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Motivation

Computational models of high-dimensional systems arise in a rich variety of 
engineering and scientific applications

Computational Fluid Dynamics (left)
Finite Element Analysis (right)

Climate Modeling (bottom)
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High-fidelity simulations remain prohibitive

• Computational costs still too high for parametric, time-critical and many-
query applications (i.e., design, design optimization, control, UQ).

• Postprocessing/visualization difficulties.

“Purpose of computing is insight,  not numbers.”
- Richard Hamming, 1962

There are significant scientific and engineering benefits in 
developing and studying low-dimensional representations of high-
dimensional systems and retain physical fidelity while substantially 

reducing the size and cost of the computational model.
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Projection-based model order reduction

Data-driven model order reduction (MOR)1

→	Underlying mathematical premises:

1. Compression: solution of governing parametric partial differential 
equations (PDEs) lies in a subspace of significantly lower dimension.

2. Offline training: the low-dimensional subspace can be identified/learned 
offline via training simulations and high-fidelity model can be 
reformulated with respect to this subspace.

3. Online prediction: identified parametric reduced order models (ROMs) 
capable of providing new solutions at a fraction of the computational 
cost.

1 Not to be confused with resolution decrease, model simplification or physics simplification.



Projection-based model order reduction

Snapshot matrix: � = (��, …, ��) ∈ ℝ���

SVD: � = ����

Truncation: � ← (��, … ,��) = � : , 1: �

�	 = # of dofs in high-
fidelity simulation
�	 = # of snapshots
�	 = # of dofs in ROM 
(�	 << 	�, �	 << 	�)

POD/Galerkin
Method to Model 
Order Reduction
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Targeted application: compressible fluid flow (e.g., captive-carry)

• Majority of fluid MOR approaches in the literature are for incompressible flow.

• There has been some on MOR for compressible flows.

• Energy-based inner products: Rowley et al., 2004 (isentropic); Barone et al., 
2007 (linear); Serre et al., 2012 (linear); Kalashnikova et al., 2014 (nonlinear).

• GNAT method/Petrov-Galerkin projection: Carlberg et al., 2014 (nonlinear). 

MOR for nonlinear, compressible fluid flows is still in its infancy!
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• 3D compressible Navier-Stokes equations in primitive specific volume form:

(1)

�,� + �,��� − ���,� = 0

��,� + ��,��� + ��,� −
1

��
����,� = 0

�,� + ���,� + ���,�� −
�

����
� �� ,� ,�

−
� − 1

��
��,���� = 0

• Spectral discretization �(�, �) ≈ ∑ �� � ��(�)
�
��� +	Galerkin projection 

applied to (1) yields a system of � coupled quadratic ODEs:

��

��
= � + �� + ���(�)� + ���(�)� + ⋯+ ���(�)� � (2)[ROM]

[PDEs]

where � ∈ ℝ�, � ∈ ℝ�×� and  �(�) ∈ ℝ�×� for all � = 1,… , �.
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Summary of technical challenges

Projection-based MOR necessitates truncation

• POD is, by definition and design, biased towards the large, energy producing
scales of the flow (i.e., modes with large POD eigenvalues).

• Truncated/unresolved modes are negligible form a data compression point of 
view (i.e., small POD eigenvalues) but are crucial for the dynamical 
equations.

• For fluid flow applications, higher-order modes are associated with energy 
dissipation ⟹ low-dimensional ROMs are often inaccurate and sometimes 
unstable.

For a ROM to be stable and accurate, the 
truncated/unresolved subspace must be accounted for.

Turbulence Modeling
(traditional approach)

Subspace Rotation
(our approach)
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Traditional linear eddy-viscosity approach

• Dissipative dynamics of truncated higher-order modes are modeled using 
an additional linear term:

��

��
= � + � + �� � + ��� � � + ��� � � + ⋯+ ��� � � �

• ��	is designed to decrease magnitude of positive eigenvalues and increase 
magnitude of negative eigenvalues of � + �� 	(for stability).

• Disadvantages of this approach:

1. Additional term destroys consistency between ROM and Navier-
Stokes equations.

2. Calibration is necessary to derive optimal ��	and optimal value is flow 
dependent.

3. Inherently a linear model →	cannot be expected to perform well for 
all classes of problems (e.g., nonlinear).
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Proposed new approach

(3)

Instead of modeling truncation via additional linear term, model the truncation 
a priori by “rotating” the projection subspace into a more dissipative regime

Illustrative example
• Standard approach: retain only the most energetic POD modes, i.e., ��, ��,

��, ��, …
• Proposed approach: choose some higher order basis modes to increase 

dissipation, i.e., ��, ��, ��, ��, …

• More generally: approximate the solution using a linear superposition 
of � + � (with � > 0) most energetic modes: 

�� � = ∑ ���
���
��� ��,   � = 1,… , �,

where � ∈ ℝ ��� ×�	is an orthonormal (��� = ��×�) “rotation” matrix.
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Goals of proposed new approach

Find � such that:

1. New modes �� remain good approximations of the flow.

2.     New modes produce stable and accurate ROMs.

• We formulate and solve a constrained optimization problem for �:

minimize�∈� ��� ,�
		�(�)

subject	to					� �, � = 0

where	� ��� ,� ∈ � ∈ ℝ ��� ×�: ��� = ��, � > 0 is the Stiefel manifold.

