SAND2016-5119C

Cactus Environment Machine
Shared Environment Call-by-Need

George Stelle!, Darko Stefanovic!, Stephen L. Olivier?, and Stephanie Forrest!

! University of New Mexico
{stelleg, darko, forrest}@cs.unm.edu
2 Sandia National Laboratories
slolivi@sandia.gov

Abstract. Existing machines for lazy evaluation use a flat representation of en-
vironments, storing the terms associated with free variables in an array. Com-
bined with a heap, this structure supports the shared intermediate results required
by lazy evaluation. We propose and describe an alternative approach that uses a
shared environment to minimize the overhead of delayed computations. We show
how a shared environment can act as both an environment and a mechanism for
sharing results. To formalize this approach, we introduce a calculus that makes
the shared environment explicit, as well as a machine to implement the calculus,
the Cactus Environment Machine . A simple compiler implements the machine
and is used to run experiments for assessing performance. The results show rea-
sonable performance and suggest that incorporating this approach into real world
compilers could give performance benefits in some scenarios.

1 Introduction

Call-by-need evaluation is a formalization of the idea that work should be delayed until
needed, and performed only once. Existing implementations of call-by-need take care
in packaging a delayed computation, or thunk, by building a closure with an array that
contains the bindings of all free variables [24, 7]. The overhead induced by this oper-
ation is well known, and one reason existing implementations avoid thunks wherever
possible [18]. The key insight of our Cactus Environment (%'&¢’) Machine is that this
overhead can be minimized by only recording a location in a shared environment.

As an example, consider the application f e. In existing call-by-need implementa-
tions, e.g., the STG machine[24], a closure with a flat environment will be constructed
for e. Doing so incurs a time and memory cost proportional to the number of free vari-
ables of e. > We minimize this packaging cost by recording a location in a shared envi-
ronment, which requires only two machine words (and two instructions) for the thunk:
one for the code pointer, and one for the environment pointer. One way to think about
the approach is that it is /lazier about lazy evaluation: in the case that e is unneeded,
the work to package it in a thunk is entirely wasted. In the spirit of lazy evaluation, we
attempt to minimize this potentially unnecessary work.

The main contributions of the paper are:

3 In some implementations, these are lambda lifted to be formal parameters, but the principle is
the same.

— A big-step calculus and small-step abstract machine that formalize the notion of a
shared environment for call-by-need evaluation using an explicitly shared environ-
ment (Section 4).

— A simple implementation of the abstract machine that compiles to x86 assembly
with a preliminary evaluation that shows performance comparable to existing im-
plementations (Sections 6 and 7).

Section 2 reviews relevant background material, and Section 3 discusses the current
landscape of environment representations, highlighting the opportunity for combining
shared environments with lazy evaluation. We then provide some intuition for why this
combination is desirable, and formalize the connection between call-by-need evaluation
and shared environments in a calculus (Section 4). Section 5 uses the calculus to derive
a novel abstract machine, the ¥’& machine, explains how ¢’ & uses the shared environ-
ment in a natural way to implement lazy evaluation, and gives its formal semantics. We
then describe a straightforward implementation of 4’4’ in Section 6, extended with ma-
chine literals and primitive operations, compiling directly to native code. We evaluate
the implementation in Section 7, showing that it is capable of performing comparably to
existing implementations, despite lacking several common optimizations, and discuss
the results. We discuss related work, the limitations of our approach, and some ideas
for future work in Section 8, and conclude the paper in Section 9.

2 Background and Motivation

This section provides relevant background for the & machine, outlining lambda cal-
culus, evaluation strategies, and Curien’s calculus of closures.

2.1 Preliminaries

We begin with the simple lambda calculus [5]:
tu=x|Axt|rt

where x is a variable, Ax.7 is an abstraction, and 7 7 is an application. We also use lambda
calculus with deBruijn indices, which replace variables with a natural number indexing
into the binding lambdas. This calculus is given by the syntax:

tu=i|At|tt

where i € N. In both cases, we use the standard Barendregt syntax conventions, namely
that applications are left associative and the bodies of abstractions extend as far as
possible to the right [5]. A value in lambda calculus refers to an abstraction. We are
concerned only with evaluation to weak head normal form (WHNF), which terminates
on an abstraction without entering its body.

In mechanical evaluation of expressions, it would be too inefficient to perform ex-
plicit substitution. To solve this, the standard approach uses closures [20, 8, 24, 6]. Clo-
sures combine a term with an environment, which binds the free variables in the term
to closures.

For a formal basis for closures, we use Curien’s calculus of closures [8], given in
Figure 2. It is a formalization of closures with an environment represented as a list of
closures, indexed by deBruijn indices. We will occasionally modify this calculus by
replacing the deBruijn indices with variables for readability, in which case variables are
looked up in the environment instead of indexed, e.g., t[x =c,y = ¢']) [5]. We also add
superscript and subscript markers to denote unique syntax elements, e.g., ¢',#; € Term.

