv s " —
Vn,R(sn)(s(Sn)Vsn=s(Sn)—
~Vn,R(s’n)(s’(Sn)) Vs n=s"(Sn)).
Proof.
introsAss’RHHOn.
assert (HI : A m, stutter_equiv (shift s’ n) (shift s m)).
apply stutter_equiv_univ. apply sym_stutter_equiv; auto.
destruct HI as (m,HI).
assert (H2: stutter_relation (stutter_equiv : Behavior A — Behavior A — Prop)).
apply stutter_equiv_stuttering _relation.
destruct H2 as (same_zero,(step_left,step_right)).
assert (H2: (shift s’ n) 0 = (shift s m) 0). apply same_zero. auto.
unfold shift in H2. simpl in H2.
rewrite H2.
apply step_left in HI.
destruct HI as (m0,(HI,H3)).
destruct m0.
assert (H4 : (shift (shift s’ n) 1) 0 = (shift (shift s m) 0) 0). apply same_zero;
auto.

unfold shift in H4. simpl in H4.

rewrite H4. right; auto.

assert (H4 : (shift s m) 0 = (shift s m) m0). apply H3; omega.

unfold shift in H4. simpl in H4.

assert (H5 : (shift (shift s’ n) 1) 0 = (shift (shift s m) (S m0)) 0). apply same_zero;
auto.

unfold shift in H5. simpl in HS.

rewrite H4. rewrite HS.

apply HO.
Qed.

Theoremn stutter_equiv_same_first : ¥ A (s s’ : Behavior A),
stutter_equiv s s —
s0=s"0.

Proof.

introsAss’ H.
destruct H as (r,(H,(same_zero,.))).
auto.

Qed.

Theorem stutter_equiv_induct_next’ _base
:V(A:Type) (ss’: Behavior A)(R:A — A — Prop),
stutter_equiv s s" —
R(s0)(s1)—s0#£s1—
dn:nat,R (s’ n) (s’ (S n)).
Proof.
introsAss’RHHI H2.
pose (H3 := stutter_equiv_stuttering _relation A).
destruct H3 as (H3,(H4,HYS)).
assert (H6 : 3 m, stutter_equiv s @ 1%behavior s’ @ m%behavior N\
Vk:nat,k<m— s’ 0=s"k)). apply H4; auto.
destruct H6 as (m,(H6,H7)).
assert (HO:5s0=s"0). apply H3; auto.
destruct m.
apply H3 in H6. unfold shift in H6. simpl in H6.
rewrite HO in H2. rewrite H6 in H2. exfalso. apply H2; auto.
dm.
apply H3 in H6. unfold shift in H6. simpl in H6.
rewrite < H6.
specialize H7 withm. rewrite < H7; auto.
rewrite < HO.
auto.
Qed.

Theoremn stutter_equiv_induct_next’
:V(A:Type)(ss’: Behavior A)(R:A — A — Prop),
stutter_equiv s s" —
@n:nat,R(sn) (s Sn) Asn#s(Sn)—

dn:nat,R (s’ n) (s’ (S n)).
Proof.
introsAss’RHHI.
destruct HI as (n,(HI,H2)).
assert (H3: 3 m, stutter_equiv (shift s n) (shift s’ m)). apply Stutter_equiv_univ;
auto.
destruct H3 as (m,H3).
assert (H4:3n0, R ((s’ @ m%behavior) n0) ((s’ @ m%behavior) (S n0))).
apply stutter_equiv_induct_next’ _base with (s @ n%behavior); auto.
destruct H4 as (n0,H4).
unfold shift in H4. simpl in H4.
3 (n0 + m); auto.
Qed.

Theoremn stutter_equiv_induct_next’’
:V(A:Type) (ss’: Behavior A)(R:A — A — Prop) (B: Type) (f: A — B),
stutter_equiv s 8 —
@n:nat,R(sn) (s Sn) Af(sn)#£f (s(Sn)) —
dn:nat,R (s’ n) (s’ (Sn) Af(s’n)#f (s’ (Sn)).
Proof.
introsAss’RBf HHI.
destruct HI as (n,(HI,H2)).
set (M :=funxy=RxyAfx#fy).
assert (H3:dm, M (s’ m) (s’ (S m))).
apply stutter_equiv_induct_next’ with s; auto.
Jdn. unfold M. repeat split; auto. intros N. apply H2; rewrite N;
auto.
auto.
Qed.

Require Import Relations.
Require Import Setoid.
Require Import Morphisms.
Import RelationClasses.

Add Parametric Relation A : (Behavior A) (@stutter_equiv A)
reflexivity proved by (fun s = refl_stutter_equiv s)
symmetry proved by (fun s s’ H = sym_stutter_equiv H)
transitivity proved by (fun st s’ HO HI = trans_stutter_equiv HO HI)
as stutter_equiv_rel.

C.2 Exprv

Set Implicit Arguments.

Require Import Logic.FunctionalExtensionality.
Require Import Behavior.
Local Open Scope behavior.

Section Syntax.
Variable A: Type.

Definition Predicate := A — Prop.
Definition Action:=A — A — Prop.

Inductive Expr:=
| E_Predicate : Predicate — Expr
| E_AlwaysAction : ¥ {B : Type}, (A — B) — Action — Expr
| E_EventuallyAction : ¥ {B : Type}, (A — B) — Action — Expr
| E_Neg : Expr — Expr
| E_Conj : Expr — Expr — Expr
| E_Disj : Expr — Expr — Expr
| E_Impl : Expr — Expr — Expr
| E_Equiv : Expr — Expr — Expr
| E_Always : Expr — Expr
| E_Eventually : Expr — Expr
| E_ForallRigid : ¥V {B : Type}, (B — Expr) — Expr
| E_ExistsRigid : ¥V {B : Type}, (B — Expr) — Expr.
Definition E_Enabled (r: Action) :=
E_Predicate (fun st = 3 st’, r st st’).

End Syntax.

Delimit Scope tla_scope with tla.
Notation "P ‘<=>Q" :=

(E_-Equiv P Q) (at level 95, no associativity): tla_scope.
Notation"P ‘=>Q":=

(E_-Impl P Q) (at 1evel 90, right associativity): tla_scope.
Notation"P VQ":=

(E_Disj P Q) (at 1level 85, right associativity): tla_scope.
Notation"P ‘AQ":=

(E-Conj P Q) (at 1evel 80, right associativity): tla_scope.
Notation " P":=

(E_-Neg P) (at level 75, right associativity): tla_scope.
Notation "[]P":=

(E-Always P) (at level 75, right associativity): tla_scope.
Notation "<>P":=

(E_Eventually P) (at level 75, right associativity): tla_scope.
Definition E_LeadsTo {T} (P Q : Expr T) := E_Always (E_Impl P (E_Eventually
Q)).
Notation"P “>Q":=

(E-LeadsTo P Q) (at level 90, right associativity): tla_scope.
Notation "ENABLED’ 1" :=

(E-Enabled r) (at 1level 70, no associativity): tla_scope.
Notation "[][R]":= (E_AlwaysAction (fun x = x) R) : tla_scope.

Notation "<>< R >":= (E_EventuallyAction (fun x = x) R) : tla_scope.

Notation "*P":=
(E-Predicate P) (at level 0, right associativity): tla_scope.

Notation ""FORALL p":=(E_ForallRigid p) (at 1level 70, right associativity)
: tla_scope.

Notation " EXISTS’ p":=(E_ForallRigid p) (at level 70, right associativity)
: tla_scope.

Local Open Scope ta.

Definition WF {T} (A: ActionT): Expr T :=
([1 (E-EventuallyAction (fun x = x) A)) ‘V ([I<>(‘" ENABLED A)).

Definition SF{T} (A: ActionT): Expr T :=
([1 (E-EventuallyAction (fun x = x) A)) ‘V (<>[](*" ENABLED A)).

Arguments WF _ A%tla.
Arguments SF _ A%tla.

Fixpoint eval (A: Type) (e : Expr A) : Behavior A — Prop :=
matchewith
| E_Predicate p = fun s = p (s 0)
| E_AlwaysActionf r = funs =Vn, (r s@n0) (s@n 1)) Vf (s@n0)=f (s@n
D
| E_EventuallyAction f r = fun s = 3 n, (r (s@n0) (s@ n 1)) A f (s@n0) £ f
(s@n1l)
| “e= funs= —evales
|el ‘Ne2= funs=evalelsAevalels
|el Ve2= funs=evalelsVevalels
|el ‘=>e2= funs=evalels—evalels
|el ‘<=>e2= funs=evalel s<>evalels
[[le= funs=VYn,eval e(s@n)
| #e = funs= 3 n,eval e (s@n)
| E_ForallRigid f = funs =V x,eval (fx)s
| E_ExistsRigid f = funs= 3 x,eval (fx)s
end.

Definitionvalid (A: Type) (e: ExprA):Prop =
Vs, eval es.
Arguments valid - e%tla.
Arguments eval _ e%tla s%obehavior.
Fixpoint map (CA: Type) (f:C — A)(e: ExprA): Expr C :=
matchewith
| E_Predicate P = E_Predicate (fun st = P (f st))

| E_AlwaysAction g R = E_AlwaysAction (fun st = g (f st)) (fun st st’ = R (f
st) (f st’))
| E_EventuallyAction g R = E_EventuallyAction (fun st = g (f st)) (fun st st’
= R (f st) (f st"))
“P= “"(mapf P)
| PNQ = (map f P) ‘\ (map f Q)
| PNV Q= (map f P) *V (map f Q)
| P *=>Q = (map f P) ‘=> (map f Q)
| P ‘<=>Q = (map f P) ‘<=> (map f Q)
| [1 P=1[1(napf P)
| # P = # (map f P)
| E_ForallRigid g = E_ForallRigid (fun x = map f (g x))
| E_ExistsRigid g = E_ExistsRigid (fun x = map f (g x))
end.

Lemma same_args_same_res : Y A,V B,V (f :A — B),Vxy,x=y—=>fx=fy.
introsABfxyH; rewrite H; auto.
Qed.

Lemma map-_id :

V(A : Type) (e: ExprA),

map (funx=x)e=e.

Proof.

assert (arg :VA,VB,V(f:A—B),Vxy,x=y—fx=fy).introsABfxy
H; rewrite H; auto.

inductione; simpl;

try (rewrite [Hel; rewrite IHe2; trivial);

try (rewrite IHe; trivial);

try trivial;

try (apply same_args_same_res; extensionality x; auto).
Qed.

Lemma map_map

VABC:Type)(f:A—B)(g:B— C)(e: Expr C),

map f (map g e) =map (fun x = g (f x)) e.

