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Derivative Calculations Using Hyper-Dual Numbers

Hyper-Dual Numbers [Fike and Alonso 2011] are an extension of Dual

Numbers [Study 1903], one type of Generalized Complex Number.

Ordinary Complex Numbers can be used to compute accurate first

derivatives. [Martins, Kroo, and Alonso 2000 and Martins, Sturdza, and Alonso 2003]

Dual Numbers can be used in a similar manner to produce exact

first derivatives. [Piponi 2004, Leuck and Nagel 1999]

Hyper-Dual Numbers enable exact calculations of second (or higher)

derivatives.
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First-Derivative Finite-Difference Formulas

Forward-difference (FD) Approximation:

∂f(x)

∂xj
=

f(x+ hej)− f(x)

h
+O(h)

Central-Difference (CD) approximation:

∂f(x)

∂xj
=

f(x+ hej)− f(x− hej)

2h
+O(h2)

Subject to truncation error and subtractive cancellation error

Truncation error is associated with the higher order terms that

are ignored when forming the approximation.

Subtractive cancellation error is a result of performing these

calculations on a computer with finite precision.
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Accuracy of Finite-Difference Calculations
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f(x) =
ex√
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First-Derivative Complex-Step Approximation

Taylor series with an imaginary step:

f(x + hi) = f(x) + hf ′(x)i − 1

2!
h2f ′′(x)− h3f ′′′(x)

3!
i + ...

f(x+hi) =

(
f(x)− 1

2!
h2f ′′(x) + ...

)
︸ ︷︷ ︸

real

+ h

(
f ′(x)− 1

3!
h2f ′′′(x) + ...

)
i︸ ︷︷ ︸

imaginary

First-Derivative Complex-Step Approximation: [Martins, Kroo, and Alonso 2000 and

Martins, Sturdza, and Alonso 2003]

f ′(x) =
Im [f(x + hi)]

h
+O(h2)

First derivatives are subject to truncation error but are not subject to

subtractive cancellation error.

Unlimited Release

June 3, 2016 6



Unlimited Release

First-Derivative Complex-Step Approximation

Taylor series with an imaginary step:

f(x + hi) = f(x) + hf ′(x)i − 1

2!
h2f ′′(x)− h3f ′′′(x)

3!
i + ...

f(x+hi) =

(
f(x)− 1

2!
h2f ′′(x) + ...

)
︸ ︷︷ ︸

real

+ h

(
f ′(x)− 1

3!
h2f ′′′(x) + ...

)
i︸ ︷︷ ︸

imaginary

First-Derivative Complex-Step Approximation: [Martins, Kroo, and Alonso 2000 and

Martins, Sturdza, and Alonso 2003]

f ′(x) =
Im [f(x + hi)]

h
+O(h2)

First derivatives are subject to truncation error but are not subject to

subtractive cancellation error.

Unlimited Release

June 3, 2016 6



Unlimited Release

First-Derivative Complex-Step Approximation

Taylor series with an imaginary step:

f(x + hi) = f(x) + hf ′(x)i − 1

2!
h2f ′′(x)− h3f ′′′(x)

3!
i + ...

f(x+hi) =

(
f(x)− 1

2!
h2f ′′(x) + ...

)
︸ ︷︷ ︸

real

+ h

(
f ′(x)− 1

3!
h2f ′′′(x) + ...

)
i︸ ︷︷ ︸

imaginary

First-Derivative Complex-Step Approximation: [Martins, Kroo, and Alonso 2000 and

Martins, Sturdza, and Alonso 2003]

f ′(x) =
Im [f(x + hi)]

h
+O(h2)

First derivatives are subject to truncation error but are not subject to

subtractive cancellation error.

Unlimited Release

June 3, 2016 6



Unlimited Release

Generalized Complex Numbers

Generalized Complex Numbers [Kantor 1989] consist of one real part and

one non-real part, a+ bE

Addition:

(a+ bE) + (c+ dE) = (a+ c) + (b+ d) E

Multiplication:

(a+ bE) (c+ dE) = ac+ (ad + bc) E + bd E2

Three types based on choice for the non-real part, E:

Ordinary Complex Numbers E2 = i2 = −1

Double Numbers E2 = e2 = 1 [Clifford 1873]

Dual Numbers E2 = ε2 = 0 [Study 1903]
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Generalized Complex Numbers

Ordinary Complex Numbers (E2 = i2 = −1):

f(x+hi) =

(
f(x)− 1

2!
h2f ′′(x) + ...