2.2 Evaluation Strategies

There are three standard evaluation strategies for lambda calculus: call-by-value, call-
by-need, and call-by-name. Call-by-value evaluates every argument to a value, whereas
call-by-need and call-by-name only evaluate an argument if it is needed. If an argument
is needed more than once, call-by-name re-computes the value, where call-by-need
memoizes the value, so it is computed at most once. Thus, call-by-need attempts to
embody the best of both worlds—never repeat work (call-by-value), and never perform
unnecessary work (call-by-name). These are intuitively good properties to have, and
we illustrate the correctness of such an intuition with the following example, modified
from [10]:

m m

—_—~~
cm(em(-+ (cm id id) - -)id) true id bottom

n

—
where ¢, =As.Az.s (s-+- (s 2)---), true=At.Af.t,id = Ax.x, and bottom = (Ax.x x) Ax.x x.
Call-by-value never terminates, call-by-name takes exponential time, and call-by-need
takes only polynomial time [10]. Of course, this is a contrived example, but it illustrates
desirable properties of call-by-need.

In practice, however there are significant issues with call-by-need evaluation. We fo-
cus on the following: Delaying a computation is slower than performing it immediately.
This issue is well known [18, 24], and has become part of the motivation for strictness
analysis [23,32], which transforms non-strict evaluation to strict when possible.

2.3 Existing Call-by-Need Machines

Diehl et al. [11] review the call-by-need literature in detail. Here we summarize the
most relevant points.

The best known machine for lazy evaluation is the Spineless Tagless G-Machine
(STG machine), which underlies the Glasgow Haskell Compiler (GHC). STG uses flat
environments that can be allocated on the stack, the heap, or some combination [24].

Two other influential lazy evaluation machines relevant to the 4’4 machine are the
call-by-need Krivine machines [14, 19, 28], and the three-instruction machine (TIM)
[13]. Krivine machines started as an approach to call-by-name evaluation, and were
later extended to call-by-need [19,28, 10, 14]. The ¥’ & modifies the lazy Krivine ma-
chine to capture the environment sharing given by the cactus environment. The TIM
is an implementation of call-by-need and call-by-name [13]. It involves, as the name
suggests, three machine instructions, TAKE, PUSH, and ENTER. In Section 6, we follow
Sestoft [28] and re-appropriate these instructions for the 4’4 machine.

There has also been recent interest in heapless abstract machines for lazy evaluation.
Danvy et al. [9] and Garcia et al. [27] independently derived similar machines from
the call-by-need lambda calculus [4]. These are interesting approaches, but it is not yet
clear how these machines could be implemented efficiently.

3 Environment Representations

As mentioned in Section 2, environments bind free variables to closures. There is sig-
nificant flexibility in how they can be represented. In this section we review this design
space in the context of existing work, both for call by value and call by need.*

There are two common approaches to environment representation: flat environments
and shared environments (also known as linked environments) [2,29]. A flat environ-
ment is one in which each closure has its own record of the terms its free variables
are bound to. A shared environment is one in which parts of that record can be shared
among multiple closures [2,29]. For example, consider the following term:

(Ax.(Ayt)(Azt1))ta

Assuming the term ¢ has both x and y as free variables, we must evaluate it in the
environment binding both x and y. Similarly, assuming #; contains both z and x as free
variables, we must evaluate it in an environment containing bindings for both x and z.
Thus, we can represent the closures for evaluating and #1 as

tlx=nle],y =]

and
n [x:[z[C],Z: C]]

respectively. These are examples of flat environments, where each closure comes with
its own record of all of its free variables. Because of the nested scope of the given term,
x is bound to the same closure in the two environments. Thus, we can also create a
shared, linked environment, represented by the following diagram:

Now each of the environments is represented by a linked list, with the binding of x
shared between them. This is an example of a shared environment [2]. This shared,
linked structure dates back to the first machine for evaluating expressions: Landin’s
SECD machine [20].

4 Some work refers to this space as closure representation rather than environment representa-
tion [29,2]. Because the term part of the closure is simply a code pointer and the interesting
design choices are in the environment, we refer to the topic as environment representation.

The drawbacks and advantages of each approach are well known. With a flat envi-
ronment, variable lookup can be performed with a simple offset [24, 1]. On the other
hand, significant duplication can occur, as we will discuss in Section 3.1. With a shared
environment, that duplication is removed, but at the cost of possible link traversal upon
dereference.

As with most topics in compilers and abstract machines, the design space is actually
more complex. For example, Appel and Jim show a wide range of hybrids [2] between
the two, and Appel and Shao [29] show an optimized hybrid that aims to achieve the
benefits of both approaches. And as shown in the next section, choice of evaluation
strategy further complicates the picture.

3.1 Ecxisting Call-by-Need Environments

Existing call by need machines use flat environments with a heap of closures [24, 13, 18,
7]. These environments may contain some combination of primitive values and pointers
into the heap (p below). The pointers and heap implement the memoization of results
required for call by need. Returning to the earlier example, (Ax.(Ay.t)(Az.t;))f2, we can
view a simplified execution state for this approach when entering ¢ as follows:

Closure

tlx=p,y=pi]

Heap

p = iafe]
p1— Azti[x = p]

If #,[e] is not in WHNTF (this sort of unevaluated closure is called a thunk [17,25]),
then if it is entered in either the evaluation of ¢ or ¢, the resulting value will overwrite
the closure at p. The result of the computation is then shared with all other instances of x
in ¢ and ¢1. In the case that terms have a large number of shared variables, environment
duplication can be expensive. Compile-time transformation [25] (tupling arguments)
helps, but we show that the machine can avoid duplication completely.

