

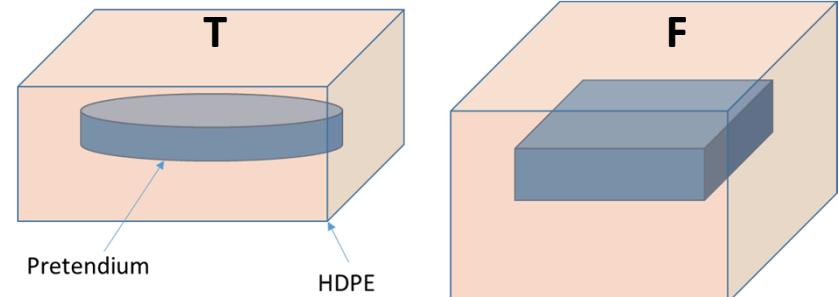
Workshop challenge problems

Erik Brubaker, SNL

Imaging IB workshop
Seattle, WA, 1–2 June 2016

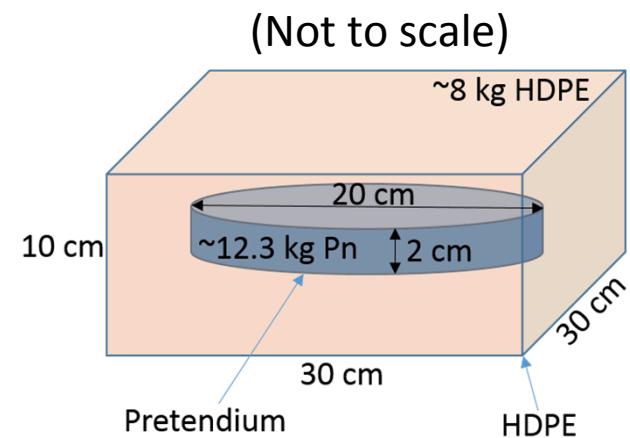
Workshop challenge problem #1

Purpose


- Challenge problem for consideration in advance of the workshop.
- Common context to understand techniques.
 - Not for quantitative comparison of performance!
- Sufficient detail for radiation transport simulations, but flexible enough to accommodate range of methods.
 - Add in assumptions, caveats, etc. as needed to flesh it out for your technique.
- Abstract material storage scenario.
 - Materials and geometries, as well as declared “sensitive” information, are defined arbitrarily for this exercise.

Materials

- HDPE
- Pretendium (Pn)
 - Mass density of tungsten.
 - Radiation interaction cross-sections of lead.
 - Neutron source term of $1\text{e}5 \text{ n/s/kg}$ (Cf-252 spectrum).
 - Gamma source term of $1\text{e}7 \text{ n/s/kg}$ (Eu-152 spectrum).
 - IAEA significant quantity of pretendium is 10 kg.


Scenario

- In a treaty, a type 1 TAI is defined as having at least 1 IAEA s.q. of pretendum in a circular plate (cylindrical) form, embedded in a block of HDPE.
 - All type 1 TAIs have the same quantity and form of Pn, not specified.
 - Dimensions of Pn, in particular its diameter d , are to be considered sensitive.
- Inspector has or had access to measure item T, a known valid TAI of type 1.
 - Allows for techniques relying on a template measurement or golden item.
- Verification process:
 1. Host declares item X as a type 1 TAI.
 2. Host presents item X for inspection.
 - Item is in some larger container for visual obstruction.
 3. Inspector needs to acquire confidence that item X is in fact a type 1 TAI.
 - Item F is an example of an object that should fail.
 4. Host must be confident that the inspector does not learn the diameter d of the pretendum.
 - Knowledge to std dev of 30% after 1000 measurements is OK.