Proof.

inductione; simpl;

try (rewrite [Hel; rewrite IHe2; trivial);

try (rewrite IHe; trivial);

try trivial;

try (apply same_args_same_res; extensionality x; auto).
Qed.

Lemma slide_shift : VAB(f:A—B)sn,(funx=f(sx)) @n=funx=f (s @
n) x).
Proof.

intros ABf sn.

extensionality x.

induction n; auto.
Qed.

Lemma map-_eval :
V(AB:Type)(f:A— B)(e: ExprB) (s : Behavior A),
eval (mapfe)s<«»eval e (funx = f (s x)).
Proof.
intros ABfes.generalize dependent s.
inductione; simpl; intros;
try (rewrite [Hel; rewrite IHe2; solve [intuition]);
try (rewrite IHe; solve [intuition]);
try solve [intuition].
split; intros H n;
[try (rewrite slide_shift; apply IHe; trivial) |
specialize Hwithn;rewrite slide_shift in H;apply IHe in H;triviall.
split; intros H; destruct H as (n,H); I n;
[rewrite slide_shift; apply IHe; trivial |
rewrite slide_shift in H; apply IHe in H; triviall.
split; intros HOx; apply H; trivial.
split; intros HO; destruct HO as (x,HO); A x; apply H; trivial.
Qed.

Theorem stutter_equiv_eval : ¥ A (e : Expr A) (s s’ : Behavior A), stutter_equiv s s’
%

eval
es <>

eval
es’.
Proof.

introsAe.

inductione; intros ss’ HO; simpl.

apply stutter_equiv_same_first in HO; rewrite HO; split; auto.

split; intros HI n;unfold shift in *; simpl in *;

set (@ =funxy=axyVbx=by).

assert (H2:a’ (s’n) (s’ (Sn)) Vs n=s"(Sn)).

apply stutter_equiv_induct_next with s; auto. intros n0.

specialize HI with n0. destruct HI as [HI|HI]; left. left; auto.
right; auto.

destruct H2 as [[H2|H2]IH2]. left; auto. right; auto. rewrite H2;
right; auto.

assert (H2:a’ (sn) (s (Sn))Vsn=s(Sn)).

apply stutter_equiv_induct_next with s’; auto. symmetry; auto. intros n0.

specialize HI with n0. destruct HI as [HI|HI]; left. left; auto.
right; auto.

destruct H2 as [[H2|H2]IH2]. left; auto. right; auto. rewrite H2;
right; auto.

split;intros HI.

apply stutter_equiv_induct_next’”’ with s; auto.

apply stutter_equiv_induct_next’”’ with s’; auto.

assert (H:s=funn=s5 @ n0). extensionality n; auto.

rewrite < H. symmetry. auto.

split; intros HI H2; apply HI. apply IHe with s’; auto. apply IHe
with s; auto. symmetry; auto.

assert (H3: stutter_equiv s s’); auto.

apply IHel in HO. apply IHe2 in H3.

intuition.

assert (H3: stutter_equiv s s’); auto.

apply IHel in HO. apply IHe2 in H3.

split; intros HI;destruct HI; intuition.

assert (H3: stutter_equiv s s’); auto.

apply IHel in HO. apply IHe2 in H3.

intuition.

assert (H3: stutter_equiv s s’); auto.

apply IHel in HO. apply IHe2 in H3.

intuition.

split; intros HI n.

assert (H2: 3 m, stutter_equiv (s’ @ n) (s @ m)). apply stutter_equiv_univ.
symmetry; auto.

destruct H2 as (m,H2). apply IHe in H2. intuition.

assert (H2 : 3 m, stutter_equiv (s @ n) (s’ @ m)). apply stutter_equiv_univ,
auto.

destruct H2 as (m,H2). apply IHe in H2. intuition.

split; intros HI; destruct HI as (n,HI).

assert (H2 : 3d m, stutter_equiv (s @ n) (s’ @ m)). apply stutter_equiv_univ,
auto.

destruct H2 as (m,H2). apply [He in H2. 3m; intuition.

assert (H2 : 3 m, stutter_equiv (s’ @ n) (s @ m)). apply stutter_equiv_univ.
symmetry; auto.

destruct H2 as (m,H2). apply IHe in H2. 3m; intuition.

split; intros HI x; specialize Hwithxss’; intuition.

split; intros HI; destruct HI as (x,HI); specialize Hwithxss’; 3
X; intuition.
Qed.

C.3 ExprEquiv.v

Require Import Behavior.

Require Import Expr.

Definition expr_equiv {A: Type} (s: Behavior A) (P Q : Expr A) : Prop =
eval (P ‘<=>0Q)s.

Require Import Relations.

Require Import Setoid.

Require Import Morphisms.
Import RelationClasses.

Lemma expr_equiv_refl :
V A s, reflexive _ (@expr_equiv A s).
Proof. firstorder. Qed.

Lemma expr-equiv_sym :
V A s, symmetric _ (@expr_equiv A s).
Proof. firstorder. Qed.

Lemma expr_equiv_trans :
YV A s, transitive _ (@expr_equiv A s).
Proof. firstorder. Qed.

Add Parametric Relation A s : (Expr A) (@expr_equiv A s)
reflexivity proved by (expr_equiv_refl A s)
symmetry proved by (expr_equiv_sym A s)
transitivity proved by (expr_equiv_trans A s)

as expr_equiv_rel.

Add Parametric Morphism A s : (fun e = @eval Aes)with
signature @expr_equiv A s ==> iff as expr_eval_mor.
Proof. firstorder. Qed.

Add Parametric Morphism A s : (@E_Neg A) with
signature @expr_equiv A s ==> @expr_equiv A s as expr_neg_mor.
Proof. firstorder. Qed.

Add Parametric Morphism A s : (@E_Conj A) with
signature @expr_equiv A s ==> @expr_equiv A s ==> @expr_equiv A s as expr_conj_mor.
Proof. firstorder. Qed.

Add Parametric Morphism A s : (@E_Disj A) with
signature @expr_equiv A s ==> @expr_equiv A s ==> @expr_equiv A s as expr_disj_mor.
Proof. firstorder. Qed.

Add Parametric Morphism A s : (@E_Impl A) with
signature @expr_equiv A s ==> @expr_equiv A s ==> @expr_equiv A s as expr_impl_mor.
Proof. firstorder. Qed.

Add Parametric Morphism A s : (@E_Equiv A) with
signature @expr_equiv A s ==> @expr_equiv A s ==> @expr_equiv A s as expr_equiv_mor.
Proof. firstorder. Qed.

Add Parametric Morphism (AB: Set)s(f:A — B): (@map A Bf) with
signature @expr_equiv B (fun i = f (si)) ==> @expr_equiv A s as expr_map_mor.
Proof.
unfold expr_equiv, valid. simpl. intros el e2 H.
do 2 try (rewrite map_eval).
assumption.
Qed.

Section simpl_map.

Local Open Scope tla.

Variables A B: Type.
Variablef:A — B.

Lemma simpl_map_always :

Vse, eval (mapf ([]e)) s < eval ([] mapf e))s.
Proof.

reflexivity.
Qed.

Lemma simpl_map_conj :

Vsel e2,eval (map f (el ‘Ne2)) s < eval (mapf el ‘Nmapf e2)s.
Proof.

reflexivity.
Qed.

Lemma simpl_map_disj

Vsel e2,eval (map f (el 'V e2)) s < eval (mapf el N mapf e2)s.
Proof.

reflexivity.
Qed.

End simpl_map.

Ltac simpl_map =
repeat (rewrite simpl_map_always || rewrite simpl_-map_conj |l rewrite
simpl_map _disj).

C.4 Invariant.v

Require Import Behavior.
Require Import Expr.

Require Import Arith.
Require Import Omega.
Require Import FunctionalExtensionality.

Local Open Scope behavior.
Local Open Scope tla.

Theorem tla_inv :

V (A : Type) (Init P : Predicate A) (Next : Action A),
(V x, Init x — P x) —
Vxy,Px—Nextxy—Py) —
valid (‘Init ‘N [][Next] ‘=>[] ‘P).

Proof.

unfoldvalid. simpl. unfold shift. simpl.

intros A Init P Next Hinvl Hinv2 s (Hini,Hnxt) n.

induction n; auto.

specialize (Hnxt n).

destruct Hnxt as [H | H].

apply Hinv2 with (s n); auto.
rewrite < H; auto.
Qed.

Theorem tla_inv_gen :
V (A : Type) (Init : Predicate A) (Next : Action A) (F P : Expr A),
(valid (‘Init ‘N [][Next] ‘AN F ‘=> P)) —
(Vs,eval Ps > Next (s0)(s1) > eval P(s @ 1)) —
valid (‘Init ‘N [][Next] ‘N F ‘=>[] P).
Proof.
intros A Init Next F P H HO s.
intros HI n.
destruct HI as (HI,(H2,H3)).
generalize dependent s.
inductionn.
intros s HI H2 H3.
apply H. simpl. rewrite shift_0. repeat split; auto.
intros s HI H2 H3.
assert (R:s @ (Sn)=(s @n) @ 1). extensionality x. unfold shift.
assert (R’:x+Sn=x+1+n). omega.
rewrite R’. trivial.
rewrite R. clear R.
assert (H4:Next (s@n0)(s@nl)Vs@nO=s@nl). apply H2.
destruct H4 as [H4|H4].
apply HO; trivial.
apply IHn; trivial.
apply stutter_equiv_shift_1 in H4.
rewrite contraction in *. simpl in H4.
assert (H5:eval P(s @ (Sn)) <> eval P (s @ n)). apply stutter_equiv_eval,
auto.
simpl. apply HS. apply IHn; auto.
Qed.

C.5 Refinement.v

Set Implicit Arguments.

Require Import Behavior.
Require Import Expr.

Local Open Scope behavior.
Local Open Scope ta.

Definition refines (A C: Type)
m:C—A)
(P: ExprA)
(Q: Expr C)
:=valid (Q ‘=>map m P).

Theorem refines_refl :
V (A: Type) (P: Expr A),
refines (fun x = x) P P.
Proof.
unfold refines, valid. simpl.
intros.
rewrite map_id.
assumption.
Qed.