Depending on g, either or both of the closures created for its arguments may not be
evaluated. Therefore, it is possible that the work of creating the environment for that
thunk will be wasted. This waste is well known, and existing approaches address it by
avoiding thunks as much as possible [24, 18]. Unfortunately, in cases like the above
example, thunks are necessary. Indeed, even if we tuple the closures for x, y, and z, that
tuple could be wasted if neither ¢ nor ¢’ is used. Thus, we would like to minimize the
cost of creating such thunks.

Thunks are special in another way. Recall that one advantage of the flat environ-
ments is quick variable lookups. In a lazy language, this advantage is reduced because
a thunk can only be entered once. After it is entered, it is overwritten with a value, so
the next time that heap location is entered it is entered with a value and a different en-
vironment. Thus, the work to ensure that the variable lookup is fast is used only once.

This is in contrast to a call by value language, in which every closure is constructed for
a value, and can be entered an arbitrary number of times.

A more subtle drawback of the flat environment representation is that environments
can vary in size, and thus a value in WHNF can be too large to fit in the space allocated
for the thunk it is replacing. This problem is discussed in [24], where the proposed
solution is to put the value closure in a fresh location in the heap where there is suf-
ficient room. The original thunk location is then replaced with an indirection to the
value at the freshly allocated location. These indirections are removed during garbage
collection, but do impose some cost, both in runtime efficiency and implementation
complexity [24].

We have thus far ignored a number of details with regard to current implemen-
tations. For example, the STG machine can split the flat environment, so that part is
allocated on the stack and part on the heap. The TIM allocates its flat environments
separately from its closures so that each closure is a code pointer, environment pointer
pair [13] while the STG machine keeps environment and code co-located [24]. Still, the
basic design principle holds: a flat environment for each closure allows quick variable
indexing, but with an initial overhead.

To summarize, the flat environment representation in a call by need language is
whenever a term might be needed, the necessary environment is constructed from the
current environment. This operation can be expensive, and it is wasted if the variable is
never entered. In this work, we aim to minimize this potentially unnecessary overhead.

Figure 1 depicts the design space relevant to this paper. There are existing call by
value machines with both flat and shared environments, and call by need machines with
flat environments. As far as we are aware, we are the first to use a shared environment
to implement lazy evaluation.

‘Flat Environment ‘Shared Environment
Call by need |STG [24], TIM [13], GRIN [7] %€ & Machine (this paper)
Call by value|ZAM [21], SML/NJ [3] ZAM, SECD [20], SML/NJ

Fig. 1. Evaluation strategy and environment structure design space. Each acronym refers to an
existing implementation. Some implementations use multiple environment representations.

4 Cactus Environment Calculus

This section shows how the shared environment approach can be applied to call-by-need
evaluation. We start with a calculus that abstracts away environment representation,
Curien’s calculus of closures, and we show how it can be modified to force sharing. See
Curien’s call-by-name calculus of closures in Figure 2. 3

5 Curien calls it a “lazy” evaluator, and there is some ambiguity with the term lazy, but we use
the term only to mean call-by-need. We also remove the condition checking that i < m because
we are only concerned with evaluation of closed terms.

The LEval rule pushes a closure onto the environment, and the LVar rule indexes
into the environment, entering the corresponding closure. We show in this section that
by removing ambiguity about how the environments are represented, and forcing them
to be represented in a cactus stack [30], we can define our novel call-by-need calculus.

Syntax
tu=i|Ar|tt (Term)
ieN (Variable)
cu=t[p] (Closure)
pui=elcp (Environment)
Semantics

nlp]=1Anp’]

LEval
nu3lp] =1 el p’] (LEvah

ilco-c-...ci-p] =L ci (LVar)

Fig. 2. Curien’s call-by-name calculus of closures [8]

To start, consider again the example from Section 3, this time with deBruijn indices:
(A(At) (Af1))ty. The terms ¢ and t;, when evaluated in the closure calculus, would have
the following environments, respectively:

c~t2[o]-o
c1 -t2[0]-o

Again, the second closure is identical in each environment. And again, we can rep-
resent these environments with a shared environment, this time keeping call-by-need
evaluation in mind:

T

15 [0]

C/ \C

This inverted tree structure seen earlier with the leaves pointing toward the root is called
a cactus stack (sometimes called a spaghetti stack or saguaro stack) [15, 16]. In this
particular cactus stack, every node defines an environment as the sequence of closures
in the path to the root. If #;[e] is a thunk, and is updated in place with the value after its

first reference, then both environments would contain the resulting value. This is exactly
the kind of sharing that is required by call-by-need, and thus we can use this structure
to build a call-by-need evaluator. This is the essence of the cactus environment calculus
and the cactus environment (%’&’) machine.

Curien’s calculus of closures does not differentiate between flat and shared environ-
ment representations, and indeed, no calculus that we are aware of has had the need to.
Therefore, we must derive a calculus of closures, forcing the environment to be shared.
Because we can hold the closure directly in the environment, we choose to replace the
standard heap of closures with a heap of environments. To enforce sharing, we extend
Curien’s calculus of closures to include the heap of environments, which we refer to as
a cactus environment.

