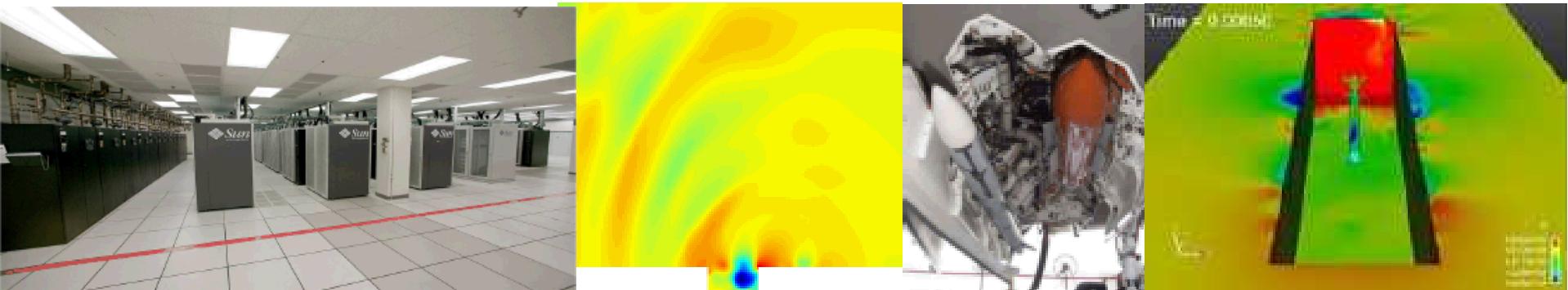


Exceptional service in the national interest



A minimal subspace rotation approach for obtaining stable & accurate low-order projection-based reduced order models for nonlinear compressible flow

I. Tezaur¹, M. Balajewicz²

¹ Quantitative Modeling & Analysis Department, Sandia National Laboratories

² Aerospace Engineering Department, University of Illinois Urbana-Champaign

ECCOMAS 2016 Crete, Greece June 6-10, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

Outline

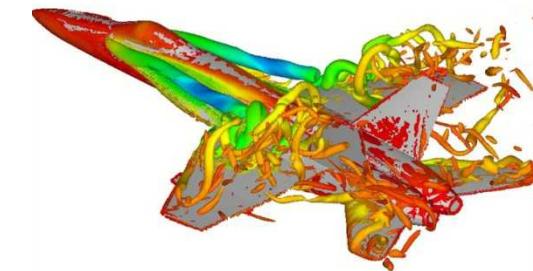
1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References

Outline

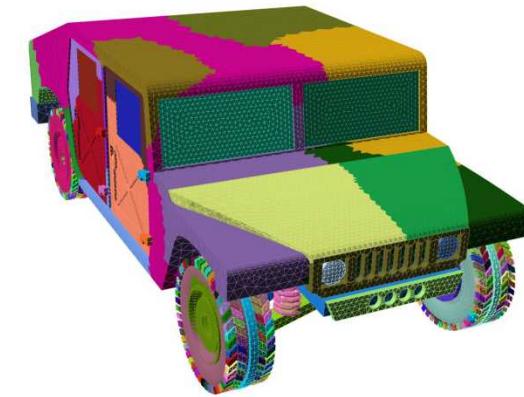
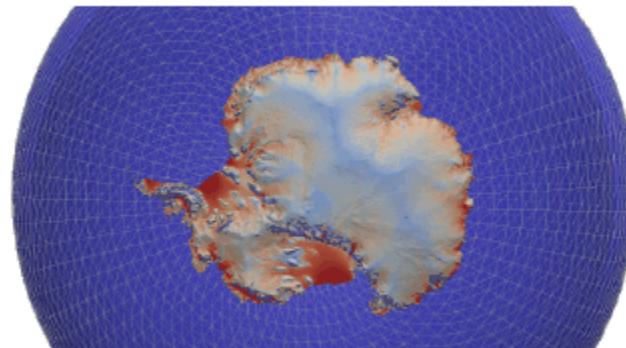
- 1. Motivation**
2. Projection-based model order reduction
3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References

Motivation

Computational models of high-dimensional systems arise in a rich variety of engineering and scientific applications



Computational Fluid Dynamics (left)
Finite Element Analysis (right)
Climate Modeling (bottom)



Motivation

High-fidelity simulations remain prohibitive

Motivation

High-fidelity simulations remain prohibitive

- Computational costs still too high for **parametric**, **time-critical** and **many-query** applications (i.e., design, design optimization, control, UQ).

Motivation

High-fidelity simulations remain prohibitive

- Computational costs still too high for **parametric**, **time-critical** and **many-query** applications (i.e., design, design optimization, control, UQ).
- Postprocessing/visualization difficulties.

Motivation

High-fidelity simulations remain prohibitive

- Computational costs still too high for **parametric**, **time-critical** and **many-query** applications (i.e., design, design optimization, control, UQ).
- Postprocessing/visualization difficulties.

There are significant scientific and engineering benefits in developing and studying low-dimensional representations of high-dimensional systems and retain physical fidelity while substantially reducing the size and cost of the computational model.

Motivation

High-fidelity simulations remain prohibitive

- Computational costs still too high for **parametric, time-critical** and **many-query** applications (i.e., design, design optimization, control, UQ).
- Postprocessing/visualization difficulties.

There are significant scientific and engineering benefits in developing and studying low-dimensional representations of high-dimensional systems and retain physical fidelity while substantially reducing the size and cost of the computational model.

“Purpose of computing is insight, not numbers.”
- Richard Hamming, 1962

Outline

1. Motivation
2. **Projection-based model order reduction**
3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References

Projection-based model order reduction

Data-driven model order reduction (MOR)¹

¹ Not to be confused with resolution decrease, model simplification or physics simplification.

Projection-based model order reduction

Data-driven model order reduction (MOR)¹

→ Underlying mathematical premises:

¹ Not to be confused with resolution decrease, model simplification or physics simplification.

Projection-based model order reduction

Data-driven model order reduction (MOR)¹

→ Underlying mathematical premises:

1. **Compression:** solution of governing parametric partial differential equations (PDEs) lies in a subspace of significantly lower dimension.

¹ Not to be confused with resolution decrease, model simplification or physics simplification.

Projection-based model order reduction

Data-driven model order reduction (MOR)¹

→ Underlying mathematical premises:

1. **Compression:** solution of governing parametric partial differential equations (PDEs) lies in a subspace of significantly lower dimension.
2. **Offline training:** the low-dimensional subspace can be identified/learned offline via training simulations and high-fidelity model can be reformulated with respect to this subspace.

¹ Not to be confused with resolution decrease, model simplification or physics simplification.

Projection-based model order reduction

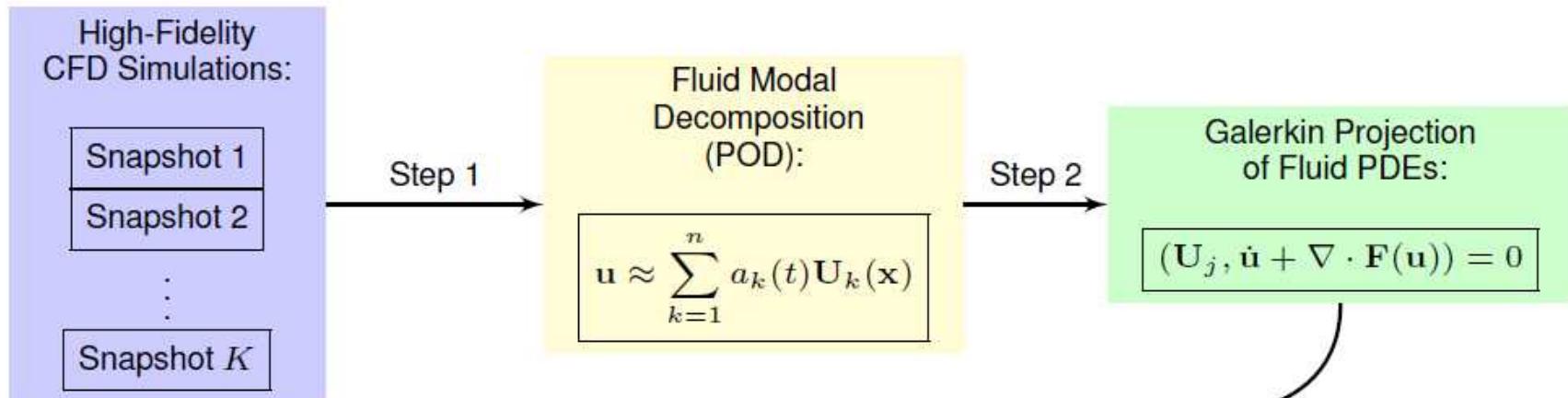
Data-driven model order reduction (MOR)¹

→ Underlying mathematical premises:

1. **Compression:** solution of governing parametric partial differential equations (PDEs) lies in a subspace of significantly lower dimension.
2. **Offline training:** the low-dimensional subspace can be identified/learned offline via training simulations and high-fidelity model can be reformulated with respect to this subspace.
3. **Online prediction:** identified parametric reduced order models (ROMs) capable of providing new solutions at a fraction of the computational cost.

¹ Not to be confused with resolution decrease, model simplification or physics simplification.

