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Molten Salt Battery Overview

2Guidotti et al (2006)

 Molten salt batteries are power sources that provide

 Long shelf life

 High voltage output

 High current capacity

 High power density

 Heat pellet burn releases large amounts of heat energy

 Solid electrolyte in separator melts and 
flows into porous electrodes, forming 
an electrochemical circuit and 
delivering power



 Thermal management is critical for design of molten salt batteries

 Heat generation and transport is the dominant process driving electrochemical 
performance

 Computational models widely used to aid design process

 TABS solves unsteady heat equation on 
2D axisymmetric computational domain, 
using Sierra/Aria (FEM)

 Material properties are temperature 
dependent and have uncertainty 

 Major energy source in S� is burning of 
heat pellets.  Burn front is tracked 
using a level-set method

Sandia’s Thermally Activated Battery Simulator (TABS v3)

3Stewart, J. R. and H. Edwards (2004); Notz, P.K. et al (2007); Piekos et al (2012)
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Simulated battery activation



Research Motivation and Focus
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 Uncertainty Quantification: Determining the relationship between uncertain 
model inputs and probabilistic outputs

 Yields more realistic simulation results and model validation

 Allows design engineers to make informed decisions when specifying material 
property and manufacturing tolerances

 Verification: Ensuring models are being solved correctly

 Validation: Evaluating the models for accuracy by comparing simulations to 
experiments



Quantities of Interest (QOIs)
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 Rise Time: Time between heat pellet ignition and delivery of useful electric power

 Lifetime: Time between heat pellet ignition and termination of useful power

 A translation between electrochemical power and temperature is made:

 Melted electrolyte in separator region corresponds to activated battery 

 QOIs

 Battery rise time

 Rise Time Min: Any point in separator region 
is above electrolyte melt temperature (�����)

 Rise Time Mid: Any column in separator is above �����
 Rise Time Max: Entire separator is above �����

 Battery lifetime

 Inverse of three rise time metrics

 Anode maximum temperature

 Cathode maximum temperature

Rise Time Mid / Lifetime Mid
2D Axisymmetric Simplified Geometry

HP

Cathode

Separator
Anode



Uncertainty Quantification (UQ)
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Uncertainty Quantification Methodology

7Adams et al (2013)

 Each simulation parameter has nominal 
value and uncertainty range (shown in table)

 Uniform distribution assumed

 Latin Hypercube sampling used to run 500 
unique thermal discharge simulations; QOIs 
calculated (Dakota toolkit)

 Collection of inputs and outputs used in a 
polynomial chaos UQ study

 Result is collection of uncertainty ranges and 
global sensitivity metrics for each output QOI 
w.r.t. each input parameter 



Results: QOI Value Ranges

8References

 Two types of batteries presented: long life and short life

 Maximum standard deviation (�) observed is 130% of the mean

 Maximum temperature QOIs show significantly smaller �, indicating lower 
sensitivity to input uncertainties



Results: Sensitivity Index

9References

 Sensitivity Index: Fraction of QOI 
uncertainty that results due to 
uncertainty in each input 
variable 

 Main effect sensitivity index 
shown here (no input variable 
interaction effects plotted)

 Darker red corresponds to larger 
effect of input uncertainty on 
output uncertainty

 Lifetime uncertainty mostly due 
to insulation �

 Max temperatures largely 
depend on heat pellet �� as well 

as electrode material �

 Emissivity had large input range, 
but low sensitivity index

Short Life

Long Life



Verification and Validation (V&V)
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Verification: Mesh Convergence
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 Focus here on spatial discretization (mesh refinement) effects on QOIs

 Richardson Extrapolation used to determine relative error and calculate order of 
convergence

 All QOIs approach 2nd

order convergence

 Rise time QOIs show 
largest relative errors 
(3-8% on coarsest mesh)

 Less than 1% error for 
other QOIs



Validation: Comparison to Instrumented Battery
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 Three replications of instrumented battery (each with 15 thermocouples) 
activated to gather model validation temperature data

 Example validation plot for one thermocouple location:

 Experimental values fall within confidence interval range 

 Working to improve nominal simulation accuracy and decreasing confidence  
interval
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Conclusions and Ongoing Work
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 Assessing effects of input uncertainties 

 Provides valuable information for battery design

 Motivates experiments to reduce specific uncertainties  

 DAKOTA toolkit allows for automated UQ and sensitivity studies

 Demonstrated efforts to both verify and validate our thermal model

 Ongoing/Future Work

 Narrow uncertainty ranges with in-depth literature review and experiments

 Incorporating electrochemistry and mechanics in addition to thermal
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Thank You

14