See Figure 3 for the syntax and semantics of the cactus calculus. Recall that we are
only concerned with evaluation of closed terms. The initial closed term ¢ is placed in
a ([0],€[0 = o]) tuple, and evaluation terminates on a value. We define two different
semantics, one for call-by-name and one for call-by-need, which makes the connec-
tion to Curien’s call-by-name calculus more straightfoward. The rule for application
(MEval and NEval) is identical for both semantics: each evaluates the left hand side to
a function, then binds the variable in the cactus environment, extending the current en-
vironment. The only difference between this semantics and Curien’s is that if we need
to extend an environment multiple times, the semantics requires sharing it among the
extensions. This makes no real difference for call-by-name, but it is needed for the shar-
ing of results in the N'Var rule. The explicit environment sharing ensures that the closure
that is overwritten with a value is shared correctly.

4.1 Correctness

Ariola et al. define the standard call-by-need semantics in [4]. To show correctness, we
show that there is a strong bisimulation between —y and their operational semantics, |}
(Figure 4).

Theorem 1. (Strong Bisimulation)
—n e~

We start with a flattening relation between a configuration for |} and a configuration
for —y. The deBruijn indexed terms and the standard terms are both converted to terms
that use deBruijn indices for local variables and direct heap locations for free variables,
locations for global variables. The flattening relation holds only when both terms are
closed under their corresponding heaps. It holds trivially for the special case of initial-
izing each configuration with a standard term and its corresponding deBruijn-indexed
term, respectively. The proof is finished by induction on the step relation for each di-
rection of the bisimulation.

4.2 Recursion

Correct sharing for recursive data values, as pointed out in [4], is not possible without
adding explicit recursion. We return to this issue in Section 8, but note here that adding
explicit recursion to this scheme is left for future work.

Syntax

tu=i|Ar|tt

ieN

cu=1t[l]

v = At[l]
pu=glpull—p]
pu=e|c-l
I,feN
su=(c, 1)

Call-by-Name Semantics

(t[l],p) —m (Aa[l'], 1) f & dom(p’)
(tt3[l], 1) = (2[f], W' [f = 13]] - I'])

u(l,iy=0"wc-1"
i[l],) —m (c,p)

Call-by-Need Semantics

(t[1),10) Sy (An[l'], 1) f ¢ dom(u')
(t3[1], 1) —=n (2l f], W [f = 13]l]-1'])

pli)y=1=c-1" (c,p) Sy (v,u')
@[],) =n ('[! = v-1"))

Fig. 3. Cactus calculus syntax and semantics.

(D)t |} (P)Ax.t
(D, x =1, T)x | (P, x— Axt', T)Axt'

(®)Axt | (®)Axt

(@) | (P)Ax.ty
(W, X = ty) [¥ /]ty U (T Ayt

(DYt I (X)) Ayt

Fig. 4. Ariola et. al’s Operational Semantics

(Term)
(Variable)
(Closure)
(Value)
(Heap)
(Environment)
(Location)
(State)

(MEval)

(MVar)

(NEval)

(NVar)

(Id)

(Abs)

(App)

5 % & Machine

Using the calculus of cactus environments defined in the previous section, we derive an
abstract machine: the 4’& machine. The syntax and semantics are defined in Figure 5.

Syntax

su={c,0,U) (State)
tu=i|At|tt (Term)
ieN (Variable)
cu=1[l] (Closure)
v = Atl] (Value)
wo=g|ufl—p] (Heap)
pu=e]|c-l (Environment)
c:=0|occlu:=0 (Context)
Lu feN (Location)

Semantics
u:=o,ulu—c-ll) »g¢ (v,o,uur—v-I]) (Upd)
(Mtll), & ¢,1) g5 (1f1,0,BF -+ -1 & dom(u) (Lam)
(1 11),0,) —s (l1],01'[1,1) (App)
(0[1),0,1) =ge (c,1:=0o,u) where c-I' = u(l) (Varl)
(ill],0.1) =gs ((i—1D)['],0, 1) where ¢ I = u(l) (Var2)

Fig. 5. Syntax and semantics of the ¥’€ machine.

The machine operates on a similar syntax as the calculus, extended only with a con-
text to implement the updates from the N'Var subderivation (# := &) and the operands
from the NEval subderivation (¢ c¢). We also add f explicitly, which is the fresh heap
location. Thus, we now have a 4-tuple, with initial state (¢[0],(J,€[0 = o], 1). The four
parts of the tuple are the current closure, the context, the heap, and the fresh heap lo-
cation. On the update rule, the current closure is a value, and there is an update marker
as the outermost context. This implies that a variable was entered and that the current
closure represents the corresponding value for that variable. Thus, we update the loca-
tion u that the variable entered, replacing whatever term was entered with the current
closure. The Lam rule takes an argument off the context and binds it to a variable, al-
locating a fresh heap location for the bound variable. This ensures that every instance
of the variable will point to this location, and thus the bound term will be evaluated at
most once. The App rule simply pushes an argument term in the current environment.
The Varl rule enters the closure pointed to by the environment location, while the Var2
rule traverses the cactus environment to locate the correct closure.

To get some intuition for the €& machine and how it works, consider the depiction
in Figure 6 of its state during evaluation of the term: (Aa.(Ab.ba)(Ac.ca))((Ai.i)(Aj].))).
We leave the variable names for readability. For thoroughness, the occurrences of vari-
able a may be replaced with index 1, and the rest can be replaced with index 0. At
this point in the computation, the closure for a is shared, and has been updated with
its value. The closure in the context (the a from the application ¢ a) now points to the
updated value.