Theoremn refines_trans :
VABC:Type)(ml:B—A)(m2:C— B)PQR,
refines ml P Q —
refines m2 Q R —
refines (fun x = ml (m2 x)) P R.
Proof.
unfold refines, valid. simpl.
intros ABCmlm2PQRHQPHRQ s H.
rewrite ¢ map_map.
rewrite map_eval.

apply HQP.
rewrite < map_eval.
apply HRQ.
assumption.
Qed.
Theorem refinement_preserves_invariant
V(A C:Type)
(m:C—A)
(P : Expr A)
(Q : Expr C)

(I : Predicate A),
refinesm P Q —
valid (P ‘=>1[] ‘) —
valid (Q ‘=>[] map m ‘I).
Proof.
unfold refines, valid. simpl. unfold shift. simpl.
intros A Cm P Q I Hrefines Hinv s H n.
specialize (Hinv (fun x = m (s x))).
apply Hinv.
rewrite < map_eval.
intuition.
Qed.
Lemma refine_conj :
V(AC:Type)s(m:C— A) Pa Pc Qa Qc,
eval (Qc ‘=>map m Qa) s —
eval (Pc ‘=>map m Pa) s —

eval (Pc ‘NQc) s —
eval (map m (Pa ‘N\ Qa)) s.
Proof. firstorder. Qed.

Theorem refine_predicate :
V(AC:Type)(m:C — A) (Pa: Predicate A) (Pc : Predicate C),
(VY x, Pc x — Pa (m x)) —
refines m ‘Pa ‘Pc.
Proof. firstorder. Qed.

Theoremn refine_always :
VAC:Type)(m:C—A)PQ,
refinesm P Q —
refines m ([1P) ([1Q).
Proof. firstorder. Qed.
Theoremn refine_always_box :
V(AC:Type)(m:C— A)(ra: Action A) (rc : Action C),
~VMxy,rcxy—ra(mx)(my)) —
refines m ([1[ral) ([1[rc)).
Proof.
intros.
unfold refines, valid. intros s. simpl.
intros HOn. specialize HOwith n.
destruct HO as [HO|HO]; [left; auto | right; rewrite HO; triviall.
Qed.
Lemma disj_pw_impl :
VPl QI P2Q2:Prop,
(Pl1 — P2) —
Q1 — 02) —
(P1V QI —
(P2 V Q2).
Proof. firstorder. Qed.

C.6 Rules.v

Set Implicit Arguments.

Require Import Arith.

Require Import FunctionalExtensionality.
Require Import Omega.

Require Import Setoid.

Require Import Behavior.
Require Import Expr.
Require Import ExprEquiv.
Local Open Scope behavior.
Local Open Scope tla.

Hint Unfold valid.

Theorem STLI :
V (A: Type) (P: Expr A),
valid P — valid ([] P).
Proof.
firstorder.
Qed.

Theorem STL2 :
V (A: Type) (P: Expr A),
valid ([1P ‘=> P).
Proof.
unfoldvalid. simpl.
intros APsH.
rewrite <« shift_0.
apply H.
Qed.

Theorem STL3 :

V(A : Type) (P: Expr A),

valid ([I([1P) ‘<=> [1P).

Proof.

unfoldvalid. simpl.

intros APs. split.

intros H n; specialize (Hn0); rewrite shift_.0 in H; assumption.

intros Hnm; specialize (H (m+n)); rewrite contraction; assumption.
Qed.

Theorem STL4 :
V(A: Type) (P Q: ExprA),
valid (P ‘=> Q) —
valid ([1P ‘=>[10).
Proof.
firstorder.
Qed.

Theorem STLS :
V(A: Type) (P Q: ExprA),
valid ([1 (P *“A Q) ‘<=>[1P ‘A [10).
Proof.
firstorder.
Qed.

Theorem STL6 :
V(A:Type) (P Q: ExprA),
valid (<>[] (P ‘N Q) ‘<=><>[]P ‘N<>[]0).
Proof.
split;try (solve [firstorder)).
intros ((n,HP),(m,HQ)).
d(m+m). introso. split.

specialize (HP (m+o0)).
replace ((s@(n+m))@o) with ((s@n)@(m+o0))

by (unfold shift; extensionality f; intuition).
assumption.

specialize (HQ (n+o)).
replace (s@(n+m)@o) with ((s@m)@(n+o))
by (unfold shift; extensionality f; intuition).
assumption.
Qed.

Theorem ImplicationIntroduction : ¥ (A : Type) (P Q : Expr A) s,
(eval Ps —eval Qys)
—eval (P ‘=>0)s.
Proof.
auto.
Qed.

Theorem ModusPonens : ¥ (A : Type) (P Q : ExprA) s, (eval (P ‘=>(Q)s) — eval
Ps—eval Os.
Proof.
auto.
Qed.

Theorem RefineWF : ¥ (A B : Type) (mapping : A — B) (P : Action A) (Q : Action B),

Vss’, Pss’— Q (mapping s) (mapping s’))

— (Vs s, mapping s = mapping s’ — - Pss’V s=s")

— Vs, (3s’, Q (mapping s)s’) > (3As’,Pss’))

— Vs, eval (WF P)s — eval (WF Q) (fun x = mapping (s x)).
Proof.

intros A B mapping P Q H diseq H2 s HO.

assert (HI : Vs, eval (ENABLED P) s — eval (ENABLED Q) (fun x =
mapping (s x))).

intros sO0 Hl. destruct HI as (sI,HI).
d (mapping sl). apply H; auto.

assert (H3:Vs,—~(ds’,Pss’) — —~(3s’, Q (mapping s) s')).

intros st N R. apply N. apply H2. auto.

assert wWfP:eval (WF P)s). assumption.

destruct wfP as [wfP|noAct].

left.intros n. simpl in wfP. specialize wfP with n.

destruct wfP as (m,(Pm,dif)).

dm. split. apply H. simpl. apply Pm.

intros H4. apply diseq in H4. destruct H4; auto.

right. introsn. simpl in noAct. specialize noAct with n.

destruct noAct as (n0,noAct). 3 n0. apply H3; auto.
Qed.

Theorem DeriveAlwaysEventually : ¥V (A : Type) (P Q : ExprA) s,

Vn,eval P(s @n) — eval (PVQ) (s @ (Sn)) —
Vn,eval (<>Q)(s @n)V —eval (<>0) (s @ n)) —
eval ([1(P'=>([1P) V(<>Q))s.
Proof.
intros AP Qs H class n HO.
assert (T:Vm,Vk,k<m—eval P((s @n) @k)) Veval (<> Q) (s @ n)).
intros m. induction m.
left.intros k HI. inversion HI. rewrite shift_0. auto.
destruct [Hm as [IHm|IHm].
assert (HI : eval P (s @ (m + n))). rewrite <« contraction. apply IHm,
auto.
apply H in HI. destruct HI as [HI|HI].
left. intros k H2. inversion H2. rewrite contraction. simpl. auto.
apply [Hm; auto.
right. 3 (S m). rewrite contraction. auto.
right; auto. specialize classwith n.
destruct class. right; auto.
left.intros m. specialize T withm. destruct T as [T|T].
apply T; auto.
exfalso. apply HI. auto.
Qed.

Theorem mapEventuall : ¥ T (P Q : Expr T), valid (P ‘=> Q) —
valid (<> P ‘=># Q).
Proof.
intros TP QH seP.
simpl in *. destruct eP as (n,eP).
dn. apply H; auto.
Qed.

Theoremn deriveLeadsTo’ :N T (P Q : ExprT) s,

(Vn,eval P(s @ n) — eval (P VQ) (s @ (S n)))

—eval (<> “P)s—eval (P‘=>#Q)s.
Proof.

intros T P Q s H neP.

assert (HO:evalPs—Vm Vk,k<m—eval P(s @k)) Veval (<> Q)
s).

intros HOm. inductionm. left;introskHIl.inversion Hl. rewrite
shift_0; auto.

destruct I[Hm as [[Hm|IHm].

assert (HIl :eval Ps @ m). apply IHm; auto.

apply H in HI. destruct HI as [HI|HI].

left.intros k H2. inversion H2; auto.

right.d (S m); auto.

right; auto.

intros HI. destruct neP as (m,neP).

assert (H2: Vk:nat,k<m—eval Ps @k)V eval (<> Q)s). auto.

destruct H2 as [H2|H2]; auto.
simpl in *. exfalso. apply neP. apply H2; auto.
Qed.

TheoremderiveLeadsTo : ¥ T (P Q : ExprT) s,
Vn,eval P(s @ n) » eval (P VQ) (s @ (S n)))
—eval ([]# “P)s—eval (P “>Q)s.

Proof.
intros T P Qs H neP n.
apply deriveLeadsTo’; auto.
intros m HO.
rewrite contraction. simpl. apply H.
rewrite ¢ contraction. auto.

Qed.

C.7 ValidEquiv.v

Require Import Expr.

Definition valid_equiv {A : Type} (P Q: ExprA) :Prop :=
valid (P ‘<=> Q).

Require Import Relations.
Require Import Setoid.
Require Import Morphisms.
Import RelationClasses.

Lemma valid_equiv_refl :
V A, reflexive _ (@valid_equiv A).
Proof. firstorder. Qed.

Lemma valid_equiv_sym :
V A, symmetric - (@valid_equiv A).
Proof. firstorder. Qed.

Lemma valid_equiv_trans :
V A, transitive _ (@valid_equiv A).
Proof. firstorder. Qed.

Add Parametric Relation A : (Expr A) (@valid_equiv A)
reflexivity proved by (valid_equiv_refl A)
symmetry proved by (valid_equiv_sym A)
transitivity proved by (valid_equiv_trans A)

as valid_equiv_rel.

Add Parametric Morphism A : (@valid A) with
signature valid_equiv ==> iff as valid_mor.
Proof. firstorder. Qed.

Add Parametric Morphism A : (@E_Neg A) with
signature valid_equiv ==> valid_equiv as valid_neg_mor.
Proof. firstorder. Qed.

Add Parametric Morphism A : (@E_Conj A) with
signature valid_equiv ==> valid_equiv ==> valid_equiv as valid_conj_mor.
Proof. firstorder. Qed.

Add Parametric Morphism A : (@E_Disj A) with
signature valid_equiv ==> valid_equiv ==> valid_equiv as valid_disj_mor.
Proof. firstorder. Qed.

Add Parametric Morphism A : (@E_Impl A) with
signature valid_equiv ==> valid_equiv ==> valid_equiv as valid_impl_mor.
Proof. firstorder. Qed.

Add Parametric Morphism A : (@ E_Equiv A) with
signature valid_equiv ==> valid_equiv ==> valid_equiv as valid_equiv_mor.
Proof. firstorder. Qed.

Add Parametric Morphism A : (@E_Always A) with
signature valid_equiv ==> valid_equiv as valid_always_mor.
Proof. firstorder. Qed.