• Once � is found, the result is a system of the form (2) with: 

�(�)
��← ∑ ����

(�)
��

���
�,�,��� ������ , 		� ← ����,     � ← ���∗
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Objective Function

• We have considered two objectives �(�) in (5):

• Minimize subspace rotation

(5)

� � = −| � − ���� |�

• Maximize resolved turbulent kinetic energy (TKE) 

� � = 	 � − � ��� ,� � =	−tr ��� ��� ×�

• TKE objective (7) comes from earlier work (Balajewicz et al., 2013) involving 
stabilization of incompressible flow ROMs.

• Numerical experiments reveal objective (6) produces better results than 
objective (7) for compressible flow.

(6)

(7)

minimize�∈� ��� ,�
		�(�)

subject	to					� �, � = 0
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Accounting for modal truncation

Constraint

• We use the traditional linear eddy-viscosity closure model ansatz for the 
constraint �(�, �) = 0 in (5):

(5)

� �, � = tr ���� − �

• Specifically, constraint (8) involves overall balance between linear energy 
production and dissipation.

• �	 = proxy for the balance between linear energy production and energy 
dissipation.

• Constraint comes from property that averaged total power (= tr(����) +
energy transfer) has to vanish.

(8)

minimize�∈� ��� ,�
		�(�)

subject	to					� �, � = 0



Accounting for modal truncation

Minimal subspace rotation: trace minimization on Stiefel manifold

• � ∈ ℝ:	proxy for the balance between linear energy production and energy 
dissipation (calculated iteratively using modal energy).

• � ��� ,� ∈ � ∈ ℝ ��� ×�: ��� = �� , � > 0 is the Stiefel manifold.

• Equation (9) is solved efficiently offline using the method of Lagrange 
multipliers (Manopt MATLAB toolbox).

• See (Balajewicz et al., 2016) and Appendix slide for Algorithm.

(9)
minimize�∈� ��� ,�

		− tr ��� ��� ×�

subject	to							tr ���� = �
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Remarks

Proposed approach may be interpreted as an a priori consistent
formulation of the eddy-viscosity turbulence modeling approach.

• Advantages of proposed approach:

1. Retains consistency between ROM and Navier-Stokes equations →
no additional turbulence terms required.

2. Inherently a nonlinear model → should be expected to outperform 
linear models.

3. Works with any basis and Petrov-Galerkin projection.

• Disadvantages of proposed approach:

1. Off-line calibration of free parameter � is required.
2. Stability cannot be proven like for incompressible case.
3. Uniqueness of solution to (5) is not guaranteed.
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Applications

High angle of attack laminar airfoil

2D flow around an inclined NACA0012 airfoil at Mach 0.7, 
Re = 500, Pr = 0.72, AOA = 20° ⟹ � = 4 ROM (86% snapshot energy).

Figure 1: Contours of velocity magnitude at time of final snapshot.



Applications

High angle of attack laminar airfoil

Figure 2: (a) evolution of modal energy, (b) phase plot of first and second temporal basis 
�1(�) and �2(�), (c) illustration of stabilizing rotation showing that rotation is small: 
��� ��� ,� �

�
= 0.083,� ≈ � ��� ,�

• Minimizing subspace rotation:

� � = 	 � − � ��� ,� � =	−tr ��� ��� ×�

-- standard 
ROM (n=4)
−	stabilized 
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Applications

High angle of attack laminar airfoil

Figure 3: High angle of attack laminar airfoil contours of velocity magnitude at time of 
final snapshot.
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Applications

Channel driven cavity: low Reynolds number case 

Flow over square cavity at Mach 0.6, Re = 1453.9, Pr = 0.72 
⇒ � = 4 ROM (91% snapshot energy).

Figure 4: Domain and mesh for viscous channel driven cavity problem.



Channel driven cavity: low Reynolds number case 

Applications

Figure 5: (a) evolution of modal energy, (b) phase plot of first and second temporal basis 
�1(�) and �2(�), (c) illustration of stabilizing rotation showing that rotation is small: 
��� ��� ,� �

�
= 0.188,� ≈ � ��� ,�

• Minimizing subspace rotation:

� � = 	 � − � ��� ,� � =	−tr ��� ��� ×�

-- standard 
ROM (n=4)
−	stabilized 
ROM (n=p=4)
−	DNS



Applications

Channel driven cavity: low Reynolds number case 

Figure 6: Pressure power spectral density (PSD) at location � = (2,−1); 
stabilized ROM minimizes subspace rotation.

• Minimizing subspace rotation:

� � = 	 � − � ��� ,� � =	−tr ��� ��� ×�

-- standard 
ROM (n=4)
−	stabilized 
ROM (n=p=4)
−	DNS



Applications

Channel driven cavity: low Reynolds number case 

Figure 7: Pressure power spectral density (PSD) at location � = (2,−1); 
stabilized ROM maximizes resolved TKE.