)
︸ ︷︷ ︸

real

+ h

(
f ′(x)− 1

3!
h2f ′′′(x) + ...

)
i︸ ︷︷ ︸

imaginary

Double Numbers (E2 = e2 = 1):

f(x+he) =

(
f(x) +

1

2!
h2f ′′(x) + ...

)
︸ ︷︷ ︸

real

+ h

(
f ′(x) +

1

3!
h2f ′′′(x) + ...

)
e︸ ︷︷ ︸

non-real

Dual Numbers (E2 = ε2 = 0):

f(x + hε) = f(x)︸︷︷︸
real

+ hf ′(x)ε︸ ︷︷ ︸
non-real
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Accuracy of First-Derivative Calculations
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Second-Derivative Calculations?

Ordinary Complex Numbers (E2 = i2 = −1):

f(x+hi) =

(
f(x)− 1

2!
h2f ′′(x) + ...

)
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real

+ h
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f ′(x)− 1

3!
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imaginary

Double Numbers (E2 = e2 = 1):

f(x+he) =

(
f(x) +

1

2!
h2f ′′(x) + ...

)
︸ ︷︷ ︸

real

+ h

(
f ′(x) +

1

3!
h2f ′′′(x) + ...

)
e︸ ︷︷ ︸

non-real

Dual Numbers (E2 = ε2 = 0):

f(x + hε) = f(x)︸︷︷︸
real

+ hf ′(x)ε︸ ︷︷ ︸
non-real
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Second-Derivative Complex-Step

One Second-Derivative Complex-Step Approximation:

f ′′(x) =
2 (f(x)− Re[f(x + ih)])

h2
+O(h2)

Second derivatives are subject to subtractive cancellation error

Alternative approximations: [Lai 2008]

f ′′(x) =
Im

[
f(x + i1/2h) + f(x + i5/2h)

]
h2

+O(h4) : θ = 45◦

f ′′(x) =
2 Im

[
f(x + i2/3h) + f(x + i8/3h)

]
√
3h2

+O(h2) : θ = 60◦

These alternatives may offer improvements, but they are still subject

to subtractive cancellation error
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Alternative Complex-Step Approximations
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Complex Step, basic
Complex Step, θ = 45
Complex Step, θ = 60

f(x) =
ex√

sin3 x + cos3 x
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Multiple Non-Real Parts

To avoid subtractive cancellation error:

Second-derivative term should be the leading term of a non-real

part

First-derivative is already the leading term of a non-real part

Suggests that we need a number withmultiple non-real parts

Use higher-dimensional extensions of generalized complex

numbers
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Quaternions

Quaternions: one real part and three non-real parts

i2 = j2 = k2 = −1

ijk = −1

Taylor series for a generic step, d:

f(x + d) = f(x) + df ′(x) +
1

2!
d2f ′′(x) +

1

3!
d3f ′′′(x) + ...

For a quaternion step:

d = h1i + h2j + 0k

d2 = −
(
h21 + h22

)
d2 is real, second derivative only appears in the real part
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Quaternions

Second-Derivative Quaternion-Step Approximation:

f ′′(x) =
2 (f(x)− Re[f(x + h1i + h2j + 0k)])

h21 + h22
+O(h21 + h22)

Subject to subtractive-cancellation error

Quaternion multiplication is not commutative, ij = k but ji = −k

Instead, consider a number with three non-real components E1, E2,

and (E1E2) where multiplication is commutative, i.e. E1E2 = E2E1
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Enforce Multiplication to be Commutative

Taylor series:

f(x + d) = f(x) + df ′(x) +
1

2!
d2f ′′(x) +

1

3!
d3f ′′′(x) + ...