Add Parametric Morphism A : (@E_Eventually A) with
signature valid_equiv ==> valid_equiv as valid_eventually_mor.
Proof. firstorder. Qed.

Module Examples.
Local Open Scope tla.

Variable A: Type.
Implicit Types P Q: ExprA.
GoalV P Q,valid_equiv P Q — valid_equiv Q P.

intros. symmetry.assumption.
Qed.

Goal V P Q, valid_equiv P Q — valid P — valid Q.
Proof.

intros. rewrite < H. assumption.
Qed.

Goal
VPQ,
valid_equiv P Q —
V R, valid ([] P ‘NR) — valid ([] Q ‘A R).
Proof.
intros P Q Heq.
setoid_rewrite < Hegq. trivial.
Qed.

End Examples.

C8 TLA.w

Require Export Behavior Expr Invariant Refinement.

D Implementation of the AWG in TLA®*Y

D.1 Basic.v

Require Import TLA.

Require Import Rules.

Require Import Arith.

Require Import ZArith.

Require Import Omega.

Require Import Setoid.

Require Import FunctionalExtensionality.

Open Scope Z.
Open Scope tla.

Definition ignore {A: Type} (x:A) := True.

Module Type BasicParams.

Parameter Patternlsh : Type.

Parameter IsPattern : Patternlsh — Prop.

Parameter NilPattern : Patternlsh.

Parameter NilPatternPattern : IsPattern NilPattern.

Parameter EgNilPatternClassical : ¥ p, IsPattern p — p = NilPattern V p #*
NilPattern.
End BasicParams.

Inductive MemStatus : Type := Valid | InValid.

Module Basic (Params : BasicParams).
Import Params.
Hint Resolve NilPatternPattern.

Record St:={
ready : bool,
status : MemStatus;
memory : Patternish;
output : Patternish}.
Section Model.
Variable stst’: St

Let ready’ = (st’).(ready). Let ready := st.(ready).

Let status’ := (st’).(status). Let status := st.(status).

Let memory’ = (st’).(memory). Let memory := st.(memory).
Let output’ := (st’).(output). Let output := st.(output).

Definition Typelnvariant :=
IsPattern memory
A IsPattern output.

Definition Initialize :=
ready = false
A ready’ = true

A match status’ with
| Valid = memory’ = NilPattern
| - = memory = memory’ end
N output = output’.

Definition Reset :=
ready’ = false
A IsPattern memory’
A output’ = NilPattern
N ignore st.

Definition Flush :=
ready = true
A status = Valid
A memory’ = NilPattern
A output’ = NilPattern
A ready = ready’ N status = status’.

Definition Writep :=
ready = true
A status = Valid
A (p # NilPattern — memory’ = p)
A (p = NilPattern — memory’ = memory)
A ready’ = ready A status’ = status N\ output’ = output.

Definition Run :=
ready = true
A status = Valid
A (memory # NilPattern — (output’ = memory N\ memory’ = NilPattern))
A (memory = NilPattern — (output’ = output A\ memory’ = memory))
A ready’ = ready N status’ = status.

Definition PowerOn :=
ready = false
A output = NilPattern
A IsPattern memory.

Definition Next :=
Initialize
V Reset
V Flush
V (3 p, IsPattern p N\ Write p)
V Run.

End Model.

Definition Fairness := WF Initialize.

Definition Spec = ‘PowerOn ‘N [][Next] ‘A Fairness.
Definition ResetEnabled := ENABLED Reset.
Definition CommandEnabled := ENABLED Run

‘N ENABLED Flush
‘NFORALL (fun p =
(‘ (fun - = IsPat-
tern p))
‘=>FENABLED (fun
st st” = Write st st’ p)).

Definition CommandsEnabledlffValid := CommandEnabled ‘<=> * (fun st =
st.(ready) = true A st.(status) = Valid).

Lemma Next_Typelnvariant : ¥V s s°, Next s 5" — Typelnvariant s — Typelnvariant
s’
Proof.

intros ss’ H HO.

destruct HO as (HO,HI).

destruct H as [(H,(H2,(H3,H4)))

I[(H,(H2,(H3,-)))
I[(H,(H2,(H3,(H4,(H5,H6)))))
I[(p,(H,(H2,(H3,(H4,(H5,(H6,(H7,H8))))))))
I(H,(H2,(H3,(H4,(H5,H6)))11]; split; auto.
destruct (status s’).
rewrite H3; auto. rewrite + H3; auto.

rewrite + H4; auto.

rewrite H3; auto.

rewrite H3; auto.

rewrite H4; auto.

pose (H9 := EgNilPatternClassical p H).

destruct H9 as [H9|HY]. apply H5 in H9. rewrite H9; auto.

apply H4 in H9. rewrite H9; auto.

rewrite HS; auto.

pose (H7 := EqNilPatternClassical (memory s) HO).

destruct H7 as [H7|H7]. apply H4 in H7.

destruct H7 as (H7,HS). rewrite HS; auto.

apply H3 in H7. destruct H7 as (H7,HS).

rewrite HS. auto.

pose (H7 := EgNilPatternClassical (memory s) HO).

destruct H7 as [H7|H7]. apply H4 in H7.

destruct H7 as (H7,HS). rewrite H7; auto.

apply H3 in H7. destruct H7 as (H7,HS).

rewrite H7. auto.

Qed.

Theorem Spec_then_Typelnvariant : valid (Spec ‘=> [] ‘Typelnvariant).
Proof.

apply tla_inv_gen.

intros s H.

destruct H as ((H,(HO,HI)),_).

repeat split;auto. rewrite HO; auto.

intros s H HO.

simpl.

assert (R: s @ 1%behavior 0%nat = s 1%nat). auto.

rewrite R.

apply Next_Typelnvariant with (s 0%nat); auto.
Qed.

Theorem Spec_then_ResetEnabled : valid (Spec ‘=> [] ResetEnabled).
Proof.
intros s H.
apply ModusPonens with (‘PowerOn ‘N [][Next]).
apply tla_inv.
intros x HO. unfold Reset, PowerOn, ignore in *. 3 x.
destruct HO as (HO,(HI,H2)). rewrite HI. repeat split;trivial.
introsxyHOHI. destruct HO as (st’,HO).
dst’. destruct HO as (HO,(H2,(H4,H5))). repeat split;trivial.
destruct H as (H,(HI,H2)).
split;trivial.
Qed.

Lemma Next_CommandsEnabledlffValid : ¥ s, Typelnvariant (s 0%nat) —
eval CommandsEnabled-
IffValid s —
Next (s 0%nat) (s 1%nat)
%
eval CommandsEnabled-
IffValid (s @ 1).
Proof.
intros s H HOHI.
simpl in *.
destruct H as (is_pat_mem,is_pat_out).
destruct HO as (HO,H?2).
split.
intros H.
destruct H as ((st’,(H,(H3,.))),_). split; auto.
intros H.
destruct H as (ready-next_true,status_next_valid).
assert (H3 : Typelnvariant (s 1%nat)). apply Next_Typelnvariant with (s
0%nat); auto; split; auto.
destruct H3 as (is_pat_next_mem,is_pat_next_out).
assert (H3 : memory (s @ 1%behavior 0%nat) = NilPattern NV memory (s @
1%behavior 0%nat) # NilPattern). apply EgNilPatternClassical; auto.
repeat split.
unfold Run. destruct H3 as [H3|H3]. rewrite H3.
set (nst = {l
ready := ready (s @ 1%behavior 0%nat);
status := status (s @ 1%behavior 0%nat);

memory = NilPattern;
output := output (s @ 1%behavior 0%nat)|}).
dnst; repeat split;unfoldnst; auto; intuition.
set (nst = {l
ready := ready (s @ 1%behavior 0%nat);
status := status (s @ 1%behavior 0%nat);
memory = NilPattern;
output := memory (s @ 1%behavior 0%nat)l}).
dnst; repeat split;unfoldnst; auto; intuition.
unfold Flush.
set (nst = {l
ready := ready (s @ 1%behavior 0%nat);
status := status (s @ 1%behavior 0%nat);
memory = NilPattern;
output := NilPatternl}).
dnst; repeat split; unfold nst; auto.
intros x H.
unfold Write.
assert (H4 : x = NilPattern \ x # NilPattern). apply EgNilPatternClassical,
auto.
destruct H4 as [H4|H4].
set (nst = {l
ready := ready (s @ 1%behavior 0%nat);
status := status (s @ 1%behavior 0%nat);
memory = memory (s @ 1%behavior 0%nat);
output := output (s @ 1%behavior 0%nat)|}).
dnst; repeat split;unfoldnst; auto; intuition.
set (nst = {l
ready := ready (s @ 1%behavior 0%nat);
status := status (s @ 1%behavior 0%nat);
memory = Xx;
output := output (s @ 1%behavior 0%nat)|}).
dnst; repeat split;unfoldnst; auto; intuition.
Qed.

Theorem Spec_then_CommandsEnabledlffValid : valid (Spec ‘=> [] CommandsEn-
abledlffValid).
Proof.
assert (G :valid (Spec ‘=> [] (CommandsEnabledIffValid ‘N ‘Typelnvariant))).
apply tla_inv_gen.
intros s H.
split.simpl. simpl in H. destruct H as ((H,(HO,HI)),(H2,H3)).
rewrite H.
split; intros H4. destruct H4 as ((st’,(H4,.)),-).
rewrite H4 in H. inversion H.
destruct H4 as (H4,.). inversion H4.

assert (HO:V n,eval ‘ Typelnvariant (s @ n)). apply Spec_then_Typelnvariant,
auto.
specialize HOwith Q0%nat. auto.
intros s H HO.
destruct H as (H,HI).
split.
apply Next_-CommandsEnabledlffValid; auto.
apply Next_Typelnvariant with (s 0%nat); auto.
intros s H n.
apply G in H.
simpl in H.
specialize Hwithn.destruct H as (H,HI).
auto.
Qed.

End Basic.

D.2 Memory.v

Require Import TLA.

Require Import Rules.

Require Import Arith.

Require Import ZArith.

Require Import Omega.

Require Import Setoid.

Require Import FunctionalExtensionality.
Require Import Basic.

Require Import Rules.

Open Scope tla.
Inductive Mode := Record | Play.

Module Type MemParams <: BasicParams.

Parameter Patternlsh : Type.

Parameter IsPattern : Patternlsh — Prop.

Parameter NilPattern : Patternlsh.

Parameter NilPatternPattern : IsPattern NilPattern.

Parameter EgNilPatternClassical : ¥ p, IsPattern p — p = NilPattern V p #*
NilPattern.