Projection-based model order reduction



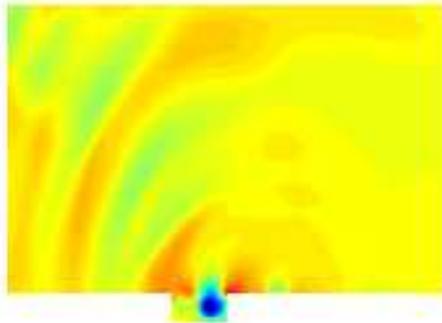
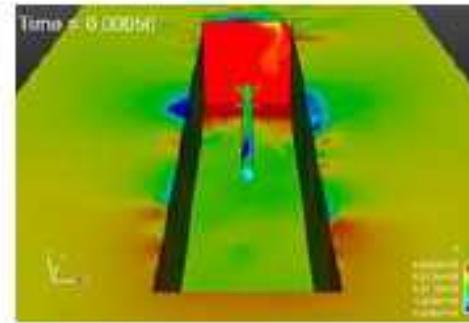
Snapshot matrix: $X = (x^1, \dots, x^K) \in \mathbb{R}^{N \times K}$
SVD: $X = U \Sigma V^T$
Truncation: $U \leftarrow (U_1, \dots, U_n) = U(:, 1:n)$

**POD/Galerkin
Method to Model
Order Reduction**

N = # of dofs in high-fidelity simulation
 K = # of snapshots
 n = # of dofs in ROM
 $(n \ll N, n \ll K)$

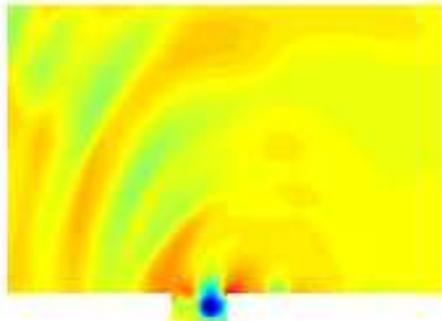
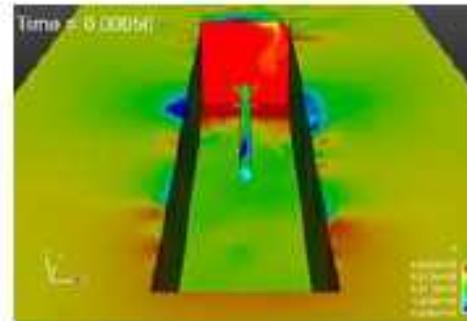
Projection-based model order reduction

Targeted application: compressible fluid flow (e.g., captive-carry)



Projection-based model order reduction

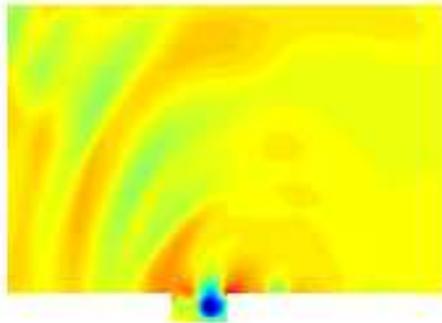
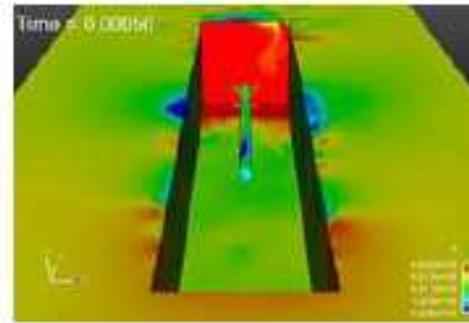
Targeted application: compressible fluid flow (e.g., captive-carry)



- Majority of fluid MOR approaches in the literature are for incompressible flow.

Projection-based model order reduction

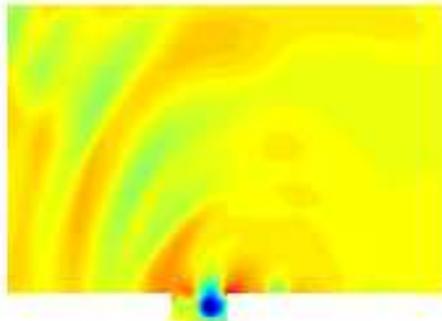
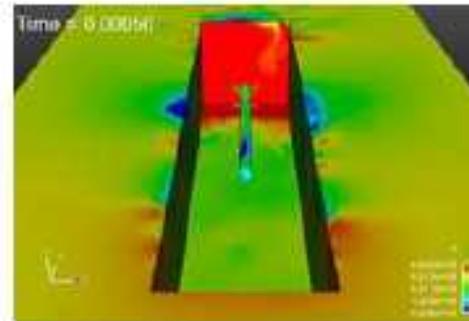
Targeted application: compressible fluid flow (e.g., captive-carry)



- Majority of fluid MOR approaches in the literature are for incompressible flow.
- There has been some on MOR for compressible flows.

Projection-based model order reduction

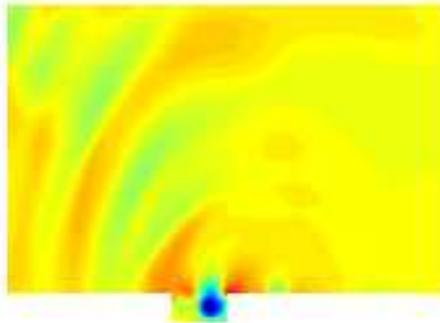
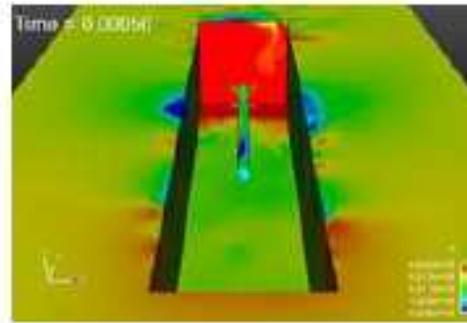
Targeted application: compressible fluid flow (e.g., captive-carry)



- Majority of fluid MOR approaches in the literature are for incompressible flow.
- There has been some on MOR for compressible flows.
 - **Energy-based inner products:** Rowley *et al.*, 2004 (isentropic); Barone *et al.*, 2007 (linear); Serre *et al.*, 2012 (linear); Kalashnikova *et al.*, 2014 (nonlinear).

Projection-based model order reduction

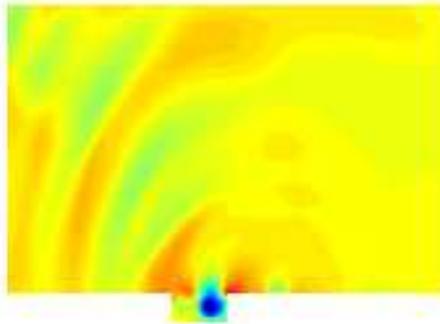
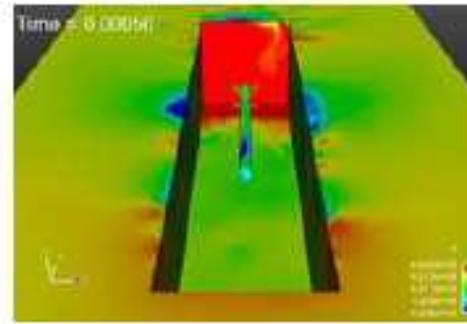
Targeted application: compressible fluid flow (e.g., captive-carry)



- Majority of fluid MOR approaches in the literature are for incompressible flow.
- There has been some on MOR for compressible flows.
 - **Energy-based inner products:** Rowley *et al.*, 2004 (isentropic); Barone *et al.*, 2007 (linear); Serre *et al.*, 2012 (linear); Kalashnikova *et al.*, 2014 (nonlinear).
 - **GNAT method/Petrov-Galerkin projection:** Carlberg *et al.*, 2014 (nonlinear).

Projection-based model order reduction

Targeted application: compressible fluid flow (e.g., captive-carry)



- Majority of fluid MOR approaches in the literature are for incompressible flow.
- There has been some on MOR for compressible flows.
 - **Energy-based inner products:** Rowley *et al.*, 2004 (isentropic); Barone *et al.*, 2007 (linear); Serre *et al.*, 2012 (linear); Kalashnikova *et al.*, 2014 (nonlinear).
 - **GNAT method/Petrov-Galerkin projection:** Carlberg *et al.*, 2014 (nonlinear).

MOR for nonlinear, compressible fluid flows is still in its infancy!

Projection-based model order reduction

Governing equations

- 3D compressible Navier-Stokes equations in primitive specific volume form:

[PDEs]

$$\begin{aligned}\zeta_{,t} + \zeta_{,j}u_j - \zeta u_{j,j} &= 0 \\ u_{i,t} + u_{i,j}u_j + \zeta p_{,i} - \frac{1}{Re}\zeta\tau_{ij,j} &= 0 \\ p_{,t} + u_j p_{,j} + \gamma u_{j,j}p - \left(\frac{\gamma}{PrRe}\right)\left(\kappa(p\zeta)_{,j}\right)_{,j} - \left(\frac{\gamma-1}{Re}\right)u_{i,j}\tau_{ij} &= 0\end{aligned}\tag{1}$$

Projection-based model order reduction

Governing equations

- 3D compressible Navier-Stokes equations in primitive specific volume form:

$$\begin{aligned} \zeta_{,t} + \zeta_{,j} u_j - \zeta u_{j,j} &= 0 \\ u_{i,t} + u_{i,j} u_j + \zeta p_{,i} - \frac{1}{Re} \zeta \tau_{ij,j} &= 0 \\ p_{,t} + u_j p_{,j} + \gamma u_{j,j} p - \left(\frac{\gamma}{PrRe} \right) (\kappa(p\zeta)_{,j})_{,j} - \left(\frac{\gamma-1}{Re} \right) u_{i,j} \tau_{ij} &= 0 \end{aligned} \tag{1}$$

[PDEs]

- Spectral discretization ($\mathbf{q}(\mathbf{x}, t) \approx \sum_{i=1}^n a_i(t) \mathbf{U}_i(\mathbf{x})$) + Galerkin projection applied to (1) yields a system of n coupled quadratic ODEs:

[ROM]

$$\frac{d\mathbf{a}}{dt} = \mathbf{C} + \mathbf{L}\mathbf{a} + [\mathbf{a}^T \mathbf{Q}^{(1)} \mathbf{a} + \mathbf{a}^T \mathbf{Q}^{(2)} \mathbf{a} + \dots + \mathbf{a}^T \mathbf{Q}^{(n)} \mathbf{a}]^T \tag{2}$$

where $\mathbf{C} \in \mathbb{R}^n$, $\mathbf{L} \in \mathbb{R}^{n \times n}$ and $\mathbf{Q}^{(i)} \in \mathbb{R}^{n \times n}$ for all $i = 1, \dots, n$.

Projection-based model order reduction

Summary of technical challenges

Projection-based MOR necessitates ***truncation***

Projection-based model order reduction

Summary of technical challenges

Projection-based MOR necessitates **truncation**

- POD is, by definition and design, biased towards the **large, energy producing** scales of the flow (i.e., modes with large POD eigenvalues).

