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Solid Laminate Layup

Specimens are constructed with
carbon fiber reinforced plastic
(CFRP) [[0/90],]s preimpregnated
“prepreqg” 8 harness-satin weave
with UF3352 TCR™ Resin.
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This weave is resistant to wrinkles
and allows for tight radius layups.

== 12 plies




Wave Scatter Theory 1/2 )

A wealth of information can be

collected on the bondline when one  areave | TTAocaiz
studies the incident wave and Y

preselected incident angles.

« The elastic wave interacts with the
materials and its fiber/polymer
structure. Scattering is frequency
dependent.

» Factors that affect the abllity to
detect bondline variance are:
composite surface texture (random
or periodic surface roughness,
fiber orientation and binder
concentration.




Wave Scatter Theory 2/2 . .. | ) o
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Materials that demonstrate
frequency dependent velocity
variation are known as dispersive
materials. In these types of
materials there is a distinction Source “Elastic Wave Propagation in Materials” ,
made between the group velocity o Elomtion Gopacrals Setence and
and the phase velocity.
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Group velocity (v, ) is defined as a rate at which the point s}
of maximum amplitude in the ultrasonic pulse (many xr' T
frequencies) propagates through the material. Xo T plane

X3

Phase velocity (v, ) is defined as the velocity of a

continuous sinusoidal wave (one frequency) in the

material. LUJ/

These two velocities are related to each other through Source: Horizontal Transverse Isotropic
dispersive properties (frequency dependence of the axis defination, MIT OpenCourseWare

http://ocw.mit.edu/terms/ 4

Ehase velocitxz.




Metal to Composite - Conventional
Ultrasonics

Contact: 5 Mhz A-Scan of 6.30 mm thick aluminum
and composite placed below.
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Composite to Metal - Conventional

Ultrasonics 4 ply 8 ply

12 ply

Contact: 5 Mhz A-Scan of (8 ply) 1.68 mm thick
. . 6.35 mm
composite bonded to aluminum.
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Sandia
Interface Detection with Immersion Ultrasonics (1 of 3) i) fmat

In immersion testing, the part and the transducer are placed in a tank filled with water. This allows for better
movement of the transducer while maintaining consistent coupling. Its disadvantage is that the part must sit in
water for long periods of time. Immersion testing can also measure backwall signals changes, small amplitude
changes and variation in the time of flight measurement from the front to back surfaces.

L]
i ¥
L
IndexT NS R
4| »| X=1745 (o] AMP G2 |CH1 |4 | »
N A " .
e 05 1 15 2 25 3 35
Focused transducer ] X=1.879 Y=2.211 TOF(In): 0.145 @ _TOF [ G1 [CHI[«[»
Sound beam Spherical lens
Composite Beam refracted with B S
\ /grcalcr convergence = Can
New point of
Divergence .| M/'——J— oW

beyond focus [T ——

Metal standoff

"N
P Y IR

e

Immersion:10 Mhz

12 ply composite only
thickness 4.60 mm

V. = 2.85 km/sec

7 focus in metal

08 A-Scan —

—=

ﬂﬂﬂhﬂa‘, ™
vuuvu vvu v

i) A-Scan Graph ] il




Interface Detection with Immersion Ultrasonics (2 of 3) A Neona
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Interface Detection with Immersion Ultrasonics (3 of 3)
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Inspection Scan Plan for Bonded Sample

Focused transducer
I Sphenical lens /
Ind ex"l" <
7
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4 ply 8 ply

h

Part is scanned from
both sides

12 ply

4.6 mm

4 Plys ~ 0.86 mm (0.034 inches)
8 plys™~ 1.68 mm (0.066 inches)
12 plys ™ 2.91 mm (0.115 inches)
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Bondline Detection Aluminum Over Composite
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we - 10 MHz; W.P. = 4.6 cm 1

I FL = 5.4 cm (Focus into part 1.19 mm)
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Bondline Detection Composite over Aluminum 1 of 2

10 MHz; W.P. = 4.6 cm

FL = 5.4 cm (Focus into part 2.64 mm)
12 Plys =2.91 mm
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Bondline Detection Composite over Aluminum 2 of 2