Parameter MaxMemoryLen : nat.

Parameter MaxMemoryLenGtZ : (0 < MaxMemoryLen)%nat.

Fixpoint IsListPattern (Is : list Patternlsh) : Prop :=
match s with
| nil = True
| (cons h tl) = IsPattern h A IsListPattern tl
end.

End MemParams.

Module ParamsFromMem (Params : MemParams) <: BasicParams.
Definition Patternlsh := list Params.Patternish.
Definition IsPattern := Params.IsListPattern.
Definition NilPattern : Patternlsh := nil.
Theorem NilPatternPattern : IsPattern NilPattern.
Proof.
unfold IsPattern, NilPattern.
simpl. auto.
Qed.
Theorem EgNilPatternClassical : ¥ p, IsPattern p — p = NilPattern \/ p # NilPattern.
Proof.
introspH.
unfold NilPattern, IsPattern.
destruct p. left; auto. right; intros F; inversion F.
Qed.
End ParamsFromMem.

Module Memory (Params : MemParams).
Import Params.

Hint Resolve NilPatternPattern.

Record St :={
ready : bool,
status : MemStatus;
mode : Mode;
memory : list Patternlsh;
output : list Patternlsh}.

Section Model.
Variable stst’: St
Let ready’ = (st’).(ready). Let ready := st.(ready).
Let status’ := (st’).(status). Let status := st.(status).
Let mode’ := (st’).(mode). Let mode := st.(mode).
Let memory’ = (st’).(memory). Let memory := st.(memory).
Let output’ := (st’).(output). Let output = st.(output).
Definition Typelnvariant := IsListPattern memory N IsListPattern output.
Definition Initialize :=
ready = false
A ready’ = true
A (mode = Play — output = nil)
A match status’ with
| Valid = mode’ = Record A memory’ = nil
| - = mode’ = mode \ memory’ = memory
end
A output’ = output.

Definition Reset :=
ready’ = false

N memory’ = nil
A output’ = nil
N ignore st.

Definition Flush:=
ready = true
A status = Valid
A mode = Record
A memory’ = nil
A output’ = nil
A ready’ = ready
N status’ = status
A mode’ = mode.

Definition Writep :=
ready = true
A status = Valid
A mode = Record
A (length memory < MaxMemoryLen)%nat
A (p # NilPattern — memory’ = cons p memory)
A (p = NilPattern — memory’ = memory)
A ready’ = ready
A status’ = status
A mode’ = mode
N output’ = output.

Definition StartPlay =
ready = true
A status = Valid
A mode = Record

A output = nil
A memory # nil
A mode’ = Play

A ready’ = ready A status’ = status \ memory’ = memory N\ output’ = output.

Definition DoPlay :=
ready = true
A status = Valid
A mode = Play
A d ht, memory = cons h t
N memory’ =t
A output’ = cons h output
A ready’ = ready N status’= status /\ mode’ = mode.

Definition EndPlay =
ready = true
A status = Valid
A mode = Play
N\ memory = nil

A mode’ =Record
A output’ = output
A ready’ = ready A status’ = status \ memory’ = memory.

Definition PowerOn :=
ready = false
A IsListPattern memory
A (length memory < MaxMemoryLen)%nat
A output = nil.

Definition Next :=
Initialize
V Reset
V Flush
V (3 p, IsPattern p \ Write p)
V StartPlay
V DoPlay
V EndPlay.
End Model.

Definition Fairness :=
WF Initialize
‘N WF DoPlay
‘N WF EndPlay.

Definition Spec :=‘ PowerOn ‘N [][Next] ‘A Fairness.

Lemma Next_Typelnvariant : ¥ st st’, Typelnvariant st
— Next st st — Typelnvariant st’.
Proof.

intros st st’ tst next.

unfold Typelnvariant in *.

destruct tst as (memst,patst).

destruct st, st’. simpl in *.

destruct next as |
(HO,(HI1,(H2,(H3,H4))))
I[(HO,(HI,(H2,H3)))
I[((HO,(HI,(H2,(H3,(H4,(H5,(H6,H7)))))))
I[(p,(isPatP,(HO,(HI,(H2,(H3,(H4,(H5,(H6,(H7,(H8,H9))))))))))
I[(HO,(HI1,(H2,(H3,(H4,(H5,(H6,(H7,(H8,H9)))))))))
I[(HO,(HI1,(H2,(h,(t,(H4,(H5,(H6,(H7,(H8,H9))))))))))
((HO,(H1,(H2,(H3,(H4,(H5,(H6,(H7,H8))))))))

1115

simpl in *,

destruct statusl; destruct H3 as (H3,HS); rewrite H5; rewrite H4;

repeat split; auto.

rewrite HI, H2; repeat split;auto.

rewrite H3, H4; repeat split;auto.

rewrite H9; split; auto.

assert (H : p = NilPattern V p # NilPattern). apply EgNilPatternClassical.
auto.
destruct H as [H|H]. apply H5 in H. rewrite H. auto.
apply H4 in H. rewrite H. split; auto.
rewrite HS, H9; repeat split;auto.
rewrite H4 in memst. destruct memst as (iPt,memst).
rewrite H6, H5; repeat split;auto.
rewrite HS. rewrite HS. repeat split;auto.
Qed.

Theorem Spec_Typelnvariant : valid (Spec ‘=> [] * Typelnvariant).
Proof.
apply tla_inv_gen.
intros s H.destruct H as (H,.).
unfold PowerOn, Typelnvariant in *; simpl in *.
destruct H as (-,(H,(-,H0))). rewrite HO. repeat split;auto.
intros s. apply Next_Typelnvariant.
Qed.
Module FROMMEM := ParamsFromMem (Params).
Module BASIC := Basic.Basic (FROMMEM).

Definition refinement_mapping (st : St) : BASIC.St =
match st with
| {I ready := ready0;
status := status0;
memory = memory0,
mode := mode0;
output := output0 1} =
{I BASIC.ready := ready0,
BASIC.status := statusO0,
BASIC.memory := match mode0 with
| Record = memory0
| Play = ((List.rev output0) ++ memory0)%list
end;
BASIC.output :== match mode0 with
| Record = List.rev output0
| Play = nil
end |}
end.

Lemma Next_refinement : V st st’, Typelnvariant st — Next st st’ —
(BASIC.Next (refinement _mapping st) (refinement_mapping st’) V
(refinement_mapping st = refinement_mapping st’)).

Proof.

intros st st’ typlnv next.

unfold Next, BASIC.Next in *.

destruct next as [
(HO,(H1,(H2,(H3,H4))))

I[(HO,(HI,(H2,H3)))
I[(HO,(HI,(H2,(H3,(H4,(H5,(H6,H7)))))))
I[(p,(isPatP,(HO,(H1,(H2,(H3,(H4,(H5,(H6,(H7,(H8,H9))))))))))
I[(HO,(HI,(H2,(H3,(H4,(H5,(H6,(H7,(H8,H9)))))))))
[(HO,(HI,(H2,(h,(t,(H4,(H5,(H6,(H7,(H8,H9))))))))))
I((HO,(H1,(H2,(H3,(H4,(H5,(H6,(H7,H8))))))))

1

left. left.

unfold BASIC.Initialize.

destruct st, st’; simpl in *. rewrite < HO, HI, H4.

destruct statusl; repeat split;auto; destruct H3 as (H3,H)S);
try (rewrite H3); try (rewrite HS); auto.

destruct mode0; auto; intuition; rewrite H; auto.

left.right. left.

unfold BASIC.Reset, ignore.

destruct st, st’; simpl in *. rewrite HO, HI, H2; simpl.
destruct model; repeat split;auto.

left. right. right. left.

unfold Flush, BASIC.Flush in *.

destruct st, st’; simpl in *.

rewrite H7.

rewrite H6, H5, H4, H3, H2, HI. repeat split; auto.

left.right. right. right. left.

unfold Write, BASIC. Write in *.

assert (HIO: p = NilPattern \V p # NilPattern). apply EgNilPatternClassical,
auto.

destruct st, st’; simpl in *.

rewrite H8. rewrite HO, HI, H2, H6, H7, H9, HI.

destruct HIO as [HIO|H10].

apply H5 in HIO.

rewrite HI10. 3 FROMMEM.NilPattern; intuition.

apply H4 in HI0. rewrite HIO.

destruct typlnv as (ty,-). simpl in ty.

3 ((p :: memory0)%list). repeat split; auto. intros H; inversion H.

right.

destruct st, st’. simpl in *.

rewrite H9, H8, H7, H6, H5, H3, H2, HI, HO. simpl in *.
auto.

right.

destruct st,st’. simpl in *.

rewrite H9, H8, H7, H6, H5, H4, H2, H1, HO.
simpl.

rewrite ¢ List.app_assoc.

simpl. auto.

left.right. right. right. right.
unfold BASIC.Run.
destruct st, st’; simpl in *.
rewrite H8, H7, H6, H5, H4, H3, H2, HI, HO.
repeat split;auto.
rewrite List.app-nil_r. auto.
rewrite List.app_nil_r in H. auto.
Qed.

End Memory.

D.3 Command.v

Require Import TLA.

Require Import Rules.

Require Import Arith.

Require Import ZArith.

Require Import Omega.

Require Import Setoid.

Require Import FunctionalExtensionality.
Require Import Basic.

Require Import Rules.

Open Scope Z.
Open Scope ta.

Definition ignore {A: Type} (x: A) := True.

Module Command (Params : BasicParams).
Import Params.

Hint Resolve NilPatternPattern.

Inductive Control : Type := Ready | Busy | Done.
Inductive Command : Type :=
| Flush : Command
| Write : Patternlsh — Command
| Run : Command.
Definition IsCommand (c : Command) : Prop :=match cwith
| Write p = IsPattern p
| - = True
end.

Record St :={
ready : bool;
status : MemStatus;
ctrl : Control,
cmd : Command,
memory : Patternish;
output : Patternish}.

Section Model.
Variable st st’: St.

Let ready’ = (st’).(ready). Let ready := st.(ready).
Let status’ := (st’).(status). Let status := st.(status).
Let ctrl’ := (st’).(ctrl). Let ctrl := st.(ctrl).
Let cmd’ := (st’).(cmd). Let cmd := st.(cmd).
Let memory’ = (st’).(memory). Let memory := st.(memory).
Let output’ := (st’).(output). Let output := st.(output).
Definition Typelnvariant :=
IsCommand cmd
N IsPattern memory
N IsPattern output.
Definition Initialize :=
ready = false
A ready’ = true
A ctrl’ = Ready
A match status’ with
| Valid = memory’ = NilPattern
| - = memory = memory’ end
A output = output’
A cmd =cmd’.