Projection-based model order reduction

Summary of technical challenges

Projection-based MOR necessitates **truncation**

- POD is, by definition and design, biased towards the **large, energy producing** scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible from a **data compression** point of view (i.e., small POD eigenvalues) but are crucial for the **dynamical equations**.

Projection-based model order reduction

Summary of technical challenges

Projection-based MOR necessitates **truncation**

- POD is, by definition and design, biased towards the **large, energy producing** scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible from a **data compression** point of view (i.e., small POD eigenvalues) but are crucial for the **dynamical equations**.
- For fluid flow applications, higher-order modes are associated with energy **dissipation** \Rightarrow low-dimensional ROMs are often **inaccurate** and sometimes **unstable**.

Projection-based model order reduction

Summary of technical challenges

Projection-based MOR necessitates **truncation**

- POD is, by definition and design, biased towards the **large, energy producing** scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible from a **data compression** point of view (i.e., small POD eigenvalues) but are crucial for the **dynamical equations**.
- For fluid flow applications, higher-order modes are associated with energy **dissipation** \Rightarrow low-dimensional ROMs are often **inaccurate** and sometimes **unstable**.

For a ROM to be stable and accurate, the **truncated/unresolved subspace** must be accounted for.

Projection-based model order reduction

Summary of technical challenges

Projection-based MOR necessitates **truncation**

- POD is, by definition and design, biased towards the **large, energy producing** scales of the flow (i.e., modes with large POD eigenvalues).
- Truncated/unresolved modes are negligible from a **data compression** point of view (i.e., small POD eigenvalues) but are crucial for the **dynamical equations**.
- For fluid flow applications, higher-order modes are associated with energy **dissipation** \Rightarrow low-dimensional ROMs are often **inaccurate** and sometimes **unstable**.

For a ROM to be stable and accurate, the **truncated/unresolved subspace** must be accounted for.

Turbulence Modeling
(traditional approach)

Subspace Rotation
(our approach)

Outline

1. Motivation
2. Projection-based model order reduction
3. **Accounting for modal truncation**
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References

Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References

Accounting for modal truncation

Traditional linear eddy-viscosity approach

- Dissipative dynamics of truncated higher-order modes are modeled using an additional linear term:

$$\frac{d\mathbf{a}}{dt} = \mathbf{C} + \mathbf{L}\mathbf{a} + [\mathbf{a}^T \mathbf{Q}^{(1)} \mathbf{a} + \mathbf{a}^T \mathbf{Q}^{(2)} \mathbf{a} + \cdots + \mathbf{a}^T \mathbf{Q}^{(n)} \mathbf{a}]^T$$

Accounting for modal truncation

Traditional linear eddy-viscosity approach

- Dissipative dynamics of truncated higher-order modes are modeled using an additional linear term:

$$\frac{d\mathbf{a}}{dt} = \mathbf{C} + (\mathbf{L} + \mathbf{L}_v) \mathbf{a} + [\mathbf{a}^T \mathbf{Q}^{(1)} \mathbf{a} + \mathbf{a}^T \mathbf{Q}^{(2)} \mathbf{a} + \cdots + \mathbf{a}^T \mathbf{Q}^{(n)} \mathbf{a}]^T$$

Accounting for modal truncation

Traditional linear eddy-viscosity approach

- Dissipative dynamics of truncated higher-order modes are modeled using an additional linear term:

$$\frac{d\mathbf{a}}{dt} = \mathbf{C} + (\mathbf{L} + \mathbf{L}_\nu)\mathbf{a} + [\mathbf{a}^T \mathbf{Q}^{(1)} \mathbf{a} + \mathbf{a}^T \mathbf{Q}^{(2)} \mathbf{a} + \cdots + \mathbf{a}^T \mathbf{Q}^{(n)} \mathbf{a}]^T$$

- \mathbf{L}_ν is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $\mathbf{L} + \mathbf{L}_\nu$ (for stability).

Accounting for modal truncation

Traditional linear eddy-viscosity approach

- Dissipative dynamics of truncated higher-order modes are modeled using an additional linear term:

$$\frac{d\mathbf{a}}{dt} = \mathbf{C} + (\mathbf{L} + \mathbf{L}_\nu)\mathbf{a} + [\mathbf{a}^T \mathbf{Q}^{(1)} \mathbf{a} + \mathbf{a}^T \mathbf{Q}^{(2)} \mathbf{a} + \cdots + \mathbf{a}^T \mathbf{Q}^{(n)} \mathbf{a}]^T$$

- \mathbf{L}_ν is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $\mathbf{L} + \mathbf{L}_\nu$ (for stability).
- Disadvantages of this approach:

Accounting for modal truncation

Traditional linear eddy-viscosity approach

- Dissipative dynamics of truncated higher-order modes are modeled using an additional linear term:

$$\frac{d\mathbf{a}}{dt} = \mathbf{C} + (\mathbf{L} + \mathbf{L}_\nu)\mathbf{a} + [\mathbf{a}^T \mathbf{Q}^{(1)} \mathbf{a} + \mathbf{a}^T \mathbf{Q}^{(2)} \mathbf{a} + \cdots + \mathbf{a}^T \mathbf{Q}^{(n)} \mathbf{a}]^T$$

- \mathbf{L}_ν is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $\mathbf{L} + \mathbf{L}_\nu$ (for stability).
- Disadvantages of this approach:
 1. Additional term destroys consistency between ROM and Navier-Stokes equations.

Accounting for modal truncation

Traditional linear eddy-viscosity approach

- Dissipative dynamics of truncated higher-order modes are modeled using an additional linear term:

$$\frac{da}{dt} = C + (L + L_\nu)a + [a^T Q^{(1)}a + a^T Q^{(2)}a + \dots + a^T Q^{(n)}a]^T$$

- L_ν is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $L + L_\nu$ (for stability).
- Disadvantages of this approach:
 1. Additional term destroys consistency between ROM and Navier-Stokes equations.
 2. Calibration is necessary to derive optimal L_ν , and optimal value is flow dependent.

Accounting for modal truncation

Traditional linear eddy-viscosity approach

- Dissipative dynamics of truncated higher-order modes are modeled using an additional linear term:

$$\frac{da}{dt} = C + (L + L_\nu)a + [a^T Q^{(1)}a + a^T Q^{(2)}a + \dots + a^T Q^{(n)}a]^T$$

- L_ν is designed to decrease magnitude of positive eigenvalues and increase magnitude of negative eigenvalues of $L + L_\nu$ (for stability).
- Disadvantages of this approach:
 1. Additional term destroys consistency between ROM and Navier-Stokes equations.
 2. Calibration is necessary to derive optimal L_ν , and optimal value is flow dependent.
 3. Inherently a linear model → cannot be expected to perform well for all classes of problems (e.g., nonlinear).

Outline

1. Motivation
2. Projection-based model order reduction
3. **Accounting for modal truncation**
 - Traditional linear eddy-viscosity approach
 - **New proposed approach via subspace rotation**
4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References

Accounting for modal truncation

Proposed new approach

Instead of modeling truncation via additional linear term, model the truncation *a priori* by “rotating” the projection subspace into a more dissipative regime

Accounting for modal truncation

Proposed new approach

Instead of modeling truncation via additional linear term, model the truncation *a priori* by “rotating” the projection subspace into a more dissipative regime

Illustrative example

- Standard approach: retain only the most energetic POD modes, i.e., $\mathbf{U}_1, \mathbf{U}_2, \mathbf{U}_3, \mathbf{U}_4, \dots$
- Proposed approach: choose some higher order basis modes to increase dissipation, i.e., $\mathbf{U}_1, \mathbf{U}_2, \mathbf{U}_6, \mathbf{U}_8, \dots$

Accounting for modal truncation

Proposed new approach

Instead of modeling truncation via additional linear term, model the truncation *a priori* by “rotating” the projection subspace into a more dissipative regime

Illustrative example

- Standard approach: retain only the most energetic POD modes, i.e., $\mathbf{U}_1, \mathbf{U}_2, \mathbf{U}_3, \mathbf{U}_4, \dots$
- Proposed approach: choose some higher order basis modes to increase dissipation, i.e., $\mathbf{U}_1, \mathbf{U}_2, \mathbf{U}_6, \mathbf{U}_8, \dots$
- More generally: approximate the solution using a linear superposition of $n + p$ (with $p > 0$) most energetic modes:

$$\tilde{\mathbf{U}}_i = \sum_{j=1}^{n+p} X_{ij} \mathbf{U}_j, \quad i = 1, \dots, n, \quad (3)$$

where $\mathbf{X} \in \mathbb{R}^{(n+p) \times n}$ is an orthonormal ($\mathbf{X}^T \mathbf{X} = \mathbf{I}_{n \times n}$) “rotation” matrix.

Accounting for modal truncation

Goals of proposed new approach

Find X such that:

1. New modes \tilde{U} remain good approximations of the flow.
2. New modes produce stable and accurate ROMs.

Accounting for modal truncation

Goals of proposed new approach

Find X such that:

1. New modes \tilde{U} remain good approximations of the flow.
2. New modes produce stable and accurate ROMs.

- We formulate and solve a constrained optimization problem for X :

$$\begin{aligned} & \text{minimize}_{X \in \mathcal{V}_{(n+p),n}} f(X) \\ & \text{subject to } g(X, L) = 0 \end{aligned}$$

where $\mathcal{V}_{(n+p),n} \in \{X \in \mathbb{R}^{(n+p) \times n} : X^T X = I_n, p > 0\}$ is the Stiefel manifold.

Accounting for modal truncation

Goals of proposed new approach

Find \mathbf{X} such that:

1. New modes $\tilde{\mathbf{U}}$ remain good approximations of the flow.
2. New modes produce stable and accurate ROMs.

- We formulate and solve a constrained optimization problem for \mathbf{X} :

$$\begin{aligned} & \text{minimize}_{\mathbf{X} \in \mathcal{V}_{(n+p),n}} f(\mathbf{X}) \\ & \text{subject to } g(\mathbf{X}, \mathbf{L}) = 0 \end{aligned}$$

where $\mathcal{V}_{(n+p),n} \in \{\mathbf{X} \in \mathbb{R}^{(n+p) \times n} : \mathbf{X}^T \mathbf{X} = \mathbf{I}_n, p > 0\}$ is the Stiefel manifold.

