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SNL Energy Storage System Analysis Laboratory )

Providing reliable, independent, third party testing and verification of
advanced energy technologies for cell to MW systems

Testing Capabilities Include:

«  Expertise to design test plans to fit technologies and
their potential applications

*  OE supported testing
«  CRADA opportunities
«  WFO arrangements

Cell, Battery and Module Testing

14 channels from 36 V, 25 Ato 72V, 1000 A for
battery to module-scale tests

Over 125 channels; 0 Vto 10V, 3 Ato 100+ A for
cell tests

Energy Storage Test Pad (ESTP)

System Testing
Up to 1 MW, 480 VAC, 3 phase
1 MW/1 MVAR load bank

72 V 1000 A Bitrode (2 Channels)




Cycling protocols employed in testing A i,
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The Advanced VRLA Battery ) .

= Recently, there are several manners in which carbon has been
added to a Pb-Acid battery

» The work presented here deals with the Advanced Battery, where
carbon has been added to the negative active material

Advanced VRLA Battery
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Why add excess carbon to the
NAM?

= Carbon additions to the negative active material (NAM) can
substantially reduce hard sulfation
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» Fernandez, 2010*

Carbon Addition |, SIS




Research Goals )

= The overall goal of this work is to quantitatively define the role that
carbon plays in the electrochemistry of a VRLA battery.

>

>

What reactions/changes take place on the surface of the carbon
particles?

What processes govern the increase and then eventual decrease in
capacity with increasing # of cycles?

Are the kinetics of the charge/discharge process different when carbon is
present vs. when it is not?

Why are some carbons effective additions while others are not? Are
there any distinguishing characteristics of effective additions? Is the
effectiveness controlled by aspects of the plate production method? etc.
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Constituent Material Analysis

* Given the limited understanding of what characteristics yield an effective
carbon addition, a broad spectrum approach is being taken to quantify
the carbon particle properties.

! Actetylene Activated
Carbon Black| Graphite Black Carbon

Particle size 20 nm 20+ um 20 nm 100+ pm
Effective surface area 75 m2/g 6 m2/g 75 m2/g >2000 m2/g
(BET)
Structure (XRD) Semicrystalline| Crystalline |Semicrystalline| Amorphous
Acid Soluble
Contamination Clean Clean Very Clean Na, PO,




Performance Testing Shows Some Differentiation betmﬂ
Control and Carbon Modified Batteries
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Performance Testing Shows Similarities Between (3 s,
Control and Carbon Modified Batteries
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More Dramatic Differentiation Observed as the ) i,
Batteries are Cycled
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= Comparable behavior observed for all four battery types at 1k
cycles

= At 10k cycles, capacity loss was evident in the control,
acetylene black, and activated carbon batteries (but not in the
carbon black + graphite cell)

= Control battery failed at 11,292 cycles

» Failure defined as a capacity loss of greater than 20% after three
discharge/charge cycles in an attempt to recover.




Porosity and Pore Size Distribution @&
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Porosity and Pore Size Distribution @&
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Minimal Sulfation at 1k Cycles ) .

Control Activated Carbon




Significant Sulfation at 10k Cycles for ) e,
Two of the Batteries
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Control Activated Carbon
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FY11 Testing of Ultrabattery® module® .

Both Ultrabattery® designs incorporate a
supercapacitor in parallel with the negative
electrode in a VRLA 12 cell, 1,000 Ah, 24V

battery module.