d = h1E1 + h2E2 + 0E1E2

d2 = h21E
2
1 + h22E

2
2 + 2h1h2E1E2

d3 = h31E
3
1 + 3h1h

2
2E1E

2
2 + 3h21h2E

2
1E2 + h32E

3
2

d4 = h41E
4
1 + 6h21h

2
2E

2
1E

2
2 + 4h31h2E

3
1E2 + 4h1h

3
2E1E

3
2 + h42E

4
2

d2 is first term with a non-zero (E1E2) component

Second derivative is the leading term of the (E1E2) part

As long as multiplication is commutative, and E1E2 6= 0,
second-derivative approximations can be formed that are not

subject to subtractive-cancellation error
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Several Possible Number Systems

The requirement that E1E2 = E2E1 produces the constraint:

(E1E2)
2 = E1E2E1E2 = E1E1E2E2 = E21E

2
2

This leaves many possibilities for the definitions of E1 and E2:

E21 = E22 = −1 which results in (E1E2)
2 = 1

Circular-Fourcomplex Numbers [Olariu 2002]

Multicomplex Numbers [Price 1991]

Constrain E21 = E22 = (E1E2)
2

E21 = E22 = (E1E2)
2 = 1 Hyper-Double Numbers [Fike 2012]

E21 = E22 = (E1E2)
2 = 0 Hyper-Dual Numbers [Fike 2011]

All are free from subtractive-cancellation error

Truncation error can be reduced below machine precision

Effectively exact
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Hyper-Dual Numbers

Hyper-dual numbers have one real part and three non-real parts:

a = a0 + a1ε1 + a2ε2 + a3ε1ε2

ε21 = ε22 = 0

ε1 6= ε2 6= 0

ε1ε2 = ε2ε1 6= 0

Taylor series truncates exactly at second-derivative term:

f(x+h1ε1+h2ε2+0ε1ε2) = f(x)+h1f
′(x)ε1+h2f

′(x)ε2+h1h2f
′′(x)ε1ε2

No truncation error and no subtractive-cancellation error

Lack of higher order terms makes implementation easier

[Fike 2011 and Fike 2012]
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Accuracy of Second-Derivative Calculations
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Using Hyper-Dual Numbers

Evaluate a function with a hyper-dual step:

f(x+ h1ε1ei + h2ε2ej + 0ε1ε2)

Derivative information can be found by examining the non-real parts:

∂f(x)

∂xi
=

ε1part [f(x+ h1ε1ei + h2ε2ej + 0ε1ε2)]

h1

∂f(x)

∂xj
=

ε2part [f(x+ h1ε1ei + h2ε2ej + 0ε1ε2)]

h2

∂2f(x)

∂xi∂xj
=

ε1ε2part [f(x+ h1ε1ei + h2ε2ej + 0ε1ε2)]

h1h2
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Arithmetic Operations

Consider two Hyper-Dual Numbers:

a = a0 + a1ε1 + a2ε2 + a3ε1ε2 b = b0 + b1ε1 + b2ε2 + b3ε1ε2

Addition:

a+ b = (a0 + b0) + (a1 + b1) ε1 + (a2 + b2) ε2 + (a3 + b3) ε1ε2

Multiplication:

a ∗ b = (a0 ∗ b0) + (a0 ∗ b1 + a1 ∗ b0) ε1 + (a0 ∗ b2 + a2 ∗ b0) ε2

+(a0 ∗ b3 + a1 ∗ b2 + a2 ∗ b1 + a3 ∗ b0) ε1ε2

Hyper-Dual addition: 4 real additions

Hyper-Dual multiplication: 9 real multiplications and 5 additions
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Other Operations

The inverse:

1

a
=

1

a0
− a1

a20
ε1 −

a2

a20
ε2 −

(
2a1a2
a30

− a3

a20

)
ε1ε2

Only exists for a0 6= 0

This suggests a definition for the norm:

norm (a) =
√

a20

This in turn implies that comparisons should only be made based on

the real part.

i.e. a > b is equivalent to a0 > b0

This allows the code to follow the same execution path as the

real-valued code.
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Mathematical Properties of Hyper-Dual Numbers