Geometry

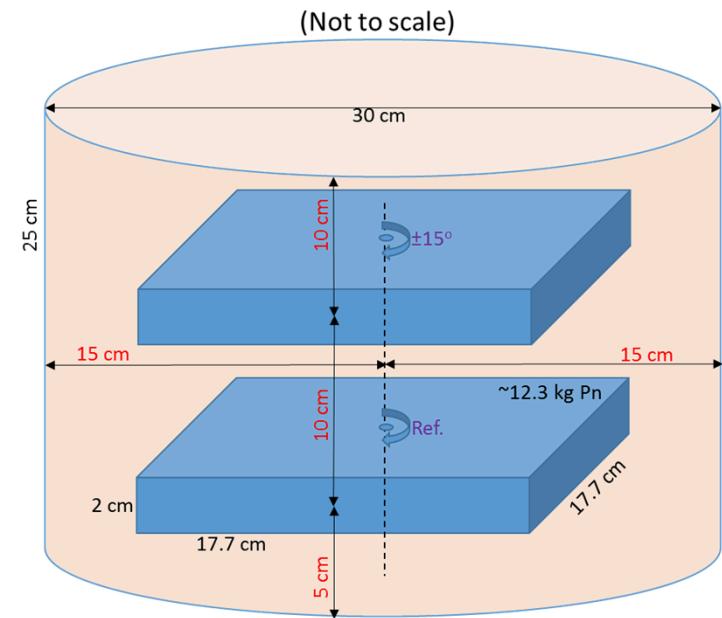
- Solid mass of Pn embedded in block of HDPE
 - Permits emission or transmission imaging
- Valid TAI details (not known to inspector):
 - 20 cm dia. x 2 cm Pn, 12.3 kg
 - 30 cm x 30 cm x 10 cm HDPE, ~8 kg
 - Pn centered in HDPE block
- Example of non-valid TAI:
 - Pn with square cross-section:
17.7 cm x 17.7 cm x 2 cm, 12.3 kg

Challenge Tasks

- Each group defines
 - Measurement equipment
 - Sequence of events (CONOPS)
 - Other requirements (e.g. does item T need to be present?)
- Demonstrate that a second copy of item T should pass.
- Demonstrate that item F should fail.
- Demonstrate that diameter d of Pn cannot be determined by the inspector.
- Consider other fail items as desired. For example, let N vertices of the Pn in item F increase (hexagon, octagon, etc.)