=g

Tested with both a 'PV' @
and ‘utility’ cycle. T

East Pe




Summary of completed testing activities ) i,

Furukawa
East Penn Ultrabatteryf@ Module FurukawaUltrabattery® Module
20,347 10% PSOC utility cycles 7.012 10% PSOC utility cycles

422 Days and 229 PV deep discharge cycles 498 Days and 280 PV deep discharge cycles




East Penn Ultrabattery® performs much longer than-VRLA
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PSOC utility cycling

140
East Penn Ultrabattery® Furukawa Ultrabattery® ran for
190 | *  5%DODcycle 147 cycles at 400 A PSOC
0000009 current
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o0
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80% Initial Capacity

East Penn Ultrabattery® ran for

VRLA Battery
10% DOD cycle over 8,000 cycles at 400 A

D
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40 PSOC current
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0 , . . Recovery .
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Cycle #

« Ultrabatteries®1,000 AH, 400 A and 300 A 5% PSOC cycling
* VRLA 30 AH, 1C 10% PSOC cycling
« Temperature rise in Ultrabattery® modules required reducing current for further testing



East Penn Ultrabattery® performs much longer than-VRLA
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PSOC utility cycling

140
East Penn Ultrabattery® Furukawa Ultrabattery®

120 | *  °7DODcycle operated at elevated
> 0.-.-0--0-.-0-0-00 """ Co. 00 temperatures, likely leading to
~— o O O'O'Q . .
5 100 =) — G : thermally activated degradation
g- ‘). 5% DOD cycle
< 80 [l
@) 80% Initial Capacity
:?‘_3 60 0l East Penn Ultrabattery® ran for
h= VRLA Battery ] more than 20,000 cycles
(=) 10% DOD cycle . .
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Cycle #

« Ultrabatteries®1,000 AH, 400 A and 300 A 5% PSOC cycling
* VRLA 30 AH, 1C 10% PSOC cycling
« Temperature rise in Ultrabattery® modules required reducing current for further testing



East Penn Ultrabattery® performs much longer than-VRLA
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PSOC Utility Cycling

140
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120 |+ 2% DODcycle operated at elevated
Oo ..... 60 ) .
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=y - 5% DOD cycle degradation; capacity dropped
S 80 - , below 80% of initial by 6,300
~ 80% Initial Capacity
S 60 4
= 10%DOD cycle [ East Penn Ultrabattery® ran
= 40 for more than 20,000 cycles
S 0 without recovering the battery;
Filled symbols (®®) cycled at 400 A " VRLA After CyC“ng ended \_Nhen
0 Open symbos (OC)cycled at 300 A | . Recovery temperatures rises prevented
operation.
0 200 400 600 800 1000

Equivalent Complete Discharges

« Ultrabatteries®1,000 AH, 400 A and 300 A 5% PSOC cycling
* VRLA 30 AH, 1C 10% PSOC cycling
« Temperature rise in Ultrabattery® modules required reducing current for further testing



Ultrabatteries® also perform much longer in PV cycling tha@m*A
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PV Hybrid Cycle-Life Test

105 o O Furukawa Ultrabattery®
>, N & ., 40 Day Deficit Charge
100#. .' 9. E U"D..D..D.ﬁ—
5 . < e
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2 0 lx . 'B.m © . 40Day Deficit Charge
o "> VRLA Battery .9 Q.
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8 85 j‘ » @)
S 80 --¢ = :
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70 ‘30 Day Deficit Charge
65 Filled symbols (W) 10 hr taper charge
60 , , Open symbos (©0) 12 hr taper charge
0 100 200 300 400 500 600
Days Cycling

Even at 40 day deficit charge, Ultrabatteries® have performance
far surpassing traditional VRLA batteries even with as low as a

7 day deficit charge (without recovery by taper charge).
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Summary/Conclusions to Date

= Battery performance

» Pb-C batteries had lower initial capacity, higher initial internal resistance,
higher float current, comparable HPPC performance, and superior HRPSoC

cycling performance

» Hybrid batteries had far longer cycle life than conventional Pb-acid batteries

=  Material Characterization

» Pore structure in Pb-C batteries notably smaller (order of magnitude), but

comparable in overall volume

» Hard sulfation becoming significant after 10k cycles with the control battery

and activated carbon battery



Outlook ) &

= Bipolar or simultaneous charge/discharge designs offer further areas of
Pb-acid design.
= Further advancement of Pb-acid chemistries may be a reasonable part of a

multipronged approach to designing the ‘beyond Li’ portfolio to meet
current and future needs in stationary storage.