Additive associativity, i.e. (a+ b) + c = a+ (b+ c),

Additive commutativity, i.e. a+ b = b+ a,

Additive identity, there exists a zero element,

z = 0 + 0ε1 + 0ε2 + 0ε1ε2, such that a+ z = z+ a = a,

Additive inverse, i.e. a+ (−a) = (−a) + a = 0,

Multiplicative associativity, i.e. (a ∗ b) ∗ c = a ∗ (b ∗ c),

Multiplicative commutativity, i.e. a ∗ b = b ∗ a,

Multiplicative identity, there exists a unitary element,

1 + 0ε1 + 0ε2 + 0ε1ε2, such that a ∗ 1 = 1 ∗ a = a,

Left and right distributivity, i.e. a ∗ (b+ c) = (a ∗ b) + (a ∗ c)
and (b+ c) ∗ a = (b ∗ a) + (c ∗ a).

These properties make hyper-dual numbers a commutative unital

associative algebra.
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Mathematical Properties of Hyper-Dual Numbers

Hyper-Dual Numbers are a commutative unital associative algebra.

Hyper-Dual Numbers are not a field (a commutative division algebra)

A division algebra requires the properties on the previous slide, plus

a multiplicative inverse

i.e. there exists an inverse, a−1, such that a ∗ a−1 = a−1 ∗ a = 1
for every a 6= 0 + 0ε1 + 0ε2 + 0ε1ε2

Hyper-Dual Numbers have an inverse for every a with norm(a) 6= 0
(i.e. a0 6= 0)
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Hyper-Dual Functions

Differentiable functions can be defined using the Taylor series for a

generic hyper-dual number:

f(a) = f(a0)+a1f
′(a0)ε1+a2f

′(a0)ε2+
(
a3f

′(a0) + a1a2f
′′(a0)

)
ε1ε2

For instance:

a3 = a30 + 3a1a
2
0ε1 + 3a2a

2
0ε2 +

(
3a3a

2
0 + 6a1a2a0

)
ε1ε2

sin a = sin a0 + a1 cos a0ε1 + a2 cos a0ε2

+(a3 cos a0 − a1a2 sin a0) ε1ε2
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Example Evaluation

A simple example hyper-dual function evaluation:

f(x) = sin3 x

This function can be evaluated as:

t0 = x

t1 = sin t0

t2 = t31

Unlimited Release

June 3, 2016 27



Unlimited Release

Example Evaluation

A simple example hyper-dual function evaluation:

f(x) = sin3 x

This function can be evaluated as:

t0 = x + h1ε1 + h2ε2 + 0ε1ε2

t1 = sin t0

= sin x + h1 cos xε1 + h2 cos xε2 − h1h2 sin xε1ε2

t2 = t31

= sin3 x + 3h1 cos x sin
2 xε1 + 3h2 cos x sin

2 xε2

−3

4
h1h2 (sin x − 3 sin 3x) ε1ε2
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Hyper-Dual Number Implementation

To use hyper-dual numbers, every operation in an analysis code must

be modified to operate on hyper-dual numbers instead of real

numbers

Basic Arithmetic Operations: Addition, Multiplication, etc.

Logical Comparison Operators: ≥, 6=, etc.

Mathematical Functions: exponential, logarithm, sine, absolute value,

etc.

Input/Output Functions to write and display hyper-dual numbers

Hyper-dual numbers are implemented as a class using operator

overloading in C++, CUDA, MATLAB and Fortran

Change variable types, but body and structure of code is unaltered

MPI datatype and reduction operations also implemented

Implementations publicly available:

http://adl.stanford.edu/hyperdual
Implementations by others for Python and Julia
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Variations of Hyper-Dual Numbers

Dual numbers produce exact first derivatives

Hyper-dual numbers, as described so far, produce exact

second-derivatives

Third (or higher) derivatives can be computed by including additional

non-real parts

Third derivatives require an ε3 term and its combinations

d = h1ε1 + h2ε2 + h3ε3 + 0ε1ε2 + 0ε1ε3 + 0ε2ε3 + 0ε1ε2ε3

Derivatives of complex-valued functions can be computed by defining

hyper-dual numbers with complex-valued components

Vector-mode version propagates entire gradient and Hessian

Eliminates redundant calculations, but increased memory

requirements [Fike 2012]
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Analysis Codes Using Hyper-Dual Numbers

Hyper-Dual Numbers can be applied to codes of arbitrary complexity

in order to compute exact derivatives of output quantities of interest

with respect to input parameters.

