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Molten Salt Battery Overview
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= Molten salt batteries are power sources that provide

= Long shelf life

= High voltage output

= High current capacity

= High power density
= Heat pellet burn releases large amounts of heat energy
= Solid electrolyte in separator melts and

flows into porous electrodes, forming

an electrochemical circuit and
delivering power

J Fuse Strips
(heat paper)

Guidotti et al (2006)



Sandia’s Thermally Activated Battery Simulator (TABS v3) ) fetor
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Thermal management is critical for design of molten salt batteries

= Heat generation and transport is the dominant process driving electrochemical
performance

= Computational models widely used to aid design process

= TABS solves unsteady heat equation on
2D axisymmetric computational domain,
using Sierra/Aria (FEM)
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= Material properties are temperature
dependent and have uncertainty

= Major energy source in Sg is burning of
heat pellets. Burn front is tracked
using a level-set method

Simulated battery activation

Stewart, J. R. and H. Edwards (2004); Notz, P.K. et al (2007); Piekos et al (2012)
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= Uncertainty Quantification: Determining the relationship between uncertain
model inputs and probabilistic outputs
= Yields more realistic simulation results and model validation

= Allows design engineers to make informed decisions when specifying material
property and manufacturing tolerances

= Verification: Ensuring models are being solved correctly

= Validation: Evaluating the models for accuracy by comparing simulations to
experiments




Quantities of Interest (QOls) ) teana

Laboratories

= Rise Time: Time between heat pellet ignition and delivery of useful electric power
= Lifetime: Time between heat pellet ignition and termination of useful power

= A translation between electrochemical power and temperature is made:
= Melted electrolyte in separator region corresponds to activated battery

= QOils
= Battery rise time

= Rise Time Min: Any point in separator region e e e e s s e s e s e
is above electrolyte melt temperature (Tpeit)

= Rise Time Mid: Any column in separator is above T,,.;¢

= Rise Time Max: Entire separator is above T}y01t

= Battery lifetime
= |nverse of three rise time metrics

= Anode maximum temperature - . |

= Cathode maximum temperature

Rise Time Mid / Lifetime Mid
2D Axisymmetric Simplified Geometry



Uncertainty Quantification (UQ)




Uncertainty Quantification Methodology
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= Each simulation parameter has nominal
value and uncertainty range (shown in table)

= Uniform distribution assumed

= Latin Hypercube sampling used to run 500
unique thermal discharge simulations; QOls
calculated (Dakota toolkit)

= Collection of inputs and outputs used in a
polynomial chaos UQ study

= Result is collection of uncertainty ranges and
global sensitivity metrics for each output QOI
w.r.t. each input parameter

Parameter Lower Bound | Upper Bound
HP ¢, 60% 140%
Separator c,, 60% 140%
Cathode c,, 60% 140%
Anode ¢, 60% 140%
HP » 10% 190%
Separator K 10% 190%
Cathode x 10% 190%
Anode & 10% 190%
Insulation ~ 10% 500%
HP Density (p) 97% 103%
HP Mass 99.5% 100.5%
HP Burn Speed 80% 100%
HP Heat Output 99% 101%
Ambient Temp 99.6% 100.4%
Emissivity (€) 0 1

Adams et al (2013)



Results: QOI Value Ranges ) teana
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=  Two types of batteries presented: long life and short life

QOI Short Life | Long Life
Lifetime Max 44% 32%
Lifetime Mid 62% 30%
Lifetime Min 76% 54%
Cathode max(T) 12% 10%
Anode max(T) 12% 9%
Rise Time Max 35% 130%
Rise Time Mid A7% 53%
Rise Time Min 59% 64%

= Maximum standard deviation (o) observed is 130% of the mean

= Maximum temperature QOIs show significantly smaller o, indicating lower
sensitivity to input uncertainties




Results: Sensitivity Index ) teana
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= Sensitivity Index: Fraction of QOI Lifetime Max | & & o5 0.9
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Verification and Validation (V&V)




Verification: Mesh Convergence ) teana

Laboratories

= Focus here on spatial discretization (mesh refinement) effects on QOls

= Richardson Extrapolation used to determine relative error and calculate order of
convergence

10! ; 5
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All QOls approach 2 e Rice Time Mid :
order convergence —¥— Rise Time Max
. . —<4- Anode max(T)
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Validation: Comparison to Instrumented Battery ) eora

Laboratories

= Three replications of instrumented battery (each with 15 thermocouples)
activated to gather model validation temperature data

=  Example validation plot for one thermocouple location:

—
!

Temperature

— Experiment mean
— Experiment range

Experiment 20
Base case simulation
¥ ¥ 95% confidence interval

Time
= Experimental values fall within confidence interval range
=  Working to improve nominal simulation accuracy and decreasing confidence
interval

I ———————



Conclusions and Ongoing Work ) teana
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= Assessing effects of input uncertainties
= Provides valuable information for battery design
= Motivates experiments to reduce specific uncertainties
= DAKOTA toolkit allows for automated UQ and sensitivity studies

= Demonstrated efforts to both verify and validate our thermal model

=  Ongoing/Future Work
= Narrow uncertainty ranges with in-depth literature review and experiments
= |ncorporating electrochemistry and mechanics in addition to thermal
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