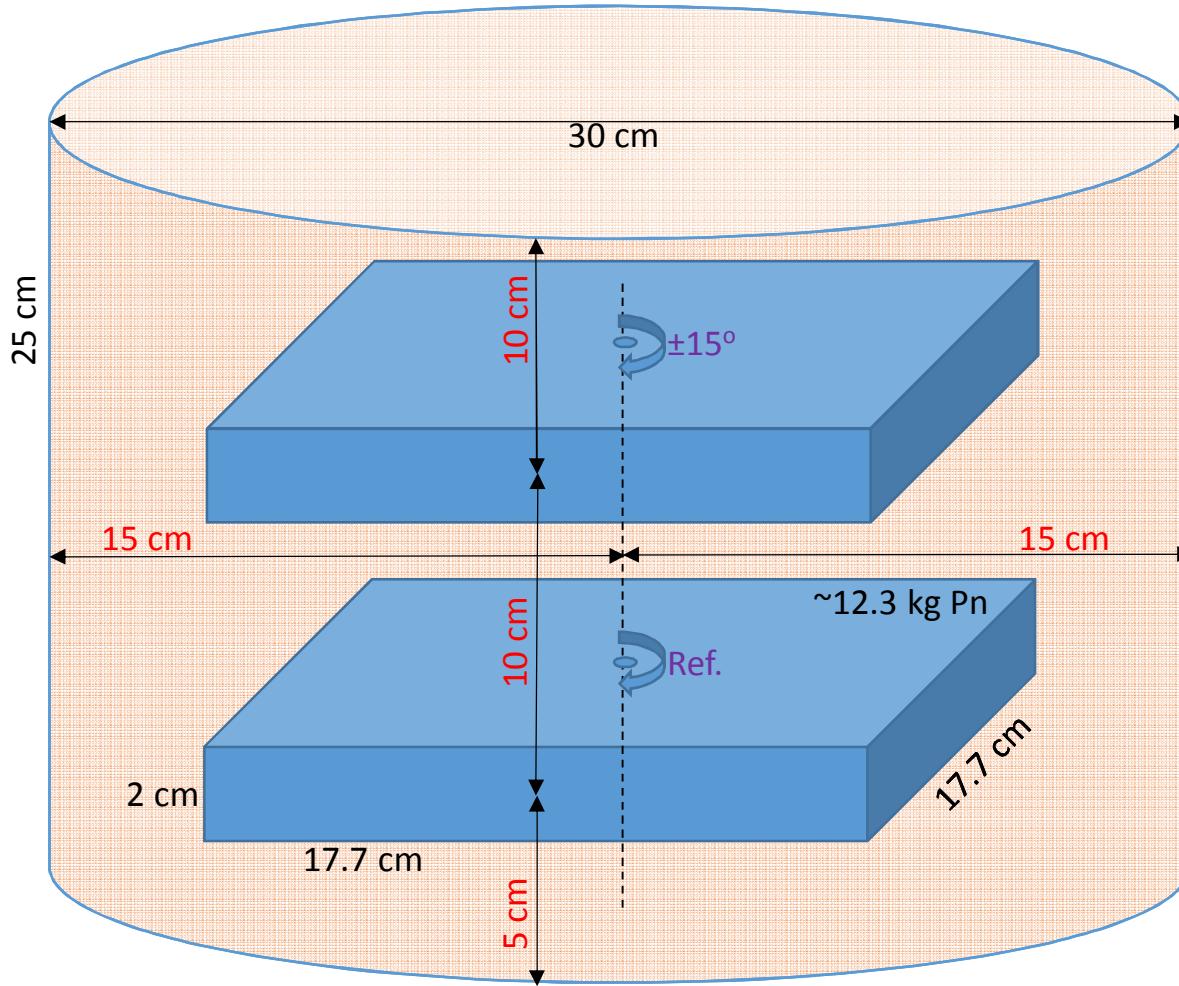
Workshop challenge problem #2

Purpose


- Challenge problem for consideration in breakout discussions at the workshop.
- Add some feature/complexity with respect to original scenario.
- Add in assumptions, caveats, etc. as needed to flesh it out for your technique.
- Abstract material storage scenario.
 - Materials and geometries, as well as declared “sensitive” information, are defined arbitrarily for this exercise.

Materials

- HDPE
- Pretendium (Pn)
 - Mass density of tungsten.
 - Radiation interaction cross-sections of lead.
 - Neutron source term of $1\text{e}5 \text{ n/s/kg}$ (Cf-252 spectrum).
 - Gamma source term of $1\text{e}7 \text{ n/s/kg}$ (Eu-152 spectrum).
 - IAEA significant quantity of pretendium is 10 kg.


Scenario

- In a treaty, a type 1 TAI is defined as having two square plates of pretendum, 12.3 kg each, embedded in a block of HDPE.
 - The Pn shape and size (17.7 cm x 17.7 cm x 2 cm) is known to the inspector and is to be confirmed.
 - The location of the two plates within the HDPE is not specified. All type 1 TAIs have the same such positioning. The corresponding dimensions (e.g. the distance between the two plates) are to be considered sensitive.
 - The two plates are generally aligned, but there is a +/- 15 degree variability in their relative rotation. (Nuisance parameter.)
- Inspector has or had access to measure item T, a known valid TAI of type 1.
 - Allows for techniques relying on a template measurement or golden item.
- Verification process:
 1. Host declares item X as a type 1 TAI.
 2. Host presents item X for inspection.
 - Item is in some larger container for visual obstruction.
 3. Inspector needs to acquire confidence that item X is in fact a type 1 TAI.
 4. Host must be confident that the inspector does not learn the locations of the pretendum blocks within the HDPE.
 - Knowledge to std dev of 30% after 1000 measurements is OK.

Geometry

(Not to scale)

Geometry

- New features relative to previous scenario:
 - Two Pn plates
 - Sensitive information is positioning of plates
 - Presence of a nuisance parameter that varies from one valid TAI to another: relative orientation of plates
- Examples of non-valid TAIs (all with appropriate HDPE):
 - A single square plate of Pn
 - Two circular plates of Pn
 - Two square plates, 10 cm x 10 cm x 2 cm each, of Pn

Group discussion questions

- What changes in measurement equipment or CONOPS would be needed relative to the first scenario? Goals remain the same:
 - To demonstrate that a true type 1 TAI will pass.
 - To demonstrate that some false items F will fail.
 - To demonstrate that the locations of Pn plates (e.g. distance between them) cannot be determined by the inspector.
- Does the performance or applicability of the method differ with respect to the first scenario?
- How does the introduction of a nuisance parameter affect the method?