Bonded area reflects sound from the aluminum and
sends a stronger reflection back to the probe.
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10 MHz; W.P. = 4.6 cm
FL = 5.4 cm (Focus into part 2.64 mm)
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aluminum this results in a lower amplitude signal.
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Interface Detection Using Couplant on Dissimilar Materials

High viscous v, = 2030 m/sec
Glycerin Oil v.= 1920 m/sec

6.35 mm 5.4 mm

4.6 mm

(0.250 inches) (0.213 inches) (0.180 inches)




Couplant Between Two Dissimilar Materials 1 of 5 ()

4 ply 8 ply 12 ply

6.35 mm 54 mm
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Couplant Between Two Dissimilar Materials 2 of 5 () ¥m_
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Couplant Between Two Dissimilar Materials 3 of 5  (d) &
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Sandia
Couplant Between Two Dissimilar Materials 4 of 5 & .,
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Phased Array (PA) Inspection Method

Phased array (PA) probes are comprised of many
small piezoelectric elements embedded into a
polymer base material. Each ultrasonic element is
individually wired (connector, time delay circuit, and
A/D converter) and is acoustically isolated from the
other elements.

Y

The elements can then be pulsed in groups, or

element (phasing).

apertures, with pre-calculated time delays for each Y

Phased Array (PA) probes move the pulse sequence
from aperture to aperture to form focused scan Line's.
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Courtesy of Wayne Weisner Olympus NDT
www.olympus-ims.com/en/probes/pa/
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Bondline Detection Aluminum over Composite Phase Array ) e

The line of elements in a Phased Array probe are typically configured perpendicular to the
inspection area. In this configuration the elements can inspect the total thickness of a part as

the probe is moved parallel to the inspection area.

Bonded area _
30° to 70° Sectorial scan

e i S Probe: 10L64-11
R R Wedge: SI11-L45S-IHC
Aluminum side only

SR P O A
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Conclusions ) i,

= Contact, immersion and array methodologies can identify wave scattering.
If the composite layer is thin enough acoustic wave techniques can
analyze the bondline. Both conventional and advanced ultrasonic
methods can detect interfaces between the metal and composite. This
comparison of the pulse-echo signal measured is based at the point of
interest (the bondline interface).

= |tis difficult to correlate ultrasonic signal to the strength of a bond. Bond
strength is not a physical property but a structural parameter. The
inspection methods described in the presentation is not designed to find
the weakest of the weakest area (i.e. highest stress in the weakest specific
area of failure). Understanding the behavior of bonded interfaces with the
use of ultrasonic inspection will ensure safety and reliability of designs.

= Ultrasonic techniques described above can detect most discontinuities
types that are required. However, a high variance in the material
properties or surface roughness may not allow for a reliable assessment.
The most important variable to understand for all composite inspection is

the role of attenuation and on the selected frequency.
22



Future Work )

= Develop equations for wave scattering in the 8 satin weave
material.

= Create new samples at varying thickness and determine the
optimal frequency.

= Measure elastic wave speeds and calculate elastic constants.

= Characterize different material interfaces.
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Plane Sound Waves at Boundaries )t

A sound waves always require particle movement. When 7 . _
the sound hits a boundary, it will either be reflected back 1:P1, € Zy:P3, G
toward the source (the probe) or scattered (smooth versus
rough surfaces). If two materials are “bonded” the boundary
becomes a point of interest. Strong bonds allow the forces to
be transmitted into the second material and the wave will
continue to propagate.

Sound intensity, direction and/or mode change occur when a
boundary is encountered. Material boundaries have a strong
influence on the propagation of sound. Defects within a
material are detected by the change in wave propagation

cuminum o composits: the acouste impedance of the i IHIHHHHLHHE AR

two materials is the driving condition

Z ater = 1.48 (Pa s/m) = p, ¢, water; ;\

water h A | }\comp
Zayuminum = 17.06 (Pas/m) =p, ¢ i
Za'“"f”‘(‘)m ' 2> Coefficient of reflection 80% water to aluminum 0.148 mm 0.63mm 0.32 mm
air — 20% of sound energy enters aluminum
Z composite = ~ 9 Pas/m Coefficient of reflection 55% aluminum to composite

Coefficient of reflection 54% water to composite 55