Definition Reset :=
ready’ = false
A IsPattern memory’
A IsCommand cmd’
A output’ = NilPattern
N ignore st. Definition Reqc:=
ready = true
A status = Valid
A ctrl = Ready
Aemd =c
A ctrl’ = Busy
A ready = ready’ A status = status’ \ memory = memory’ A output = output’.

Definition DoFlush :=
cmd = Flush
N memory’ = NilPattern
A output’ = NilPattern.

Definition DoWrite :=
(3 p, cmd = Write p
A (p # NilPattern — memory’ = p)
A (p = NilPattern — memory’ = memory))
A output = output’.
Definition DoRun =
cmd = Run

A (memory # NilPattern — (output’ = memory N\ memory’ = NilPattern))
A (memory = NilPattern — (output’ = output \ memory’ = memory)).

Definition Do :=
ready = true
A status = Valid
A ctrl = Busy
A (DoFlush N DoWrite NV DoRun)
A ctrl’ = Done
A (ready’ = ready N status’ = status A\ cmd’ = cmd).

Definition Resp :=
ready = true
A status = Valid
A ctrl = Done
A ctrl’ = Ready
A (ready’ = ready
A status’ = status
A emd’ = cmd
N memory’ = memory
N output’ = output).

Definition PowerOn :=
ready = false
N IsCommand cmd
N IsPattern memory
A output = NilPattern.

Definition Next :=
Initialize
V Reset
V (3 ¢, IsCommand ¢ N Req c)
V Do
V Resp.

End Model.

Definition Fairness :=
WF Initialize
‘N WF Do
‘N WF Resp.

Definition Spec = ‘PowerOn ‘N [][Next] ‘A Fairness.

Lemma Next_Typelnvariant : ¥V st st’, Typelnvariant st — Next st st’ — Typelnvari-
ant st’.
Proof.
intros st st’ H HO.
destruct st.
destruct st'.
unfold Typelnvariant in H. simpl in H.

destruct H as (IsCmd-cmdO0,(IsPat_-memy0,IsPat_out0)).
destruct HO as [(-,(-,(-,(HO,(out_unchanged,cmd_unchanged)))))
I[(-,(IsPat_meml ,(IsPat_cmdl ,(outl _nilPat,_))))
I[(c,(isCommand_c,(-,(-,(-,(cmd] _c,(-,(-,(-,(mem_unchanged,out_unchanged))))))))))
(=, (-,(<,([(=,(mem _nilPat,out] _nilPat))
I[((p,(cmdO_writeP,(p-ifnotnilPat,p_ifNilPat))),out _unchanged)
I(=,(memO_ifnotnilPat,memO0_ifNilPat))]],(-,(-,(-,cmd_unchanged)))))))
I(=,(=,(=,(=,(=,(=,(cmd_unchanged,(mem_unchanged,out _unchanged)))))))1111;
simpl in *; unfold Typelnvariant; simpl;

try (rewrite cmd_unchanged in *);

try (rewrite out_unchanged in *);

try (rewrite mem_unchanged in *);

try (rewrite outl _nilPat);

try (rewrite meml _nilPat);

try (rewrite cmdl_c);

try (rewrite cmdO_writeP in *); repeat split; auto.

destruct statusl; rewrite HO in *; auto.

unfold IsCommand in *.

assert (H : p = NilPattern V' p # NilPattern). apply EgNilPatternClassical,
auto.

destruct H as [H|H].

apply p-ifNilPat in H; rewrite H; auto.

apply p-ifnotnilPat in H; rewrite H; auto.

assert (H : memory0 = NilPattern V memory0 # NilPattern). apply EgNilPat-
ternClassical; auto.

destruct H as [H|H].

apply memO_ifNilPat in H. destruct H as (H,H0). rewrite HO; auto.

apply memO_ifnotnilPat in H. destruct H as (H,HO). rewrite HO; auto.

assert (H : memory0 = NilPattern V memory0 # NilPattern). apply EgNilPat-
ternClassical; auto.
destruct H as [H|H].
apply memO_ifNilPat in H. destruct H as (H,H0O). rewrite H; auto.
apply memO_ifnotnilPat in H. destruct H as (H,HO). rewrite H; auto.
Qed.

Theorem Spec_Typelnvariant : valid (Spec ‘=> [] * Typelnvariant).
Proof.

apply tla_inv_gen.

intros s H.

destruct H as ((H,(HO,(HI1,H2))),-). simpl in *.

repeat split;auto; rewrite H2; auto.

intros s H HO. apply Next_Typelnvariant with (s 0%nat); auto.
Qed.

Module BASIC := Basic.Basic Params.

Definition refinement_mapping : St — BASIC.St :=
funx = matchxwith
| {I ready := ready0;
status := statusQ0;
output := output0,
memory = memory0 |} =
{l
BASIC.ready = ready0,
BASIC.status = status0;
BASIC.memory := memory0,
BASIC.output := output0 |}
end.

Lemma refines_Next : ¥ st st’,
Typelnvariant st
— Next st st’
— (BASIC.Next
(refinement_mapping st)
(refinement_mapping st’) V
refinement_mapping st = refinement_mapping st’).
Proof.
intros st st’ typelnvSt H.
destruct typelnvSt as (isCommandSt,(isPatternMemSt,isPatternOutSt)).
unfold Next in *.
unfold BASIC.Next in *.
Ltac break_up := unfold BASIC.Initialize, BASIC.Reset, BASIC.Flush, BA-
SIC.Write, BASIC.Run in *;
unfold Initialize, Reset, Req, Do, Resp in *.
destruct H as [HI[HI[(c,(isComc,H))[H|H]II].
left. left. break_up; destruct st, st’; simpl in *.
destruct H as (H,(HI,(H2,(H3,(H4,H5))))).
destruct statusl; repeat split;auto.
left. right. left. break_up; destruct st, st’; simpl in *.
destruct H as (H,(HI,(H2,(H3,H4)))); repeat split; auto.
right. break_up; destruct st, st’; simpl in *.
destruct H as (-,(-,(-,(-,(-,(H4,(H5,(H6,H7)))))))).
rewrite H4, H5, H6, H7; auto.
destruct st. simpl.
destruct H as (H,(HO,(HI,([H2I[H2|H2]1,(H3,(H4,(H5,H6))))))); dest ruct
cmd0 as [lIpl];
unfold DoFlush,DoWrite,DoRun in *; simpl in *.
left. right. right. left.
break_up; destruct st’; simpl in *.
destruct H2 as (_,(H2,H7)).
repeat split;auto.
destruct H2 as (H2,.); inversion H2.

destruct H2 as (H2,.); inversion H2.

destruct H2 as ((p0,(H2,-)),-); inversion H2.

destruct H2 as ((p0,(H2,(H7,HS8))),H9).

left. right. right. right. left.dp.

assert (HI0:p=p0). inversion H2; auto.

rewrite HI0 in *.

repeat split;auto;destruct st’; simpl in *; auto.

destruct H2 as ((p0,(H2,-)),-); inversion H2.

destruct H2 as (H2,.); inversion H2.

destruct H2 as (H2,_); inversion H2.

destruct H2 as (_,(H2,H7)).

left.do4 right.

destruct st’; repeat split; simpl in *; auto; intuition.

right.

destruct H as (H,(HI1,(H2,(H3,(H4,(H5,(H6,(H7,HS8)))))))).

destruct st, st’; simpl in *. rewrite H4, H5, H7, HS. auto.
Qed.

Lemma refines_init : ¥ st, PowerOn st — BASIC.PowerOn (refinement_mapping st).
Proof.

intros st H.

unfold PowerOn, BASIC.PowerOn in *.

destruct H as (H,(HO,(HI,H2))).

destruct st; simpl in *.

repeat split; auto.
Qed.

Theorem refines : valid (Spec ‘=> (map refinement_mapping BASIC.Spec)).
Proof.
intros s H.
assert (tylnv : eval ([] ‘Dypelnvariant) s). apply Spec_Typelnvariant in H;
auto.
destruct H as (init,(next.fairness)).
rewrite map_eval.
unfold BASIC.Spec.
split. rewrite < map_eval. apply refines_init; auto.
split. rewrite < map_eval. simpl.
introsn. simpl in next. specialize next with n.
destruct next as [H|H].
apply refines_Next, auto; apply tylnv.
right; rewrite H; trivial.
assert (H :V s s’ Initialize s s’
— BASIC.Initialize (refinement_mapping s) (refinement_mapping s’)).
intros s0sl H. destruct s0. destruct si.
unfold Initialize in H. unfold BASIC.Initialize. simpl in *.
destruct H as (H,(HI,(H2,(H3,(H4,H5))))).
destruct statusl; repeat split; auto.

apply RefineWF with Initialize.
assumption.
intros s0sl HO. left. intros H2. destruct H2 as (H2,(H3,H4)).
destruct s0. destruct s/. simpl in *. rewrite H2 in *.
rewrite H3 in *. inversion HO.
intros sO HI.
destruct HI as (s’,(HI1,(H3,(H4,H5)))).
3 ({lready := true;
status = BASIC.status s’
ctrl := Ready;
cmd := cmd s0,
memory = BASIC.memory s’;
output := output sOl}).
destruct s0,s’. simpl in *.
repeat split;auto.
destruct fairness as (WF_init,_); auto.
Qed.

Definition ResetEnabled := ENABLED Reset.

Lemma Next_ResetEnabled : V st st’,
(3 s, Reset st s)
— Next st st’
— s, Reset st’ s.
Proof.
intros stst’ H next.
destruct st, st’.
unfold Reset.
destruct H as (s,H). 3s.unfold Reset in H.
repeat split; intuition;auto.
Qed.

Theorem Spec_ResetEnabled : valid (Spec ‘=> [] ResetEnabled).
Proof.
apply tla_inv_gen.
intros s H. destruct H as (H,(HI,(H2,H3))),-).
simpl.
3 ({lready := false;
status := (s 0%nat).(status);
ctrl := (s 0%nat).(ctrl);
cmd = (s 0%nat).(cmd);
memory = (s 0%nat).(memory);
output := NilPatternl}).
unfold Reset; simpl; repeat split;auto.
intros s. apply Next_ResetEnabled.
Qed.

Definition IsCommand’ {T} ¢ :="° fun (x:T) = IsCommand c.

Definition CommandsEnabled := E_ForallRigid (fun ¢ = IsCommand’ ¢
‘=> ENABLED (fun a b = Req a b c)).