Closure Context Heap
a[3]
Aj.j[0] - 3c=1.] 2-b=Ac.(c a)

< | 7
\ | /
\
\d»é
O=e

Fig. 6. €& machine state example. The dotted lines represent the environment for the bound
closure, and the solid lines represent the next environment cell: 7[dotted] - solid. Variables are left
in for readability, but can be trivially replaced with deBruijn indices.

5.1 Correctness

We prove that the reflexive transitive closure of the '€ machine step relation evaluates
to a value and heap and empty context iff —» evaluates to the same value and heap.

Theorem 2. (Equivalence)

(C,‘u.) N (Vyl"l/) e <C7Da‘u> iﬁgéa <V7Dnu'l>

By induction on the —y step relation and the reflexive transitive closure of the —¢»
step relation.

6 Implementation

This section describes how the €’ & machine can be mapped directly to x64 insructions.
Specifically, we re-define the three instructions given by the TIM [13]: TAKE, ENTER,
and PUSH, and implement them with x64 assembly. We also describe several design
decisions, as well as some optimizations. All implementation and benchmark code is
available athttp://cs.unm.edu/"stelleg/cem-tfp2016.tar.gz.

Each closure is represented as a code pointer, environment pointer tuple. The Con-
text is implemented as a stack, with updates represented as a null pointer, environment
pointer tuple to differentiate them from closure arguments. The Heap, or cactus envi-
ronment, is implemented as a heap of environments.

6.1 Compilation

The three instructions are given below, with descriptions of their behavior.

— TAKE: Pops a context item off the stack. If the item is an update u :=, the instruction
updates the location u with the current closure. If it is an argument c, the instruction
binds the closure c to the fresh location in the cactus environment.

— ENTER i: Enters the closure defined by variable index i, the current environment
pointer, and the current cactus environment.

— PUSH m: Pushes the code location m along with the current environment pointer.

These operations correspond directly to lambda terms, and to the transition func-
tions of the €& machine. The mapping from lambda terms can be seen in Figure 7,
which defines the compiler. Unlike the TIM, our version of TAKE doesn’t have an arity;
we compile a sequence of lambdas as a sequence of TAKE instructions. While have not
compared performance of the two approaches directly, we suspect that a n inlined TAKE
instructions should be roughly as fast as a TAKE n instruction. Similarly, the ENTER i
instruction can be implemented either as a loop or unrolled, depending on i, and more
performance comparisons are needed to determine the trade off between code size and
speed.

Clt '] = PUSH labelcyy) : Clt] ++Cl1']
C[A.t] = TAKE : C[t]
C[i] = ENTER i

Fig.7. ¢ £ machine compilation scheme. C compiles a sequence of instructions from a term. The
label represents a code label: each instruction is given a unique label. The : operator denotes
prepending an item to a sequence and H denotes concatenating two sequences.

We compile to x64 assembly. Each of the three instructions is mapped onto x64 in-
structions with a macro. The PUSH instruction is particularly simple, consisting of only

two x64 instructions (two pushes, one for the code pointer and one for the environ-
ment pointer). This is actually an important point: thunk creation is only two hardware
instructions, regardless of environment size.

6.2 Machine Literals and Primitive Operations

Following Sestoft [28], we extend the €& machine to include machine literals and
primitive operations. Figure 8 shows the parts of syntax and semantics that are new or
modified.

Syntax
tu=i|At|tt|m (Term)
m:i=n|op (Machine)
nel (Integer)
opri=t|— x| /1=|>|< (PrimOp)
v = Ae[l] | m]l] (Value)

Integer and Primop Semantics

<}’l[l],6 C,,U,,k) —EE <Cv 9 nmvuvk> (Int)
<0p[l]76nl }’l,,U,,k> —EE (0p(n’,n)[l],o,y,k> (OP)

Fig. 8. Extensions to the syntax and semantics of the 4’4 machine.

6.3 Omitted Extensions

Our implementation omits a few other standard extensions. Here we address some of
these omissions.

Data types are a common extension that we omit [24,7]. We take the approach of
Sestoft [28] that these can be efficiently implemented with pure lambda terms. For ex-
ample, consider a list data type (in Haskell syntax): data List a = Cons a (List
a) | Nil.This can be represented in pure lambda terms with Cons = Ah.At.Ac.An.c ht
and Nil = Ac.An.n.

Let bindings are another term commonly included in functional language compilers,
even in the internal representation [7,24]. Non-recursive let is syntactic sugar for a
lambda binding and application, and we treat it as such. This approach helps ensure
that we can of compile arbitrary lambda terms, while some approaches require pre-
processing [28, 13].

Recursive let bindings are a third omission. Here we follow Rozas [26]: If it can
be represented in pure lambda terms, it should be. Thus, we implement recursion using
the standard Y combinator. In the case of mutual recursion, we use the Y combinator

in conjunction with a tuple of the mutually recursive functions. Without the appropriate
optimizations [26], this approach has high overhead, as we discuss in Section 7.1.

Our philosophy regarding extensions is: when an extension can be represented with
pure lambda calculus, then optimized to achieve equal performance to implementations
that represent them explicitly, then do so. This approach should allow more general
optimizations.