- Once \mathbf{X} is found, the result is a system of the form (2) with:

$$Q^{(i)}_{jk} \leftarrow \sum_{s,q,r=1}^{n+p} X_{si} Q^{(s)}_{qr} X_{qr} X_{rk}, \quad \mathbf{L} \leftarrow \mathbf{X}^T \mathbf{L} \mathbf{X}, \quad \mathbf{C} \leftarrow \mathbf{X}^T \mathbf{C}^*$$

Accounting for modal truncation

Objective Function

$$\begin{aligned} & \text{minimize}_{X \in \mathcal{V}_{(n+p),n}} f(X) \\ & \text{subject to } g(X, L) = 0 \end{aligned} \tag{5}$$

- We have considered two objectives $f(X)$ in (5):

Accounting for modal truncation

Objective Function

$$\begin{aligned} & \text{minimize}_{X \in \mathcal{V}_{(n+p),n}} f(X) \\ & \text{subject to } g(X, L) = 0 \end{aligned} \tag{5}$$

- We have considered two objectives $f(X)$ in (5):
 - Minimize subspace rotation

$$f(X) = \|X - I_{(n+p),n}\|_F = -\text{tr}(X^T I_{(n+p) \times n}) \tag{6}$$

Accounting for modal truncation

Objective Function

$$\begin{aligned}
 & \text{minimize}_{\mathbf{X} \in \mathcal{V}_{(n+p),n}} f(\mathbf{X}) \\
 & \text{subject to } g(\mathbf{X}, \mathbf{L}) = 0
 \end{aligned} \tag{5}$$

- We have considered two objectives $f(\mathbf{X})$ in (5):

- Minimize subspace rotation

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\text{tr}(\mathbf{X}^T \mathbf{I}_{(n+p) \times n}) \tag{6}$$

- Maximize resolved turbulent kinetic energy (TKE)

$$f(\mathbf{X}) = -\|\mathbf{\Sigma} - \mathbf{X}\mathbf{X}^T\mathbf{\Sigma}\|_F \tag{7}$$

Accounting for modal truncation

Objective Function

$$\begin{aligned} & \text{minimize}_{\mathbf{X} \in \mathcal{V}_{(n+p),n}} f(\mathbf{X}) \\ & \text{subject to } g(\mathbf{X}, \mathbf{L}) = 0 \end{aligned} \tag{5}$$

- We have considered two objectives $f(\mathbf{X})$ in (5):

- Minimize subspace rotation

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\text{tr}(\mathbf{X}^T \mathbf{I}_{(n+p) \times n}) \tag{6}$$

- Maximize resolved turbulent kinetic energy (TKE)

$$f(\mathbf{X}) = -\|\mathbf{\Sigma} - \mathbf{X}\mathbf{X}^T\mathbf{\Sigma}\|_F \tag{7}$$

- TKE objective (7) comes from earlier work (Balajewicz *et al.*, 2013) involving stabilization of incompressible flow ROMs.

Accounting for modal truncation

Objective Function

$$\begin{aligned} & \text{minimize}_{\mathbf{X} \in \mathcal{V}_{(n+p),n}} f(\mathbf{X}) \\ & \text{subject to } g(\mathbf{X}, \mathbf{L}) = 0 \end{aligned} \tag{5}$$

- We have considered two objectives $f(\mathbf{X})$ in (5):

- Minimize subspace rotation

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\text{tr}(\mathbf{X}^T \mathbf{I}_{(n+p) \times n}) \tag{6}$$

- Maximize resolved turbulent kinetic energy (TKE)

$$f(\mathbf{X}) = -\|\mathbf{\Sigma} - \mathbf{X}\mathbf{X}^T\mathbf{\Sigma}\|_F \tag{7}$$

- TKE objective (7) comes from earlier work (Balajewicz *et al.*, 2013) involving stabilization of incompressible flow ROMs.
- Numerical experiments reveal objective (6) produces better results than objective (7) for compressible flow.

Accounting for modal truncation

Constraint

$$\begin{aligned} & \text{minimize}_{\mathbf{X} \in \mathcal{V}_{(n+p),n}} f(\mathbf{X}) \\ & \text{subject to } g(\mathbf{X}, \mathbf{L}) = 0 \end{aligned} \tag{5}$$

- We use the traditional linear eddy-viscosity closure model ansatz for the constraint $g(\mathbf{X}, \mathbf{L}) = 0$ in (5):

$$g(\mathbf{X}, \mathbf{L}) = \text{tr}(\mathbf{X}^T \mathbf{L} \mathbf{X}) - \eta \tag{8}$$

Accounting for modal truncation

Constraint

$$\begin{aligned}
 & \text{minimize}_{\mathbf{X} \in \mathcal{V}_{(n+p),n}} f(\mathbf{X}) \\
 & \text{subject to } g(\mathbf{X}, \mathbf{L}) = 0
 \end{aligned} \tag{5}$$

- We use the traditional linear eddy-viscosity closure model ansatz for the constraint $g(\mathbf{X}, \mathbf{L}) = 0$ in (5):

$$g(\mathbf{X}, \mathbf{L}) = \text{tr}(\mathbf{X}^T \mathbf{L} \mathbf{X}) - \eta \tag{8}$$

- Specifically, constraint (8) involves overall balance between linear energy production and dissipation.
 - η = proxy for the balance between linear energy production and energy dissipation.

Accounting for modal truncation

Constraint

$$\begin{aligned}
 & \text{minimize}_{\mathbf{X} \in \mathcal{V}_{(n+p),n}} f(\mathbf{X}) \\
 & \text{subject to } g(\mathbf{X}, \mathbf{L}) = 0
 \end{aligned} \tag{5}$$

- We use the traditional linear eddy-viscosity closure model ansatz for the constraint $g(\mathbf{X}, \mathbf{L}) = 0$ in (5):

$$g(\mathbf{X}, \mathbf{L}) = \text{tr}(\mathbf{X}^T \mathbf{L} \mathbf{X}) - \eta \tag{8}$$

- Specifically, constraint (8) involves overall balance between linear energy production and dissipation.
 - η = proxy for the balance between linear energy production and energy dissipation.
- Constraint comes from property that averaged total power ($= \text{tr}(\mathbf{X}^T \mathbf{L} \mathbf{X}) +$ energy transfer) has to vanish.

Accounting for modal truncation

Minimal subspace rotation: trace minimization on Stiefel manifold

$$\begin{aligned}
 & \text{minimize}_{\mathbf{X} \in \mathcal{V}_{(n+p),n}} - \text{tr}(\mathbf{X}^T \mathbf{I}_{(n+p) \times n}) \\
 & \text{subject to} \quad \text{tr}(\mathbf{X}^T \mathbf{L} \mathbf{X}) = \eta
 \end{aligned} \tag{9}$$

- $\eta \in \mathbb{R}$: proxy for the balance between linear energy production and energy dissipation (calculated iteratively using modal energy).
- $\mathcal{V}_{(n+p),n} \in \{\mathbf{X} \in \mathbb{R}^{(n+p) \times n} : \mathbf{X}^T \mathbf{X} = \mathbf{I}_n, p > 0\}$ is the Stiefel manifold.
- Equation (9) is solved efficiently offline using the method of Lagrange multipliers (Manopt MATLAB toolbox).
- See (Balajewicz *et al.*, 2016) and Appendix slide for Algorithm.

Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an *a priori* consistent formulation of the eddy-viscosity turbulence modeling approach.

Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an *a priori consistent* formulation of the eddy-viscosity turbulence modeling approach.

- Advantages of proposed approach:

Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an *a priori consistent* formulation of the eddy-viscosity turbulence modeling approach.

- Advantages of proposed approach:
 1. Retains consistency between ROM and Navier-Stokes equations → no additional turbulence terms required.

Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an *a priori* consistent formulation of the eddy-viscosity turbulence modeling approach.

- Advantages of proposed approach:
 1. Retains consistency between ROM and Navier-Stokes equations → no additional turbulence terms required.
 2. Inherently a *nonlinear* model → should be expected to outperform linear models.

Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an *a priori* consistent formulation of the eddy-viscosity turbulence modeling approach.

- Advantages of proposed approach:
 1. Retains consistency between ROM and Navier-Stokes equations → no additional turbulence terms required.
 2. Inherently a *nonlinear* model → should be expected to outperform linear models.
 3. Works with *any* basis and Petrov-Galerkin projection.

Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an *a priori consistent* formulation of the eddy-viscosity turbulence modeling approach.

- Advantages of proposed approach:
 1. Retains consistency between ROM and Navier-Stokes equations → no additional turbulence terms required.
 2. Inherently a *nonlinear* model → should be expected to outperform linear models.
 3. Works with *any* basis and Petrov-Galerkin projection.
- Disadvantages of proposed approach:

Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an *a priori* consistent formulation of the eddy-viscosity turbulence modeling approach.

- Advantages of proposed approach:
 1. Retains consistency between ROM and Navier-Stokes equations → no additional turbulence terms required.
 2. Inherently a *nonlinear* model → should be expected to outperform linear models.
 3. Works with *any* basis and Petrov-Galerkin projection.
- Disadvantages of proposed approach:
 1. Off-line calibration of free parameter η is required.

Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an *a priori* consistent formulation of the eddy-viscosity turbulence modeling approach.

- Advantages of proposed approach:
 1. Retains consistency between ROM and Navier-Stokes equations → no additional turbulence terms required.
 2. Inherently a *nonlinear* model → should be expected to outperform linear models.
 3. Works with *any* basis and Petrov-Galerkin projection.
- Disadvantages of proposed approach:
 1. Off-line calibration of free parameter η is required.
 2. Stability cannot be proven like for incompressible case.

Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an *a priori consistent* formulation of the eddy-viscosity turbulence modeling approach.