Definition CommandsEnabledlffValidAndReady := CommandsEnabled ‘<=>
¢ fun st = st.(ready) = true
A st.(status) = Valid
A st.(ctrl) = Ready.

Lemma Next_CommandsEnabledlffValidAndReady : V st st’,
(Y ¢, IsCommand ¢ — 3 s, Req st s ¢) <> (st.(ready) = true
A st.(status) = Valid
A st.(ctrl) = Ready))
— Next st st’
— (V ¢, IsCommand ¢ — 3 s, Req st’ s ¢) <> ((st’).(ready) = true
A (st’).(status) =
Valid
A (st”).(ctrl) = Ready).
Proof.
intros st st’ H next.
split.

intros HO.

assert (HI :3s: St,Req st’ s Flush). apply HO; simpl; auto.

destruct HI as (s,HI). unfold Req in HIl. repeat split;intuition;
auto.

intros HO c isCmdC. destruct HO as (HO,(HI,H2)).
3 ({I ready := ready st’;
status = status st’;
ctrl := Busy;
cmd = c;
memory = memory st’;
output := output st’l}).
repeat split; simpl; auto.
Qed.

Theorem Spec_CommandsEnabledlffValidAndReady : valid (Spec ‘=>[] Command-
sEnabledlffValidAndReady).
Proof.
apply tla_inv_gen.
intros s H. destruct H as (H,-).
split.intros HI. simpl in HI.
assert (H2:dst’: St, Req (s 0%nat) st’ Flush). apply HI; auto; unfold
IsCommand; auto.
destruct H2as (st’,H2). unfoldReq in H2. repeat split;intuition;
auto.
intros HI ¢ H2. simpl in H2.
destruct HI as (HI1,(H3,H4)).
unfold Regq.

3 ({l ready := ready (s O);
status := status (s O);
ctrl := Busy;
cmd = c;
memory = memory (s O);
output := output (s O)l}).
repeat split; simpl; auto.
intros s. apply Next_CommandsEnabledlffValidAndReady.
Qed.

Definition CommandsComplete :=‘ (fun st = st.(ctrl) = Busy) > ‘ (fun st =
st.(ctrl) = Ready).

Lemma Spec_NotBad : valid (Spec ‘=>[] * fun st = — (st.(ready) = true
A st.(status) = In-
Valid
A (st.(ctrl) = Busy
V st.(ctrl) = Done))).
Proof.
apply tHa_inv_gen.
intros s HF.destruct H as (H,-).
destruct Has (H,.).destruct Fas (F,_). rewrite FinH. inversion

H.
intros s H next F.
destruct F as (rt,(si,ch)). simpl in H.
destruct next as [(-,(-,(F,-)))
I[(F,-)
(e, (isCo(=,(FOL(-,(= (=, (=,(F1,-)))))))
L=, (FO,(—, (= ,(=(-,(F1,2))))))
(=, (FO,(=y(=,(=,(FL,L)Y)))I]]; unfold shift in *; simpl
in *,

destruct cb as [cb|ch].
assert (W:Busy=Ready). rewrite < cb; rewrite < F;auto.inversion

assert (W:Done=Ready). rewrite < cb;rewrite < F;auto. inversion
assert (W :true =false). rewrite < rt; rewrite < F;auto. inversion

assert (W : InValid = Valid). rewrite < si; rewrite < FO; rewrite FI,
auto. inversion W.
assert (W : InValid = Valid). rewrite < si; rewrite < FO; rewrite ¢
FI; auto. inversion W.
assert (W : InValid = Valid). rewrite < si; rewrite < F0O; rewrite +
FlI; auto. inversion W.
Qed.

Definition IsReady st := st.(ctrl) = Ready.
Definition IsBusy st := st.(ctrl) = Busy.

Definition IsDone st := st.(ctrl) = Done.
Definition IsValid st := st.(status) = Valid.
Definition Islnvalid st := st.(status) = InValid.
Definition ReadyTrue st := st.(ready) = true.
Definition ReadyFalse st := st.(ready) = false.

Lemma Spec_ReadyFalseLeadstoReady : valid (Spec ‘=> ((* ReadyFalse) > * Is-
Ready)).
Proof.
intros s spec.
assert (H:eval (([I<> © IsReady) ‘V ([I<> ‘ReadyTrue)) s).
destruct spec as (o,(,(IwfA|wfl],-))); simpl in *;unfold Initialize in *;
unfold IsReady; unfold ReadyFalse.
left.introsn. specializewflwithn.destruct wfl as (m,((-,(-,(Wfl,-))),-)).
(S m). rewrite < wfl; auto.
right. intros n. specialize wfl withn.
destruct wfl as (mwfl).
assert (F : ready ((s @ n) @ m%behavior 0%nat) = true V ready ((s @ n) @
m%behavior 0%nat) = false).
destruct (ready ((s @ n) @ m%behavior 0%nat)); auto.
destruct F as [F|F]. 3m; auto.
exfalso. apply wfl.
3 ({I ready := true;
ctrl := Ready;
status = Valid,
memory = NilPattern;
output := output ((s @ n) @ m%behavior 0%nat);
cmd := cmd ((s @ n) @ m%behavior 0%nat)|}).
repeat split; simpl; auto.
destruct H as [H|H].
simpl in *; intros n; specialize H with n; auto.
apply deriveLeadsTo.
intros n HO.
destruct spec as (_,(spec,-)).
simpl in *. unfold ReadyFalse in *. unfold IsReady in *. specialize
spec with n.
destruct spec as [
[next
[[next
I[(e,(-,(H1,-)))
I[(H1,-)
I((H1,)]11]
|next].
firstorder.
firstorder.
rewrite HO in HI. inversion HI.

rewrite HO in HI. inversion HI.
rewrite HO in HI. inversion HI.
left. rewrite next in HO. rewrite < HO. auto.
clear spec.
simpl in *. intros n. specialize Hwithn.
destruct H as (m,H). 3 m. unfold ReadyTrue in *. unfold ReadyFualse
in *,
rewrite H; intros F; inversion F.
Qed.

Lemma Spec_ValidAndDoneLeadsToReady : valid (Spec ‘=>
((° ReadyTrue ‘N * IsValid ‘N\ * IsDone) > * IsReady)).
Proof.
intros s spec.
assert (T : eval (* ReadyTrue ‘N * IsValid ‘N ¢ IsDone > (‘ IsReady ‘\ *
ReadyFalse)) s
— eval (‘ ReadyTrue ‘N\ * IsValid ‘N * IsDone > * IsReady) s).
intros H n HO.
apply H in HO.
destruct HO as (m,[HO|HO)).
dm; auto.
apply Spec_ReadyFalseLeadstoReady in spec.
apply spec in HO. destruct HO as (m0,HO).
3 ((m0 + m)%nat). unfold IsReady in *. simpl in *,
rewrite <~ HO. do 2 rewrite < contraction; auto.
apply T.clear T.
assert (H : eval (([I<> ‘ IsReady) *V ([I<> “ (* ReadyTrue ‘N * IsValid ‘N *
IsDone))) s).

destruct spec as (-,(-,(-,(,[fairlfair]))));
unfold IsReady, ReadyTrue, IsValid, IsDone, Resp in *.
left.introsn. simpl in *. specialize fair with n.
destruct fair as (m,((-,(-,(-,(H,-)))),-)).
3(S m). rewrite + H; auto.
right. simpl in *. intros n. specialize fair withn.
destruct fair as (mfair). 3 m.
intros H. destruct H as (H,(HO,HI)).
destruct (ready ((s @ n) @ m%behavior 0%nat)).
destruct (status ((s @ n) @ m%behavior 0%nat)).
destruct (ctrl ((s @ n) @ m%behavior 0%nat)).
inversion HI. inversion HI.
apply fair.
3 ({I ctrl := Ready;

ready := true;

status = Valid,

cmd := cmd ((s @ n) @ m%behavior 0%nat);

memory = memory ((s @ n) @ m%behavior 0%nat);

output = output ((s @ n) @ m%behavior 0%nat) 1}). repeat split;

auto.

inversion HO.

inversion H.

destruct H as [H|H].

clear spec. introsn _. simpl in * specialize Hwithn. destruct
H as (m,H).

dm. left; auto.

apply deriveLeadsTo; auto.

intros n HO.

destruct spec as (_,(next,.)).

simpl in next. specialize next withn.clear H.

unfold ReadyTrue, IsValid, IsDone, IsReady, ReadyFalse in *.

simpl in *.

destruct HO as (HO,(HI,H2)).

destruct next as [

[(H3,-)
[[next
I[(e,(=o(=(=-(H3,-)))))
I[(-,(-(H3,-)))
(=, (=, (= (H3,)N
|next].
assert (W:true=false). rewrite <— H3. rewrite HO. auto. inversion
Ww.
right. right. firstorder.
assert (W:Ready=Done). rewrite <~ H3. rewrite - H2. auto.inversion
w.
assert (W:Busy=Done). rewrite <~ H3. rewrite <— H2. auto.inversion
right. left. rewrite < H3. auto.
rewrite next in *. rewrite < HO. rewrite < HI. rewrite < H2.
left; repeat split;auto.
Qed.