6.4 Optimizations

The €& implementation described in the previous section is completely unoptimized.
For example, no effort is expended to discover global functions to avoid costly jumps
to pointers in the heap [24]. Indeed, every variable reference will look up the code
pointer in the shared environment and jump to it. There is also no implementation of
control flow analysis as used by Rozas to optimize away the Y combinator. Thus, every
recursive call exhibits the large overhead involved in re-calculating the fixed point of
the function.

We do, however, implement two basic optimizations, primarily to reduce the load
on the heap:

— POP: A TAKE instruction can be converted to a POP instruction that throws away
the operand on the top of the stack if there are no variables bound to the A term in
question. For example, the function Ax.Ay.x can be implemented with TAKE, PQOP,
ENTER O.

— ENTERVAL: An ENTER instruction, when entering a closure that is already a value,
should not push an update marker onto the stack. This shortcut prevents unneces-
sary writes to the stack and heap [24, 14,28].

6.5 Garbage Collection

We have implemented a simple mark and sweep garbage collector with the property
that it does not require two spaces, due to constant sized closures in the heap, allowing
a linked list representation for the free cells. Indeed, while the abstract machine from
Section 5 increments a free heap counter, the actual implementation uses the next free
cell in the linked list.

Because the focus of this paper is not on the performance of garbage collection, we
ensure the benchmarks in Section 7 are not dominated by GC time.

7 Performance Evaluation

This section describes experiments that assess the strengths and weaknesses of the &
machine. We evaluate using benchmarks from the nofib benchmark suite. Because we
have implemented only machine integers, and must translate the examples by hand, we
use a subset of the nofib suite that and exclude floating point values or arrays. A list
of the benchmarks used and a brief description is given in Figure 9.

We compare the & machine to two existing implementations:

- exp3: A Peano arithmetic benchmark. It computes 3% in Peano arithmetic, and prints the
result.

— queens: Computes the number of solutions to the nqueens problem for an n by n board.

— primes: A simple primes sieve that computes the nth prime.

— digits-of-el: A calculation of the digits of e using continued fractions. Computes the first n
digits of e.

— digits-of-e2: Another calculation of the digits of e using an infinite series. Computes the first
n digits of e.

— fib: Naively computes the nth Fibonacci number.

— fannkuch: A counting benchmark counting the number of reverses of a subset of a list.

— tak: A synthetic benchmark involving basic recursion.

Fig. 9. Description of Benchmarks

— GHC: The Glasgow Haskell compiler. A high performance, optimizing compiler
based on the STG machine [24].

— UHC: The Utrecht Haskell compiler. An optimizing compiler based on the GRIN
machine [7, 12].

We use GHC version 7.10.3 and UHC version 1.1.9.3. We compile with -O0 and
-03, and show the results for both. Where possible, we pre-allocate a heap of 1GB to
avoid measuring the performance of GC implementations. The tests were run on an
Intel(R) Xeon(R) CPU E5-4650L @ 2.60GHz, running Linux version 3.16.

7.1 Results

Figure 10 gives the benchmark results. In general, we are outperformed by GHC, some-
times significantly, and we outperform UHC. We spend the remaainder of the section
analyzing these performance differences.

CE GHC -00 UHC -00 GHC -03 UHC -03
exp3 8 1.530 1.176 3.318 1.038 2.286
tak 16 8 0 0.366 0.146 1.510 0.006 1.416
primes 1500 0.256 0.272 1.518 0.230 1.532
queens 9 0.206 0.050 0.600 0.012 0.598
fib 35 2.234 0.872 10.000 0.110 8.342
digits-of-el 1000(3.576 1.274 21.938 0.118 22.010
digits-of-e2 1000|0.404 0.792 3.430 0.372 3.278
fannkuch 8 0.560 0.084 2.184 0.048 2.196

Fig. 10. Machine Literals Benchmark Results. Measurement is wall clock time, units are seconds.
Times averaged over 5 runs.

There are many optimizations built in to the abstract machine underlying GHC, but
profiling indicates that three in particular lead to much of the performance disparity:

— Register allocation: The ¥°& machine has no register allocator. In contrast, by
passing arguments to functions in registers, GHC avoids a great deal of heap thrash-
ing.

— Unpacked Literals: Related to register allocation, this allows GHC to keep ma-
chine literals without tags in registers for tight loops. In contrast, the €& machine
operates entirely on the stack, and has a code pointer associated with every machine
literal.

— Y combinator: Because recursion in the 4’4 machine is implemented with a Y
combinator, it performs poorly. This could be alleviated with CFA-based tech-
niques, similar to those used in [26].

Lack of register allocation is the primary current limitation of the €& machine. The
STG machine pulls the free variables into registers, allowing tight loops with everything
kept in registers. However, it is less clear how to effectively allocate registers in a fully
shared environment setting. That said, we believe being lazier about register allocation,
e.g. not loading values into registers that may not be used, could have some performance
benefits.

To isolate the effect of register allocation and unpacked machine literals, we replace
the use of machine integers with Church numerals for a compatible subset of the evalu-
ation programs. Figure 11 shows the performance results with this modification, which

are much improved, with the ¥’& machine occasionally even outperforming optimized
GHC.