- Advantages of proposed approach:
 1. Retains consistency between ROM and Navier-Stokes equations → no additional turbulence terms required.
 2. Inherently a *nonlinear* model → should be expected to outperform linear models.
 3. Works with *any* basis and Petrov-Galerkin projection.
- Disadvantages of proposed approach:
 1. Off-line calibration of free parameter η is required.
 2. Stability cannot be proven like for incompressible case.
 3. Uniqueness of solution to (5) is *not* guaranteed.

Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References

Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - **High angle of attack laminar airfoil**
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References

Applications

High angle of attack laminar airfoil

2D flow around an inclined NACA0012 airfoil at Mach 0.7,
 $Re = 500$, $Pr = 0.72$, $AOA = 20^\circ \Rightarrow n = 4$ ROM (86% snapshot energy).

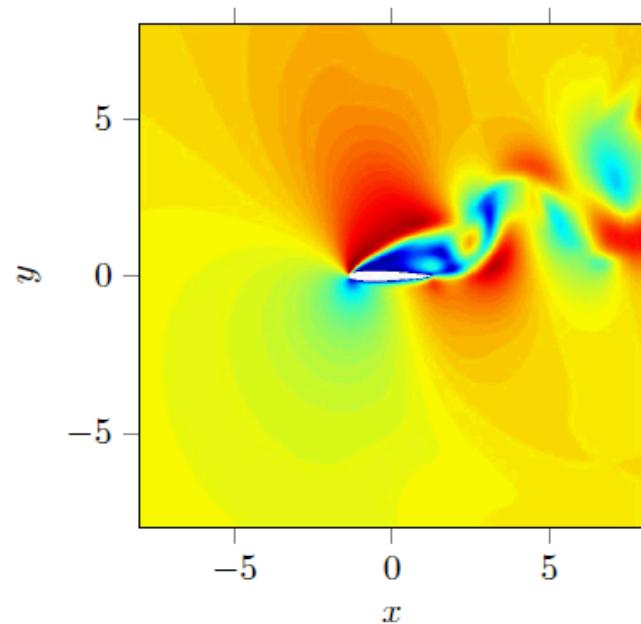


Figure 1: Contours of velocity magnitude at time of final snapshot.

Applications

High angle of attack laminar airfoil

- Minimizing subspace rotation:

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\text{tr}(\mathbf{X}^T \mathbf{I}_{(n+p) \times n})$$

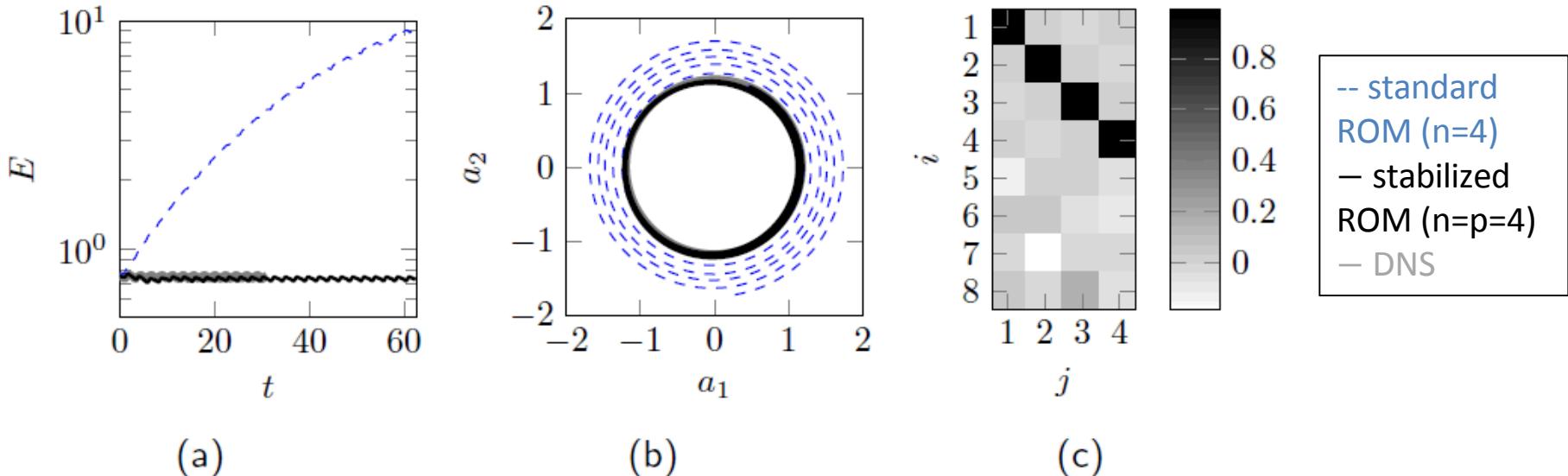


Figure 2: (a) evolution of modal energy, (b) phase plot of first and second temporal basis $a_1(t)$ and $a_2(t)$, (c) illustration of stabilizing rotation showing that rotation is small:

$$\frac{\|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F}{n} = 0.083, \mathbf{X} \approx \mathbf{I}_{(n+p),n}$$

Applications

High angle of attack laminar airfoil

- Minimizing subspace rotation:

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\text{tr}(\mathbf{X}^T \mathbf{I}_{(n+p) \times n})$$

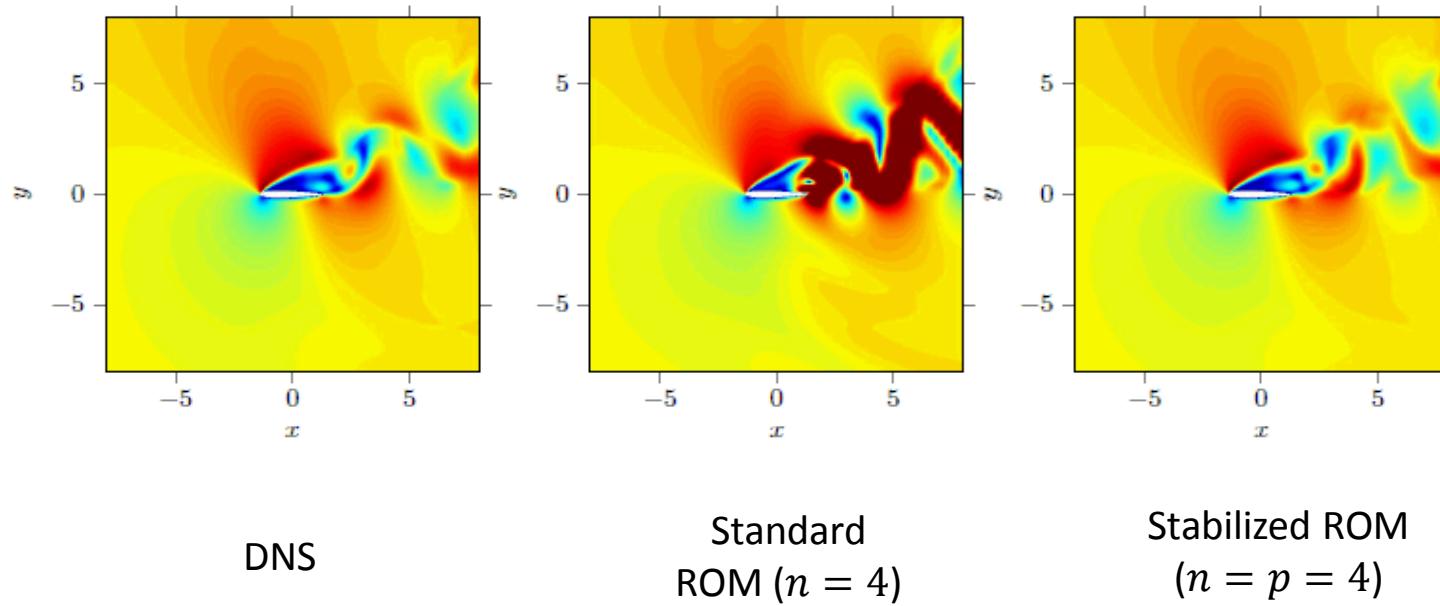


Figure 3: High angle of attack laminar airfoil contours of velocity magnitude at time of final snapshot.

Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - High angle of attack laminar airfoil
 - **Low Reynolds number channel driven cavity**
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References

Applications

Channel driven cavity: low Reynolds number case

Flow over square cavity at Mach 0.6, $Re = 1453.9$, $Pr = 0.72$
 $\Rightarrow n = 4$ ROM (91% snapshot energy).

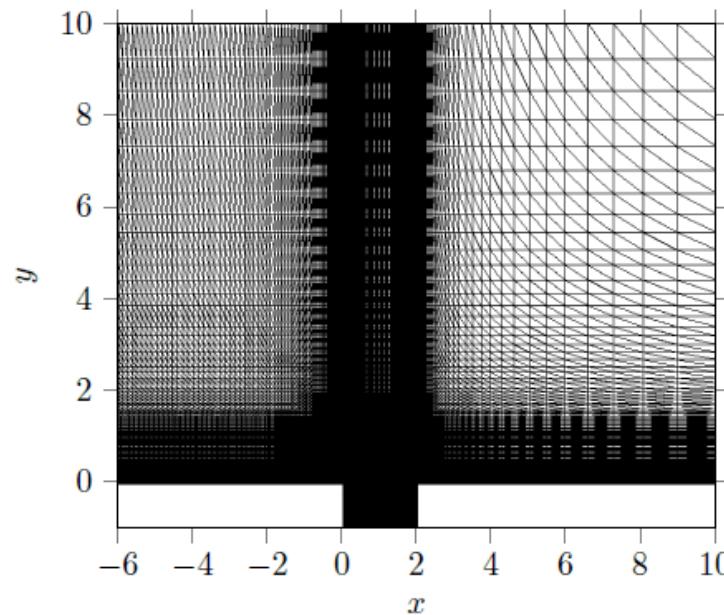


Figure 4: Domain and mesh for viscous channel driven cavity problem.