Lemma Spec_ValidAndBusyLeadsToReady : valid (Spec ‘=>
((* ReadyTrue ‘N * IsValid ‘N * IsBusy) > * IsReady)).
Proof.
intros s spec.
assert (T : eval (‘ ReadyTrue ‘N “ IsValid ‘N * IsBusy
> ((° ReadyTrue ‘N © IsValid N\ © IsDone) ‘V (* IsReady ‘\V *
ReadyFalse))) s
— eval (‘ ReadyTrue ‘N ‘ IsValid ‘N © IsBusy > ‘ IsReady) s).
intros Hn HO. apply H in HO.
destruct HO as (m,[HOI[HO|HO])).
apply Spec_ValidAndDoneLeadsToReady in spec.
apply spec in HO. unfold IsReady in *.

destruct HO as (n0,HO). 3 ((n0 + m)%nat).

simpl in *. rewrite < HO. do 2 rewrite ¢ contraction. auto.

dm. auto.

apply Spec_ReadyFalseLeadstoReady in spec. apply spec in HO.

destruct HO as (m0,HO). 3 ((m0 + m)%nat).

unfold IsReady in *.

simpl in *. rewrite < HO. do 2 rewrite < contraction. auto.

apply T.clearT.

assert (H: eval (([1<> (‘ IsReady ‘\ * ReadyFalse))

V[I<> “ (* ReadyTrue ‘N * IsValid ‘N * IsBusy)) s).

assert (HO: eval (‘ ReadyTrue ‘N * IsValid ‘N\ * IsDone > ‘IsReady) s).

apply Spec_ValidAndDoneLeadsToReady; auto.

assert (TY : eval ([] * Typelnvariant) s). apply Spec_Typelnvariant in
spec. auto.

destruct spec as (o,(-,(-,([fair|fair],-)))).

unfold Do in fair.

simpl in fair. left. intros n. specialize fair with n.

destruct fair as (m.fair).

assert (HI:eval (‘ ReadyTrue ‘N ‘IsValid ‘)\ ‘IsDone) ((s @ n) @ (S m)%behavior)).

unfold ReadyTrue, IsValid, IsDone. simpl.

destruct fair as (HI,(H2,(-,(-,(H3,(H4,(H5,-))))))),-).

rewrite < Hl.rewrite <+ H2.rewrite <+ H3.rewrite <+ H4.rewrite

repeat split; auto.
apply HO in HI. destruct HI as (m0,HI). 3 ((m0 + S m)%nat).
left.unfold IsReady in *. rewrite < HI.
unfoldeval.do 2 rewrite ¢ contraction. simpl. auto.
right. introsn. simpl in fair.
specialize fair with n. destruct fair as (m.fair).
clear HO. 3m. unfold ReadyTrue, IsValid, IsBusy, Do in *. simpl in *.
intros F. destruct F as (H,(HO,HI)).
destruct (ready ((s @ n) @ m%behavior 0%nat)).
destruct (status ((s @ n) @ m%behavior 0%nat)).
destruct (ctrl (s @ n) @ m%behavior 0%nat)).
inversion HI.
unfold DoFlush, DoWrite, DoRun in *.
apply fair.
assert (IsC : IsCommand (cmd ((s @ n) @ m%behavior 0%nat))).
specialize TY with ((m + n)%nat). rewrite contraction.
destruct TY as (TYO,(TY1,TY2)). auto.
destruct (cmd ((s @ n) @ m%behavior 0%nat)).
3 ({l ctrl :== Done;

ready := true;

status = Valid,

cmd = Flush;

output := NilPattern;
memory = NilPatternl}).
repeat split; simpl; auto.
simpl in IsC.
apply EgNilPatternClassical in IsC. destruct IsC as [IsC|IsC].
3 ({l ctrl := Done;
ready := true;
status := Valid,
cmd = Write p;
output := (output ((s @ n) @ m%behavior 0%nat));
memory = (memory ((s @ n) @ m%behavior 0%nat))|}).
repeat split; simpl; auto. right. left. split; auto. dp. repeat
split;auto.
intros F. exfalso. apply F; auto.
3 ({l ctrl :== Done;
ready := true;
status = Valid;
cmd = Write p;
output := (output ((s @ n) @ m%behavior 0%nat));
memory = pl}).
repeat split; simpl; auto. right. left. split;auto. dp. repeat
split;auto.
intros F. exfalso. apply IsC; auto.
assert (Q : IsPattern (memory ((s @ n) @ m%behavior 0%nat))).
specialize TY with ((m + n) % nat). unfold Typelnvariant in TY.
rewrite contraction. destruct TY as (_,(TY,.)). auto.
apply EgNilPatternClassical in Q.
destruct Q as [Q|Q].
3 ({l ctrl := Done;
ready := true;
status = Valid;
cmd := Run;
output := output ((s @ n) @ m%behavior 0%nat);
memory = memory ((s @ n) @ m%behavior 0%nat)|}).
repeat split; simpl; auto. right. right. repeat split; auto.
exfalso; apply H2; auto.
3 ({l ctrl :== Done;
ready := true;
status = Valid,
cmd = Run;
output := memory ((s @ n) @ m%behavior 0%nat);
memory = NilPatternl}).
repeat split; simpl; auto. right. right. repeat split; auto.
exfalso; apply Q; auto.
inversion HI.

inversion HO.

inversion H.

destruct H as [H|H].

introsn _.simpl in *. specialize Hwithn.destruct H as (m,H).
dm. right. auto.

apply deriveLeadsTo; auto. clear H.

introsn H.destruct spec as (-,(next,-)).

simpl in next. specialize next with n.

destruct H as (H,(HO,HI)).

unfold ReadyTrue, IsValid, IsBusy, IsDone, IsReady, ReadyFalse in *.
simpl in *.

unfold Next in *.

destruct next as |

[(H2,-)

I[(H2,-)

I[(e,(=o(=,(=(H2,-)))))

I[(H2,(H3,(-.(-,(H4,(H5,(H6,-)))))))

(=, (=,(H2,-))]111]

|next].

assert (W:true =false). rewrite <~ H2. rewrite < H.auto. inversion
w.

right. right. right. rewrite <— H2. auto.

assert (W:Ready=Busy). rewrite <— H2. rewrite <— HIl. auto. inversion
w.

right. left. rewrite < H2. rewrite < H3. rewrite < H4.

rewrite < HS5. rewrite < H6. repeat split;auto.

assert (W:Done=Busy). rewrite < H2. rewrite <— Hl. auto.inversion
Ww.

rewrite next in *. left. rewrite < H. rewrite ¢ HO. rewrite ¢«
HI.

repeat split;auto.

Qed.

Theorem Spec_CommandsComplete : valid (Spec ‘=> CommandsComplete).
Proof.

intros s spec.
pose (HI := Spec_NotBad s spec).
intros n HO.
assert (H2:eval ((‘ ReadyTrue ‘N “ IsValid ‘I © IsBusy)
V (‘ ReadyTrue ‘N * IsValid N\ © IsDone)
V/ “ ReadyFalse ‘\/ * IsReady) s @ n).
unfold IsValid, IsBusy, IsReady, IsDone, ReadyTrue, ReadyFalse in *.
simpl. simpl in HI. specialize HI withn.
destruct (ctrl (s @ n%behavior 0%nat)).
right; right. right. auto.

destruct (ready (s @ n%behavior 0%nat)).

destruct (status (s @ n%behavior 0%nat)).
left. repeat split;auto.

exfalso. apply HI. repeat split; auto.
right. right. left. auto.

destruct (ready (s @ n%behavior 0%nat)).
destruct (status (s @ n%behavior 0%nat)).
right. left. repeat split; auto.
exfalso. apply HI. repeat split;auto.
right. right. left. auto.

destruct H2 as [H2I[H2I[H2|H2]]].
pose (H3 := Spec_ValidAndBusyLeadsToReady s spec).
apply H3; auto.
pose (H3 := Spec_ValidAndDoneLeadsToReady s spec).
apply H3; auto.
pose (H3 := Spec_ReadyFalseLeadstoReady s spec).
apply H3; auto.
unfold IsReady in H2. simpl in *.
3 0. rewrite shift_-0. auto.

Qed.

Definition InitializeAfterReset := * (fun st = st.(ready) = false)
>
¢ fun st = st.(ready) = true.

Theorem Spec_InitializeAfterReset : valid (Spec ‘=> InitializeAfterReset).
Proof.
intros s H.
destruct H as (init,(next,((wfl|wfl] fairness))).
introsn H. simpl in wfl. specialize wfl with n.
destruct wfl as (m,(wfl,HO)).
3 (S m). simpl. unfold Initialize in wfl.
destruct wfl as (-,(wfl,~)). auto.
simpl in wfl.
introsnH. specialize wfl with n.
destruct wfl as (m,imp).
dm. simpl.
assert (B: ready ((s @ n) @ m%behavior 0%nat) = true V ready ((s @ n) @
m%behavior 0%nat) = false).
destruct (ready ((s @ n) @ m%behavior 0%nat)); intuition.
destruct B as [B|B]; auto.
exfalso. apply imp. unfold Initialize.
3 ({I ready := true;
ctrl := Ready;
status = Valid,
memory = NilPattern;
output := output ((s @ n) @ m%behavior 0%nat);

cmd ;= cmd ((s @ n) @ m%behavior 0%nat) |}).
simpl. repeat split; auto.
Qed.

End Command.

D.4 Total.v

Require Import TLA.

Require Import Rules.

Require Import Arith.

Require Import ZArith.

Require Import Omega.

Require Import Setoid.

Require Import FunctionalExtensionality.
Require Import Memory.

Require Import Command.

Require Import Rules.

Module Total (Params : MemParams).
Module MEMORY = Memory (Params).
Module COMMAND := Command (MEMORY.FROMMEM).
Print MEMORY.BASIC.St.
Print COMMAND.BASIC.St.
Definition castStl (st : MEMORY.BASIC.St) : COMMAND.BASIC.St :=
match stwith
| {| MEMORY.BASIC.ready := ready;
MEMORY.BASIC.status := status;
MEMORY.BASIC.memory = memory;
MEMORY.BASIC.output := output |} =
{l
COMMAND.BASIC.ready := ready;
COMMAND.BASIC.status := status,
COMMAND.BASIC.memory := memory;
COMMAND.BASIC.output := output |}
end.

Definition castSt2 (st : COMMAND.BASIC.St) : MEMORY.BASIC.St :=
match st with
| {| COMMAND.BASIC.ready := ready;
COMMAND.BASIC.status := status;
COMMAND.BASIC.memory := memory;
COMMAND.BASIC.output := output |} =
{l
MEMORY.BASIC.ready := ready;
MEMORY.BASIC.status := status;
MEMORY.BASIC.memory := memory;,
MEMORY.BASIC.output := output |}

end.
Lemma castStInvl : Y st, st = castSt2 (castStl st).
Proof.

intros st. destruct st; auto.
Qed.

Lemma castStinv2 : Y st, st = castStl (castSt2 st).
Proof.
intros st. destruct st; auto.
Qed.
Definition sameSt (st : MEMORY.BASIC.St) (st2 : COMMAND.BASIC.St) :
Prop =
castStl stl = st2.
Definition sameStAlt .V stl st2, sameSt stl st2 < stl = castSt2 (st2).
Proof.
intros stl st2. unfold sameSt.
destruct stl, st2. split; intros H; inversion H; auto.
Qed.
Inductive St: Type := Make_St : V stl st2,
sameSt (MEMORY.refinement_mapping st1) (COMMAND.refinement_mapping st2)
— St.
Definition pl (st: St): MEMORY.St :=
match stwith
| Make_Stm _ _ = m
end.
Definition p2 (st: St) : COMMAND.St :=
match stwith
| Make_St —m _ = m
end.

Definition Spec: Expr St :=(map pl MEMORY.Spec) ‘\ (map p2 COMMAND.Spec).
End Total.

	Verification by way of refinement: a case study in the use of Coq and TLA in the design of a safety critical system