CE GHC -00 UHC -00 GHC -03 UHC -03
tak 14 7 0 1.610 2.428 7.936 1.016 7.782
primes 32 0.846 1.494 4.778 0.666 5.290
queens 8 0.242 0.374 1.510 0.154 1.508
fib 23 0.626 0.940 5.026 0.468 5.336
digits-of-e2 6(0.138 1.478 5.056 0.670 5.534
fannkuch 7 0.142 0.124 0.796 0.040 0.808

Fig. 11. Church Numeral Benchmark Results. Measurement is wall clock time, units are seconds.
Times averaged over 5 runs.

Next, we consider the disparity due to the Y-combinator, by running a simple ex-
ponentiation example with church numerals, calculating 3% — 3% = 0. We see that in
this case, the ¥’¢ machine significantly outperform both GHC and UHC, as seen in
Figure 12 .

€& |GHC -00 |[UHC -00 |GHC -03 |UHC -03
pow 3 8|0.564 1.994 4.912 0.906 4.932

Fig. 12. Church Numeral Exponentiation Benchmark Results. Measurement is wall clock time,
units are seconds. Times averaged over 5 runs

These results give us confidence that by adding the optimizations mentioned above,
among others, the €& machine has the potential to be the basis of a real world compiler.
We discuss how some of these optimizations can be applied to the 4’6 machine in
Section 8.

7.2 The Cost of the Cactus

Recall that variable lookup is linear in the index of the variable, following pointers
until the index is zero. As one might guess, the lookup cost is high . For example,
for the queens benchmark without any optimizations, variable lookup took roughly
80 — 90% of the ¥ & machine runtime, as measured by profiling. Much of that cost was
for lookups of known combinators, however, so for the benchmarks above we added
the inlining mentioned in the previous section. Still, even with this simple optimiza-
tion, variable lookup takes roughly 50% of the runtime. There is some variation across
benchmarks, but this is a rough approximation for the average cost. We discuss how this
cost could be addressed in future work in Section 8.

8 Discussion and Related Work

While we have presented some of the related work throughout the paper, we use this
section to further address related work. We also discuss a number of possibilities for
future work, motivated by current drawbacks and inspired by related work.

8.1 Closure Representation

Appel and Shao [29] and Appel and Jim [2] both cover the design space for closure
representation, and develop a particular approach, called safely linked closures. Their
approach uses flat closures when there is no duplication, and links in a way that pre-
serves liveness, to prevent violation of the safe for space complexity (SSC) rule [1].

8.2 Eval/Apply vs. Push/Enter

Marlow and Peyton Jones describe two approaches to the implementation of function
application: eval/apply, where the function is evaluated and then passed the necessary
arguments, and push/enter, where the arguments are pushed onto the stack and the func-
tion code is entered [22].

They conclude that despite push/enter being a standard approach to lazy machines,
eval/apply performs better. While our current approach uses push enter, investigating
whether or not eval/apply could be usefully implemented for a shared environment ma-
chine like the one presented here presents an interesting opportunity for future work.

8.3 Collapsed Markers

Friedman et al. show how a machine can be designed to prevent multiple adjacent up-
date markers being pushed onto the stack [14]. This property is desirable because multi-
ple adjacent update markers will all be updated with the same value. Furthermore, they
give examples showing that in some cases, these redundant update markers can cause
an otherwise constant-spaced stack to grow unbounded. To achieve what they call col-
lapsed markers, they add a layer of indirection between heap locations and closures. We
propose a similar approach, but without the performance hit caused by an extra layer of
indirection: upon a variable dereference, check if the top of the stack is an update. If it
is, instead of pushing a redundant update marker onto the stack, replace the closure in
the heap at the desired location with an update marker. Then, the variable dereference
rule must have a check for an update marker upon dereference, and will update accord-
ingly. We have begun to implement this optimization, but leave the full implementation
and description for future work.

8.4 Register Allocation

One advantage of flat environments is that register allocation is straightforward [1, 24,
31]. It is less obvious how to do register allocation with the 4’4 machine. We speculate
that only strict free variables should be loaded into registers. That is to say, the envi-
ronment variables may not be used, and only the ones we are sure will be used should
be loaded into registers: the rest should be loaded on demand.

8.5 Verification

One attractive property of this implementation is its simplicity. This property makes it
an attractive target for a verified compiler. Because it avoids complexities required for
flat environment implementations, e.g. black hole updates, basing a verified compiler
on this machine is an exciting area for future work.

9 Conclusion

Lazy evaluation has long suffered from high overhead of delayed computations. By
carefully packaging these delayed computations, existing implementations pay an up-
front cost to ensure efficient variable lookup if a delayed computation is entered. In
this paper we have presented a novel approach that delays this cost, so that if a delayed
computation isn’t entered, it isn’t as costly.

We would like the reader to take a few key points from this paper. First, a shared
environment, explicitly represented as a cactus stack, is a natural way to share the re-
sults of computation as required by lazy evaluation. Second, this approach is in a sense
lazier about lazy evaluation in that it avoids some unnecessary packaging work. Third,
this approach can be formalized in both big-step and small-step semantics. Fourth, the
abstract machine can be implemented as a compiler in a straightforward way, yielding
performance comparable to existing implementations.