Applications

Channel driven cavity: low Reynolds number case

- Minimizing subspace rotation:

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\text{tr}(\mathbf{X}^T \mathbf{I}_{(n+p) \times n})$$

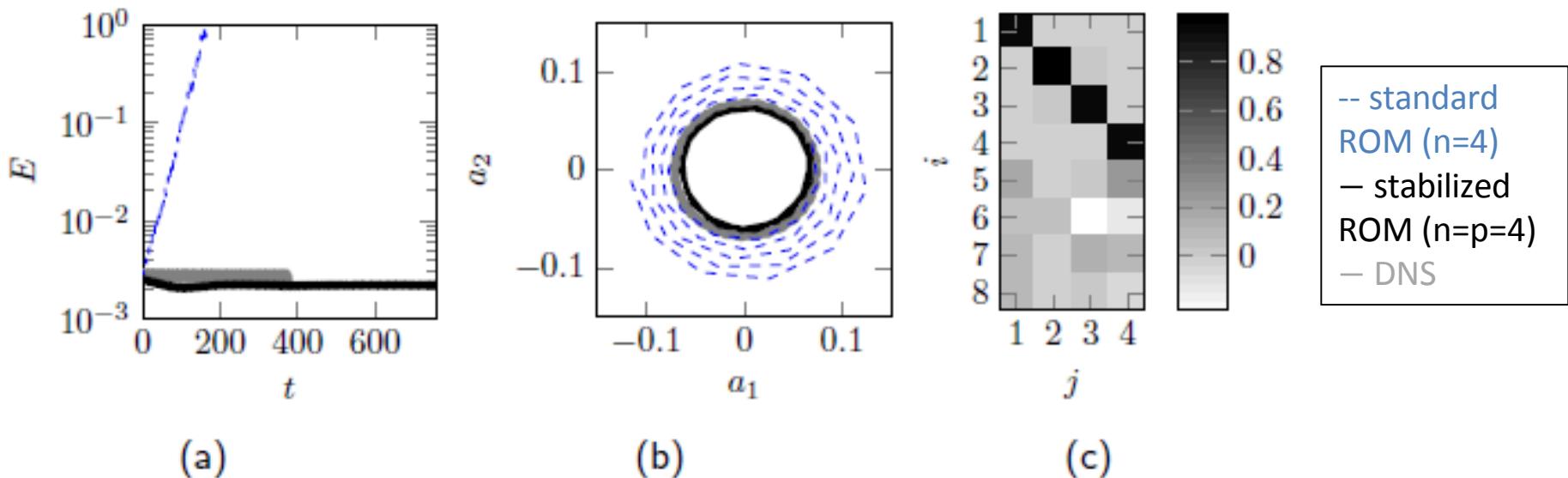


Figure 5: (a) evolution of modal energy, (b) phase plot of first and second temporal basis $a_1(t)$ and $a_2(t)$, (c) illustration of stabilizing rotation showing that rotation is small:

$$\frac{\|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F}{n} = 0.188, \mathbf{X} \approx \mathbf{I}_{(n+p),n}$$

Applications

Channel driven cavity: low Reynolds number case

- Minimizing subspace rotation:

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\text{tr}(\mathbf{X}^T \mathbf{I}_{(n+p) \times n})$$

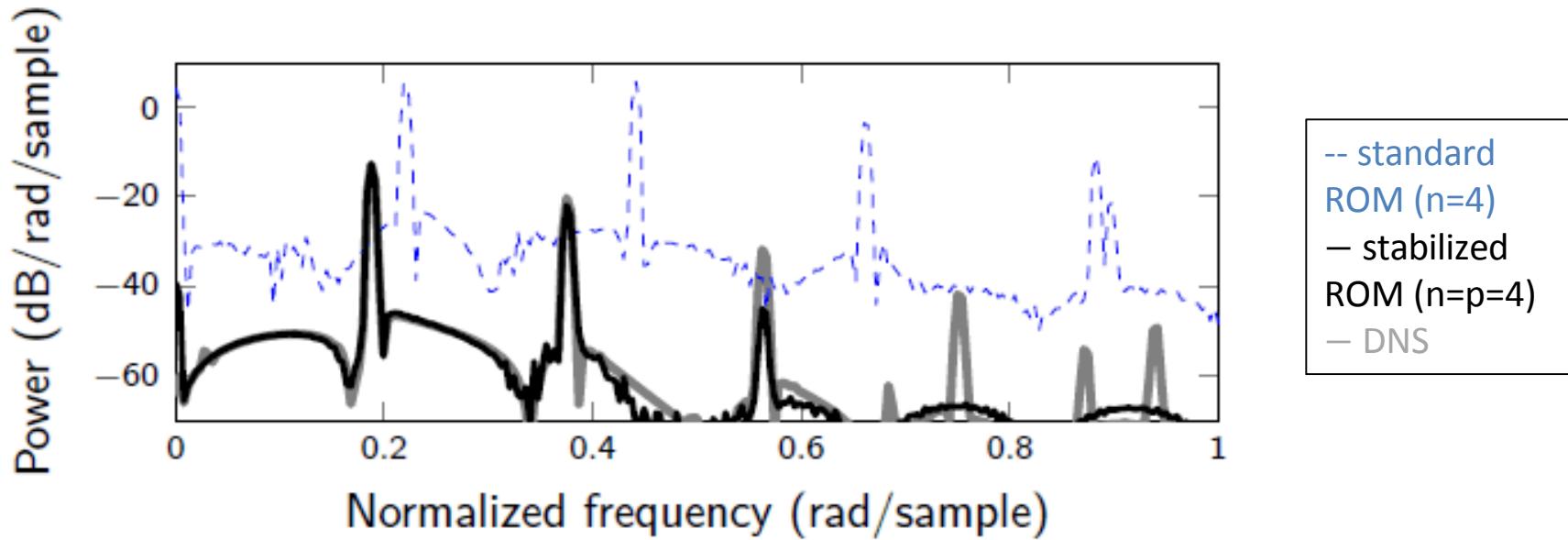


Figure 6: Pressure power spectral density (PSD) at location $x = (2, -1)$; stabilized ROM minimizes subspace rotation.

Applications

Channel driven cavity: low Reynolds number case

- Maximizing resolved TKE:

$$f(\mathbf{X}) = -\|\mathbf{\Sigma} - \mathbf{X}\mathbf{X}^T\mathbf{\Sigma}\|_F$$

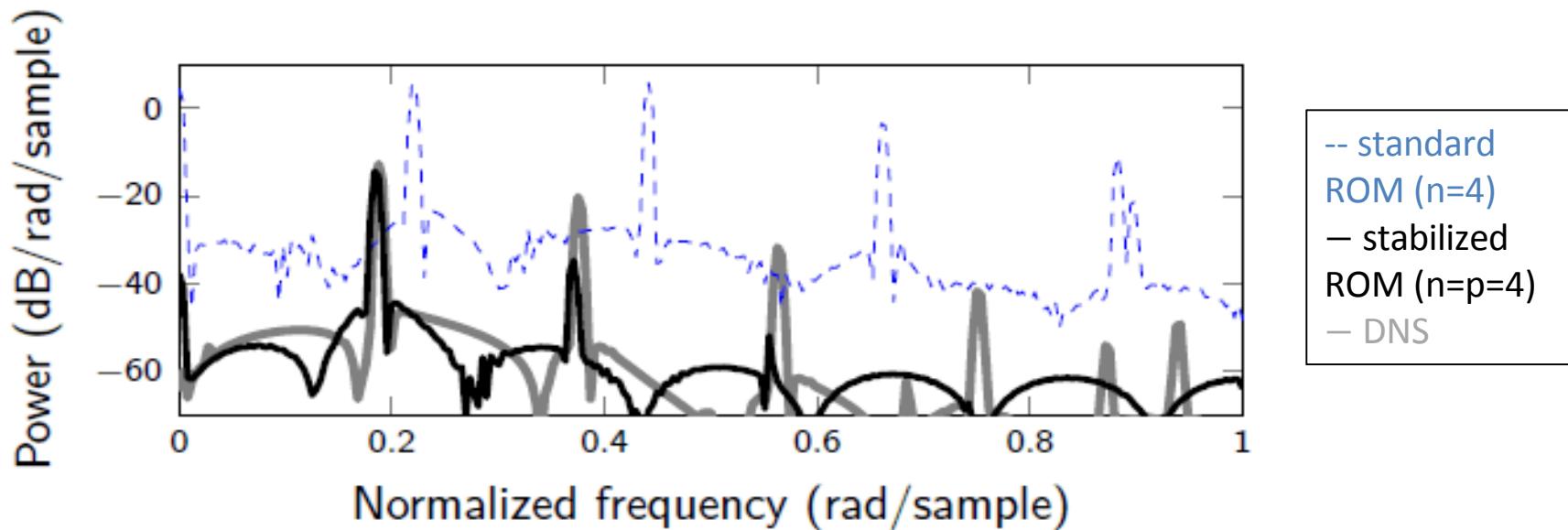


Figure 7: Pressure power spectral density (PSD) at location $x = (2, -1)$; stabilized ROM maximizes resolved TKE.

Applications

Channel driven cavity: low Reynolds number case

- Minimizing subspace rotation:

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\text{tr}(\mathbf{X}^T \mathbf{I}_{(n+p) \times n})$$

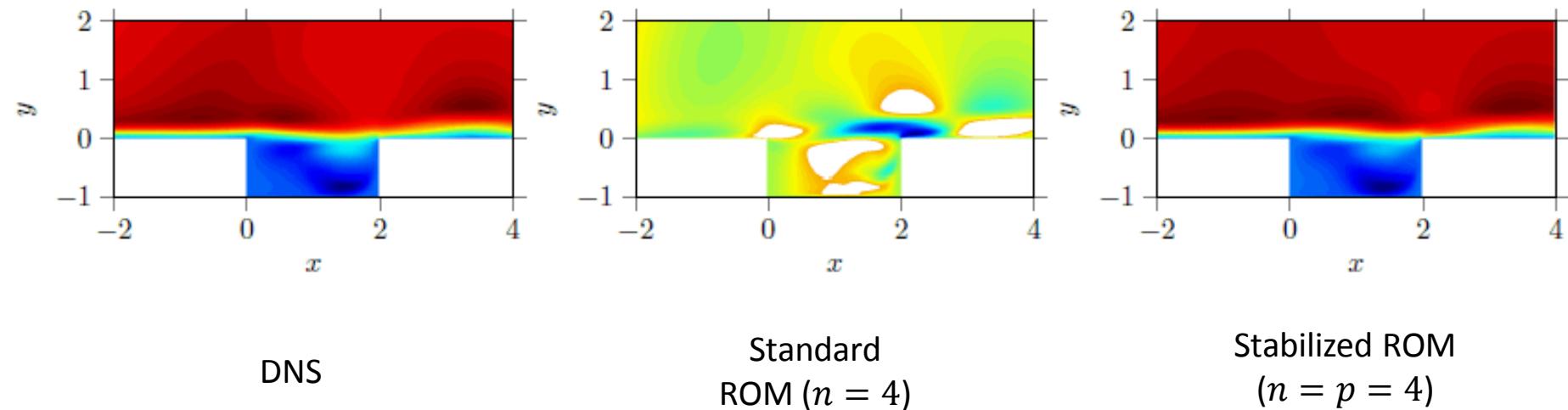


Figure 8: Channel driven cavity $\text{Re} \approx 1500$ contours of u -velocity at time of final snapshot.

Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - **Moderate Reynolds number channel driven cavity**
5. Summary
6. Future work
7. References

Applications

Channel driven cavity: moderate Reynolds number case

Flow over square cavity at Mach 0.6, $Re = 5452.1$, $Pr = 0.72$
 $\Rightarrow n = 20$ ROM (71.8% snapshot energy).

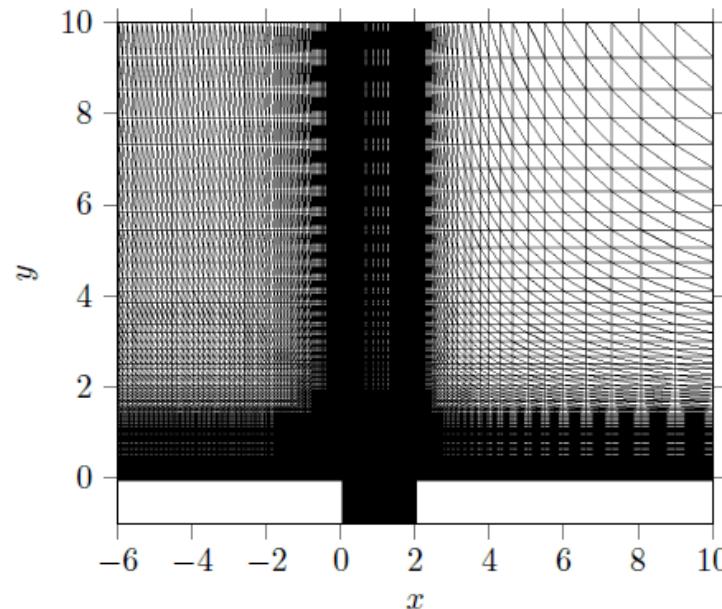


Figure 9: Domain and mesh for viscous channel driven cavity problem.

Applications

Channel driven cavity: moderate Reynolds number case

- Minimizing subspace rotation:

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\text{tr}(\mathbf{X}^T \mathbf{I}_{(n+p) \times n})$$

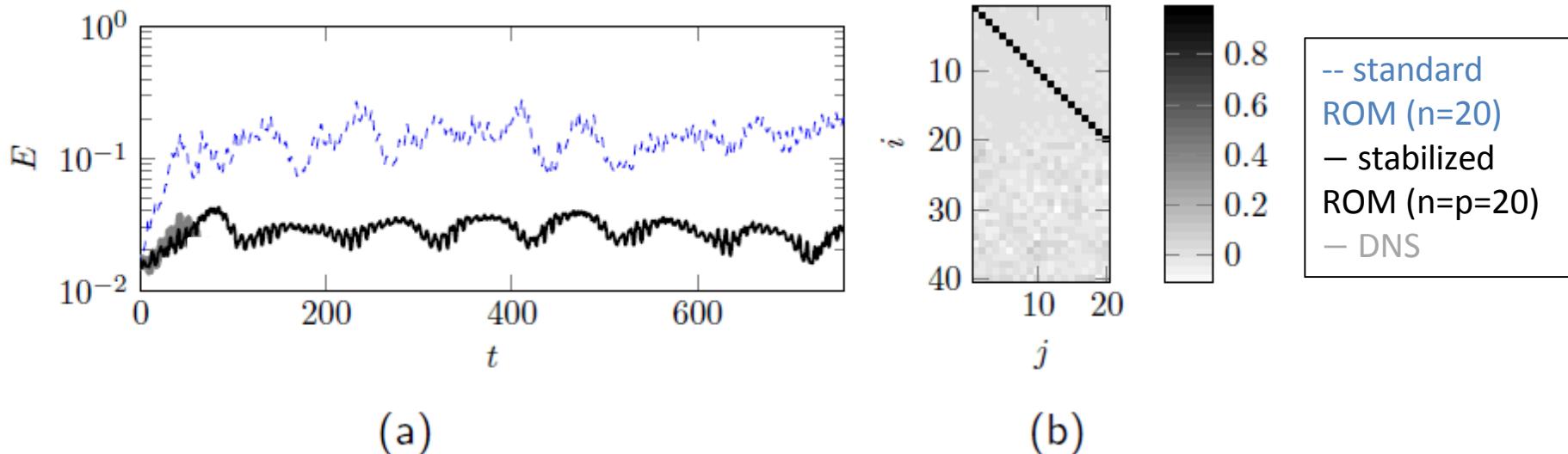


Figure 10: (a) evolution of modal energy, (b) illustration of stabilizing rotation showing that rotation is small: $\frac{\|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F}{n} = 0.038, \mathbf{X} \approx \mathbf{I}_{(n+p),n}$

Applications

Channel driven cavity: moderate Reynolds number case

- Minimizing subspace rotation:

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\text{tr}(\mathbf{X}^T \mathbf{I}_{(n+p) \times n})$$

- stabilized ROM (n=p=20)
- DNS

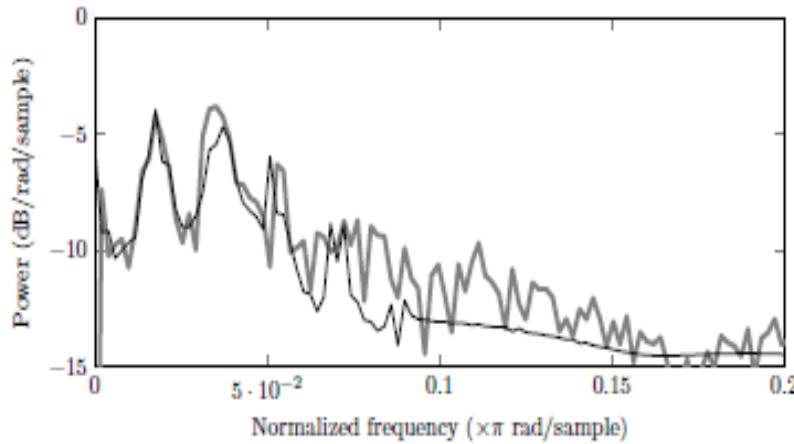
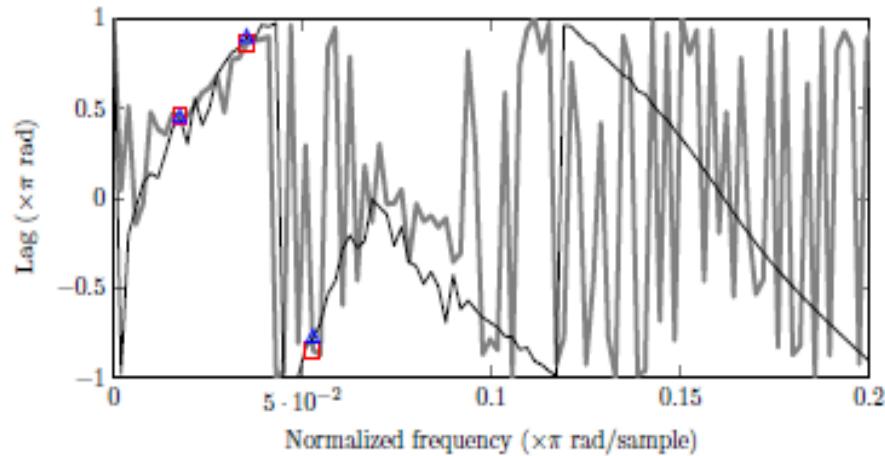


Figure 11: Pressure cross PSD of $p(\mathbf{x}_1, t)$ and $p(\mathbf{x}_2, t)$ where $\mathbf{x}_1 = (2, -0.5)$, $\mathbf{x}_2 = (0, -0.5)$

Power and phase lag at fundamental frequency, and first two super harmonics are predicted accurately using the fine-tuned ROM (Δ = stabilized ROM, \square = DNS)

Applications

Channel driven cavity: moderate Reynolds number case

- Minimizing subspace rotation:

$$f(\mathbf{X}) = \|\mathbf{X} - \mathbf{I}_{(n+p),n}\|_F = -\text{tr}(\mathbf{X}^T \mathbf{I}_{(n+p) \times n})$$

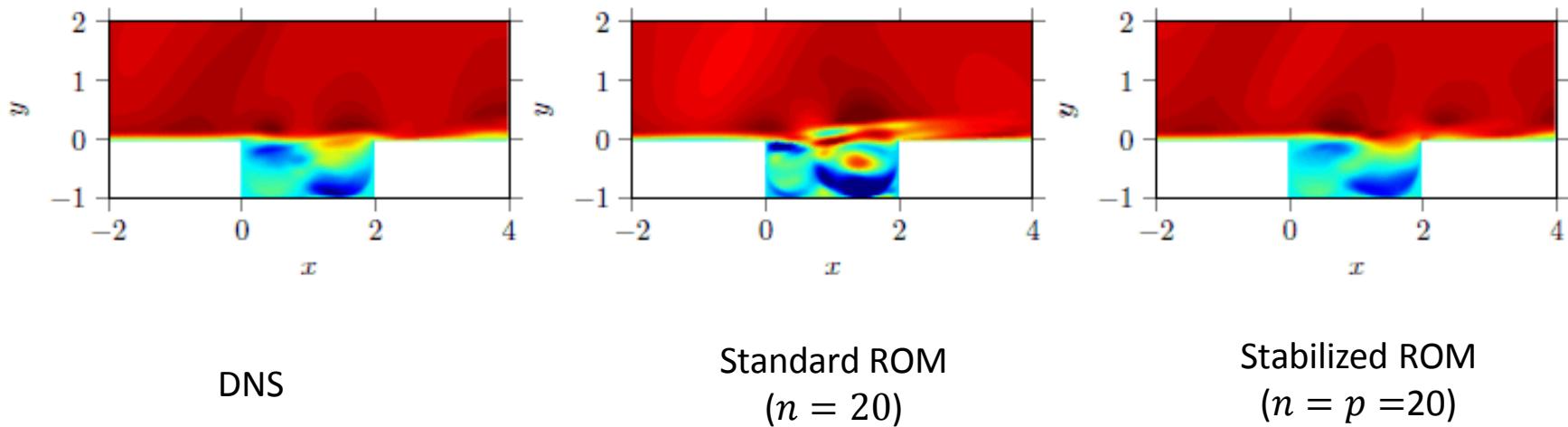


Figure 12: Channel driven cavity $\text{Re} \approx 5500$ contours of u -velocity at time of final snapshot.