Computational Fluid Dynamics

JOE, a parallel unstructured, 3-D, unsteady Reynolds-averaged

Navier-Stokes code developed at Stanford University as part of

PSAAP (the Department of Energy’s Predictive Science Academic

Alliance Program)

Structural Dynamics

Sierra/SD (aka Salinas), a massively parallel, high-fidelity,

structural dynamics finite element analysis code developed by

Sandia National Laboratories
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Converting Codes to Use Hyper-Dual Numbers

At a high level, converting a code to use Hyper-Dual Numbers

requires little more than changing the variables types from real

numbers to hyper-dual numbers.

In some cases, there can be more effort required

Requires modifying the source code

Some codes make use of external libraries for which the source

code is unavailable

Linear Solvers

Eigenvalue Solvers

Hyper-Dual numbers can still be used to compute derivatives even if

not all parts of a code can be modified

Requires replicating the effect of a hyper-dual calculation, i.e.

returning hyper-dual valued output containing the required

derivative information
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Differentiating the Solution of a Linear System

Solving the system:

A(x)y(x) = b(x)

Differentiating both sides with respect to the ith component of x gives

∂A(x)

∂xi
y(x) + A(x)

∂y(x)

∂xi
=

∂b(x)

∂xi

Differentiating this result with respect to the jth component of x gives

∂2A(x)

∂xj∂xi
y(x) +

∂A(x)

∂xi

∂y(x)

∂xj
+

∂A(x)

∂xj

∂y(x)

∂xi
+ A(x)

∂2y(x)

∂xj∂xi
=

∂2b(x)

∂xj∂xi
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Differentiating the Solution of a Linear System

This can be solved as:
A(x) 0 0 0
∂A(x)
∂xi

A(x) 0 0
∂A(x)
∂xj

0 A(x) 0
∂2

A(x)
∂xj∂xi

∂A(x)
∂xj

∂A(x)
∂xi

A(x)




y(x)
∂y(x)
∂xi

∂y(x)
∂xj

∂2
y(x)

∂xj∂xi

 =


b(x)
∂b(x)
∂xi

∂b(x)
∂xj

∂2
b(x)

∂xj∂xi


Or

A(x)y(x) = b(x)

A(x)
∂y(x)

∂xi
=

∂b(x)

∂xi
− ∂A(x)

∂xi
y(x)

A(x)
∂y(x)

∂xj
=

∂b(x)

∂xj
− ∂A(x)

∂xj
y(x)

A(x)
∂2y(x)

∂xj∂xi
=

∂2b(x)

∂xj∂xi
− ∂2A(x)

∂xj∂xi
y(x)− ∂A(x)

∂xi

∂y(x)

∂xj
− ∂A(x)

∂xj

∂y(x)

∂xi
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Derivatives of Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are solutions of the equation

(K − λ`M)φ` = F`φ` = 0

The first derivative of an eigenvalue is

∂λ`

∂xi
= φT

`

(
∂K

∂xi
− λ`

∂M

∂xi

)
φ`

The first derivative of the eigenvector is

∂φ`

∂xi
= zi + ciφ`

where F`zi = −∂F`
∂xi

φ`

and ci = −1

2
φT
`

∂M

∂xi
φ` − φT

`Mzi
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Matrix Representation of Generalized Complex Numbers

Ordinary Complex Numbers:

a+ bi =

[
a −b

b a

]
= a

[
1 0
0 1

]
+ b

[
0 −1
1 0

]
Double Numbers:

a+ be =

[
a b

b a

]
= a

[
1 0
0 1

]
+ b

[
0 1
1 0

]
Dual Numbers:

a+ bε =

[
a 0
b a

]
= a

[
1 0
0 1

]
+ b

[
0 0
1 0

]
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Matrix Representation of Hyper-Dual Numbers

Ordinary Complex Numbers:

a0 + a1ε1 + a2ε2 + a3ε1ε2 =


a0 0 0 0
a1 a0 0 0
a2 0 a0 0
a3 a2 a1 a0


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Questions?
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