-- standard 
ROM (n=4)
−	stabilized 
ROM (n=p=4)
−	DNS

• Maximizing resolved TKE:

� � = −| � − ���� |�



Applications

Channel driven cavity: low Reynolds number case 

Figure 8: Channel driven cavity Re ≈ 1500 contours of �-velocity at time of final 
snapshot.
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• Minimizing subspace rotation:

� � = 	 � − � ��� ,� � =	−tr ��� ��� ×�
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Applications

Channel driven cavity: moderate Reynolds number case 

Figure 9: Domain and mesh for viscous channel driven cavity problem.

Flow over square cavity at Mach 0.6, Re = 5452.1, Pr = 0.72 
⇒ � = 20 ROM (71.8% snapshot energy).



Applications

Channel driven cavity: moderate Reynolds number case 

Figure 10: (a) evolution of modal energy, (b) illustration of stabilizing rotation showing 

that rotation is small: 
��� ��� ,� �

�
= 0.038,� ≈ � ��� ,�

-- standard 
ROM (n=20)
−	stabilized 
ROM (n=p=20)
−	DNS

• Minimizing subspace rotation:

� � = 	 � − � ��� ,� � =	−tr ��� ��� ×�



Channel driven cavity: moderate Reynolds number case 

Applications

Power and phase lag at fundamental frequency, and first two super harmonics are 
predicted accurately using the fine-tuned ROM (∆	= stabilized ROM,  =	DNS)

Figure 11: Pressure cross PSD of of �(�1, �) and �(�2, �) where �1 = 2,−0.5 , �2 = (0,−0.5)		

• Minimizing subspace rotation:

� � = 	 � − � ��� ,� � =	−tr ��� ��� ×�

−	stabilized 
ROM (n=p=20)
−	DNS



Applications

Channel driven cavity: moderate Reynolds number case 

Figure 12: Channel driven cavity Re ≈ 5500 contours of �-velocity at time of final 
snapshot.

Standard ROM 
(� = 20)

Stabilized ROM 
(� = � =20)DNS

• Minimizing subspace rotation:

� � = 	 � − � ��� ,� � =	−tr ��� ��� ×�
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* For minimizing subspace 
rotation.

Procedure Airfoil Low Re 
Cavity

Moderate
Re Cavity

FOM # of DOF 360,000 288,250 243,750

Time-integration of FOM 7.8 hrs 72 hrs 179 hrs

Basis construction (size � + � ROM) 0.16 hrs 0.88 hrs 3.44 hrs

Galerkin projection (size � + � ROM) 0.74 hrs 5.44 hrs 14.8 hrs

Stabilization 28 sec 14 sec 170 sec

ROM # of DOF 4 4 20

Time-integration of ROM 0.31 sec 0.16 sec 0.83 sec

Online computational speed-up 9.1e4 1.6e6 7.8e5
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• Stabilization is fast (�(sec) or �(min)).
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Applications

CPU times (CPU-hours) for offline and online computations* 

• Stabilization is fast (�(sec) or �(min)).

• Significant online computational speed-up!

* For minimizing subspace 
rotation.

Procedure Airfoil Low Re 
Cavity

Moderate
Re Cavity

FOM # of DOF 360,000 288,250 243,750

Time-integration of FOM 7.8 hrs 72 hrs 179 hrs

Basis construction (size � + � ROM) 0.16 hrs 0.88 hrs 3.44 hrs

Galerkin projection (size � + � ROM) 0.74 hrs 5.44 hrs 14.8 hrs

Stabilization 28 sec 14 sec 170 sec

ROM # of DOF 4 4 20

Time-integration of ROM 0.31 sec 0.16 sec 0.83 sec

Online computational speed-up 9.1e4 1.6e6 7.8e5
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Summary

• We have developed a non-intrusive approach for stabilizing and fine-
tuning projection-based ROMs for compressible flows.

• The standard POD modes are “rotated” into a more dissipative regime to 
account for the dynamics in the higher order modes truncated by the 
standard POD method.

• The new approach is consistent and does not require the addition of 
empirical turbulence model terms unlike traditional approaches.

• Mathematically, the approach is formulated as a quadratic matrix 
program on the Stiefel manifold.

• The constrained minimization problem is solved offline and small enough 
to be solved in MATLAB.

• The method is demonstrated on several compressible flow problems and 
shown to deliver stable and accurate ROMs.
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Future work

• Application to higher Reynolds number problems.

• Extension of the proposed approach to problems with generic 
nonlinearities, where the ROM involves some form of hyper-reduction 
(e.g., DEIM, gappy POD).

• Extension of the method to predictive applications, e.g., problems with 
varying Reynolds number and/or geometry.

• Selecting different goal-oriented objectives and constraints in our 
optimization problem: 

minimize�∈� ��� ,�
		�(�)

subject	to					�(�, �) = 0
e.g., 

• Maximize parametric robustness: 

� = ∑ �� �∗ �� � − �∗ ��
�
��� �.

• ODE constraints: � = 	 � � − �∗(�) .
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Appendix: Accounting for modal truncation
Stabilization algorithm: returns stabilizing rotation matrix �.