10 Acknowledgments

This material is based upon work supported by the National Science Foundation un-
der grant CCF-1422840. Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energys National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Appel, A.W.: Compiling with continuations. Cambridge University Press (2006)
. Appel, A.-W., Jim, T.: Optimizing closure environment representations. Princeton University,

Department of Computer Science (1988)

. Appel, A.W., MacQueen, D.B.: Standard ML of new jersey. In: Programming Language

Implementation and Logic Programming. pp. 1-13. Springer (1991)

. Ariola, Z.M., Maraist, J., Odersky, M., Felleisen, M., Wadler, P.: A call-by-need lambda

calculus. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. pp. 233-246. ACM (1995)

. Barendregt, H.P.: The Lambda Calculus, vol. 3. North-Holland Amsterdam (1984)
. Biernacka, M., Danvy, O.: A concrete framework for environment machines. ACM Transac-

tions on Computational Logic (TOCL) 9(1), 6 (2007)

. Boquist, U., Johnsson, T.: The GRIN project: A highly optimising back end for lazy func-

tional languages. In: Implementation of Functional Languages. pp. 58—84. Springer (1997)

. Curien, PL.: An abstract framework for environment machines. Theoretical Computer Sci-

ence 82(2), 389402 (1991)

. Danvy, O., Millikin, K., Munk, J., Zerny, I.: On inter-deriving small-step and big-step se-

mantics: A case study for storeless call-by-need evaluation. Theoretical Computer Science
435,21-42 (2012)

Danvy, O., Zerny, I.: A synthetic operational account of call-by-need evaluation. In: Pro-
ceedings of the 15th Symposium on Principles and Practice of Declarative Programming.
pp. 97-108. ACM (2013)

Diehl, S., Hartel, P., Sestoft, P.: Abstract machines for programming language implementa-
tion. Future Generation Computer Systems 16(7), 739-751 (2000)

Dijkstra, A., Fokker, J., Swierstra, S.D.: The architecture of the utrecht haskell compiler. In:
Proceedings of the 2nd ACM SIGPLAN symposium on Haskell. pp. 93—104. ACM (2009)
Fairbairn, J., Wray, S.: TIM: A simple, lazy abstract machine to execute supercombinators.
In: Functional Programming Languages and Computer Architecture. pp. 34—45. Springer
(1987)

Friedman, D., Ghuloum, A., Siek, J., Winebarger, O.: Improving the lazy Kriv-
ine machine. Higher-Order and Symbolic Computation 20, 271-293 (2007),
http://dx.doi.org/10.1007/s10990-007-9014-0, 10.1007/s10990-007-9014-0

Hauck, E., Dent, B.A.: Burroughs’ B6500/B7500 stack mechanism. In: Proceedings of the
April 30-May 2, 1968, Spring Joint Computer Conference. pp. 245-251. ACM (1968)
Ichbiah, J.: Rationale for the design of the Ada programming language. Cambridge Univer-
sity Press (1991)

Ingerman, P.Z.: A way of compiling procedure statements with some comments on procedure
declarations. Commun. ACM 4(1), 55-58 (1961)

Johnsson, T.: Efficient compilation of lazy evaluation. In: SIGPLAN Notices (1984)

19.

20.

21.
22.

23.

24.

25.

26.
217.

28.

29.

30.

31.

32.

Krivine, J.: A call-by-name lambda-calculus machine. Higher-Order and Symbolic Compu-
tation 20(3), 199-207 (2007)

Landin, P.J.: The mechanical evaluation of expressions. The Computer Journal 6(4), 308-320
(1964)

Leroy, X.: The ZINC experiment: An economical implementation of the ML language (1990)
Marlow, S., Jones, S.P.: Making a fast curry: push/enter vs. eval/apply for higher-order lan-
guages. Journal of Functional Programming 16(4-5), 415-449 (2006)

Mycroft, A.: Abstract interpretation and optimising transformations for applicative programs
(1982)

Peyton Jones, S.L.: Implementing lazy functional languages on stock hardware: The spine-
less tagless G-machine. Journal of functional programming 2(2), 127-202 (1992)

Peyton Jones, S.L., Lester, D.R.: Implementing Functional Languages. Prentice-Hall, Inc.
(1992)

Rozas, G.J.: Taming the Y operator. ACM SIGPLAN Lisp Pointers (1), 226-234 (1992)
Sabry, A., Lumsdaine, A., Garcia, R.: Lazy evaluation and delimited control. Logical Meth-
ods in Computer Science 6 (2010)

Sestoft, P.: Deriving a lazy abstract machine. Journal of Functional Programming 7(3), 231—
264 (1997)

Shao, Z., Appel, A.W.: Space-efficient closure representations. In: Proceedings of the 1994
ACM Conference on Lisp and Functioanl Programming. ACM (1994)

Stenstrom, P.: VlIsi support for a cactus stack oriented memory organization. In: System
Sciences, 1988. Vol. I. Architecture Track, Proceedings of the Twenty-First Annual Hawaii
International Conference on. vol. 1, pp. 211-220. IEEE (1988)

Terei, D.A., Chakravarty, M.M.: An LLVM backend for GHC. In: ACM Sigplan Notices.
vol. 45, pp. 109-120. ACM (2010)

Wadler, P., Hughes, R.J.M.: Projections for strictness analysis. In: Functional Programming
Languages and Computer Architecture. pp. 385-407. Springer (1987)