Applications

CPU times (CPU-hours) for offline and online computations*

Procedure	Airfoil	Low Re Cavity	Moderate Re Cavity
offline	FOM # of DOF	360,000	288,250
	Time-integration of FOM	7.8 hrs	72 hrs
	Basis construction (size $n + p$ ROM)	0.16 hrs	0.88 hrs
	Galerkin projection (size $n + p$ ROM)	0.74 hrs	5.44 hrs
	Stabilization	28 sec	14 sec
online	ROM # of DOF	4	4
	Time-integration of ROM	0.31 sec	0.16 sec
	Online computational speed-up	9.1e4	1.6e6

* For minimizing subspace rotation.

Applications

CPU times (CPU-hours) for offline and online computations*

Procedure	Airfoil	Low Re Cavity	Moderate Re Cavity
offline	FOM # of DOF	360,000	288,250
	Time-integration of FOM	7.8 hrs	72 hrs
	Basis construction (size $n + p$ ROM)	0.16 hrs	0.88 hrs
	Galerkin projection (size $n + p$ ROM)	0.74 hrs	5.44 hrs
	Stabilization	28 sec	14 sec
online	ROM # of DOF	4	4
	Time-integration of ROM	0.31 sec	0.16 sec
	Online computational speed-up	9.1e4	1.6e6
170 sec			

- Stabilization is fast ($O(\text{sec})$ or $O(\text{min})$).

* For minimizing subspace rotation.

Applications

CPU times (CPU-hours) for offline and online computations*

Procedure	Airfoil	Low Re Cavity	Moderate Re Cavity
offline	FOM # of DOF	360,000	288,250
	Time-integration of FOM	7.8 hrs	72 hrs
	Basis construction (size $n + p$ ROM)	0.16 hrs	0.88 hrs
	Galerkin projection (size $n + p$ ROM)	0.74 hrs	5.44 hrs
	Stabilization	28 sec	14 sec
online	ROM # of DOF	4	4
	Time-integration of ROM	0.31 sec	0.16 sec
	Online computational speed-up	9.1e4	1.6e6

- Stabilization is fast ($O(\text{sec})$ or $O(\text{min})$).
- Significant online computational speed-up!

* For minimizing subspace rotation.

Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References

Summary

- We have developed a non-intrusive approach for stabilizing and fine-tuning projection-based ROMs for compressible flows.
- The standard POD modes are “rotated” into a more dissipative regime to account for the dynamics in the higher order modes truncated by the standard POD method.
- The new approach is consistent and does not require the addition of empirical turbulence model terms unlike traditional approaches.
- Mathematically, the approach is formulated as a quadratic matrix program on the Stiefel manifold.
- The constrained minimization problem is solved offline and small enough to be solved in MATLAB.
- The method is demonstrated on several compressible flow problems and shown to deliver stable and accurate ROMs.

Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
5. Summary
6. **Future work**
7. References

Future work

- Application to higher Reynolds number problems.

Future work

- Application to higher Reynolds number problems.
- Extension of the proposed approach to problems with generic nonlinearities, where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD).

Future work

- Application to higher Reynolds number problems.
- Extension of the proposed approach to problems with generic nonlinearities, where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD).
- Extension of the method to predictive applications, e.g., problems with varying Reynolds number and/or geometry.

Future work

- Application to higher Reynolds number problems.
- Extension of the proposed approach to problems with generic nonlinearities, where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD).
- Extension of the method to predictive applications, e.g., problems with varying Reynolds number and/or geometry.
- Selecting different goal-oriented objectives and constraints in our optimization problem:

$$\begin{aligned} & \text{minimize}_{\mathbf{X} \in \mathcal{V}_{(n+p),n}} f(\mathbf{X}) \\ & \text{subject to } g(\mathbf{X}, \mathbf{L}) = 0 \end{aligned}$$

Future work

- Application to higher Reynolds number problems.
- Extension of the proposed approach to problems with generic nonlinearities, where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD).
- Extension of the method to predictive applications, e.g., problems with varying Reynolds number and/or geometry.
- Selecting different goal-oriented objectives and constraints in our optimization problem:

$$\begin{aligned}
 & \text{minimize}_{\mathbf{X} \in \mathcal{V}_{(n+p),n}} f(\mathbf{X}) \\
 & \text{subject to } g(\mathbf{X}, \mathbf{L}) = 0
 \end{aligned}$$

e.g.,

- Maximize parametric robustness:

$$f = \sum_{i=1}^k \beta_i \|\mathbf{U}^*(\mu_i)\mathbf{X} - \mathbf{U}^*(\mu_i)\|_F.$$
- ODE constraints: $g = \|\mathbf{a}(t) - \mathbf{a}^*(t)\|.$

Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - High angle of attack laminar airfoil
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. **References**

References

AUBRY, N., HOLMES, P., LUMLEY, J. L., & STONE E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer. *J. Fluid Mech.* 192 (115) 115–173.

BALAJEWICZ, M. & DOWELL, E. 2012 Stabilization of projection-based reduced order models of the Navier-Stokes equation. *Nonlinear Dynamics* 70 (2), 1619–1632.

BALAJEWICZ, M. & DOWELL, E. & NOACK, B. 2013 Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier-Stokes equation. *Journal of Fluid Mechanics* 729, 285–308.

BALAJEWICZ, M., TEZAUR, I. & DOWELL, E. 2015 Minimal subspace rotation on the Stiefel manifold for stabilization and enhancement of projection-based reduced order models for the compressible Navier-Stokes equations. ArXiV: <http://arxiv.org/abs/1504.06661>.

BARONE, M., KALASHNIKOVA, I., SEGALMAN, D. & THORNQUIST, H. 2009 Stable Galerkin reduced order models for linearized compressible flow. *J. Computat. Phys.* 228 (6), 1932–1946.

CARLBERG, K., FARHAT, C., CORTIAL, J. & AMSALLEM, D. 2013 The GNAT method for nonlinear model reduction: effective implementation and application to computational uid dynamics and turbulent flows. *J. Computat. Phys.* 242 623–647.

KALASHNIKOVA, I., ARUNAJATESAN, S., BARONE, M., VAN BLOEMEN WAANDERS, B. & FIKE, J. 2014 Reduced order modeling for prediction and control of large-scale systems. *Sandia Tech. Report*.

OSTH, J., NOACK, B. R., KRAJNOVIC, C., BARROS, D., & BOREE, J. 2014 On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high Reynolds number flow over an Ahmed body. *J. Fluid Mech.* 747 518–544.

ROWLEY, C., COLONIUS, T. & MURRAY, R. 2004 Model reduction for compressible ows using pod and galerkin projection. *Physica D: Nonlinear Phenomena* 189 (1) 115–129.

SERRE, G., LAFON, P., GLOERFELT, X. & BAILLY, C. 2012 Reliable reduced-order models for timedependent linearized euler equations. *J. Computat. Phys.* 231 (15) 5176–5194.

Outline

1. Motivation
2. Projection-based model order reduction
3. Accounting for modal truncation
 - Traditional linear eddy-viscosity approach
 - New proposed approach via subspace rotation
4. Applications
 - Low Reynolds number channel driven cavity
 - Moderate Reynolds number channel driven cavity
5. Summary
6. Future work
7. References
8. **Appendix**

Appendix: Accounting for modal truncation

Stabilization algorithm: returns stabilizing rotation matrix \mathbf{X} .

Inputs: Initial guess $\eta^{(0)} = \text{tr}(L(1 : n, 1 : n))$ ($\mathbf{X} = \mathbf{I}_{(n+p) \times n}$), ROM size n and $p \geq 1$, ROM matrices associated with the first $n + p$ most energetic POD modes, convergence tolerance TOL , maximum number of iterations k_{\max} .

for $k = 0, \dots, k_{\max}$

Solve constrained optimization problem on Stiefel manifold:

$$\begin{aligned} & \underset{\mathbf{X}^{(k)} \in \mathcal{V}_{(n+p),n}}{\text{minimize}} && -\text{tr}(\mathbf{X}^{(k)\text{T}} \mathbf{I}_{(n+p) \times n}) \\ & \text{subject to} && \text{tr}(\mathbf{X}^{(k)\text{T}} \mathbf{L} \mathbf{X}^{(k)}) = \eta^{(k)}. \end{aligned}$$

Construct new Galerkin matrices using (4).

Integrate numerically new Galerkin system.

Calculate "modal energy" $E(t)^{(k)} = \sum_i^n (a(t)_i^{(k)})^2$.

Perform linear fit of temporal data $E(t)^{(k)} \approx c_1^{(k)} t + c_0^{(k)}$, where $c_1^{(k)}$ =energy growth.

Calculate ϵ such that $c_1^{(k)}(\epsilon) = 0$ (no energy growth) using root-finding algorithm.

Perform update $\eta^{(k+1)} = \eta^{(k)} + \epsilon$.

if $\|c_1^{(k)}\| < TOL$

$\mathbf{X} := \mathbf{X}^{(k)}$.

 terminate the algorithm.

end

end