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arbitrary encapsulation scenarios. A key parameter of such models is the cure

shrinkage (volume change) associated with cross-linking the network. This 1370

parameter is difficult to measure, and many different approaches have been 260

taken with varying degrees of success including: density measurements3, 1 Adolf et al., SAND2011-4751 _—

confined force measurements3 (and associated inverse modeling), embedded 2 Kropka et al., SAND2016-5453 1350
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modeling)>>, and likely more. Generally these tests are complicated or require 5 adolf et al., J Rheology 51 2007 Recorded temperatures in the 0.5” epoxy runs show

high fidelity inverse modeling for example via Finite Element Analysis (FEA). 6 Timoshenko, J Opt Soc Am & Rev Sci Inst. 1925 Test Procedure large exotherms of up to 70 C above the oven
Here, we explore a comparatively simple, alternative approach to measuring residual stress during cure based on the bi-layer 1. At RT, mix resin (Epon® 828) and cross-linker (Jeffamine® T403). Pour temperature (100 C case)’.’ Much smaller exotherms
beam geometry inspired by Timoshenko®. Simple inverse modeling is required that does not require sophisticated codes, and onto the tape-molded Al beam to a target thickness. are observed for the 0.25 epo>.<y run.s. o
we will show good agreement with other techniques. 2. Place bi-material beam in the oven with a controlled temperature. ) targe ixother-m.s c;Jre the epgxm.:tshqwcklyt(hwnhsm 2
— : _ _ . _ | | : ours from mixing) compared with more than
Objective: Demonstrate the effectiveness of Bi-material tests to determine thermoset cure shrinkage 3. Cure for 24 hours. Remove from oven and let cool to RT hours for the cooler runs
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Co nc' usions Comparison of Cure Shrinkage Parameters
* Bi-material beam analysis is effective in determining the rubbery cure shrinkage of Epon® 828/T403 Epoxy at different temperatures and beam thicknesses compared with previous high from [3] 0.082 * Cure shrinkage was optimized
measurements from [3] over 0<x<0.9999 cure
* Simple inverse modeling based on reference [6] is required, but the overall approach is robust to large exotherms and associated temperature change. BOrT from 0.5” tests 0.0804 simultaneously for 0.5 tests
* The experiments show continued cure well after the cross-linking reaction is complete according to the reaction kinetics from [3]. This physics could be considered in future work 1 * Agreementis good compared
* The model does not include viscoelasticity and could be extended to include vitrification during cure, which we are currently pursuing with Epon® 828/DEA o= from (3] 0.060 with different experimental
* Some anomalous behavior in the difference between 0.25 and 0.5 inch epoxy tests are still under investigation. measurements
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