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Overview 

 Why do we need it? 

 How does it work? 

 What is the impact? 
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Motivation 

 Renewable energy technologies critical to energy future 
 Reduce carbon emissions and pollution 

 Secure and Sustainable Energy Future (SSEF Sandia mission area) 
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2015 – Warmest Global Year on Record (since 1880) – Colors indicate temperature anomalies 

(NASA/NOAA; 20 January 2016). 



Problem Statement 

 Current renewable energy 
sources are intermittent 
 Causes curtailment or negative 

pricing during mid-day 

 Cannot meet peak demand, 
even at high penetration 

 Available energy storage 
options for solar PV & wind 
 Large-scale battery storage too 

expensive 

 $0.20/kWhe - $1.00/kWhe 

 Compressed air and pumped 
hydro – geography and/or 
resource limited 
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Source:  California Independent System Operator 

The “Duck Curve” 



Need 

 Renewable energy technology with reliable, efficient, and 
inexpensive energy storage 

 

 
 

 Current state-of-the-art CSP uses molten salt as storage media 
 Decomposes at temperatures < 600 ˚C 

 Need higher temperatures to reduce costs 
 More efficient power cycles (supercritical CO2 Brayton Cycles >700 ˚C) 

 Air Brayton Combined Cycles (>1000 ˚C) 

 Thermochemical Storage & Solar Fuels (>1000 ˚C) 
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Concentrating solar power (CSP) with 

thermal energy storage 

High-temperature particle receivers for 

concentrating solar power 



Overview 

 Why do we need it? 

 How does it work? 

 What is the impact? 
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High Temperature Falling Particle Receiver 
(DOE SunShot Award FY13 – FY16) 
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Falling particle receiver 

Particle elevator 

Particle hot storage 

tank 

Particle cold storage 

tank 

Particle-to-working-fluid 

heat exchanger 

Goal:  Achieve higher temperatures, higher 

efficiencies, and lower costs 



Advantages of Particle Receivers 

 Direct heating of particles 

 Higher temperatures than conventional molten salts 
 Enable more efficient power cycles 

 Higher solar fluxes for increased receiver efficiency 

 Direct storage of hot particles 

 Reduced costs 
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CARBO ceramic particles (“proppants”) 

particle Power 



History 
Particle Receiver Research at Sandia 

 1980’s 
 Feasibility study, modeling, bench-scale testing 

 2007 – 2008 
 First on-sun particle receiver test at Sandia 

 Batch run – no continuous operation 

 “Low” temperatures (up to ~300 ˚C) 

 Low thermal efficiency (~50%) 

 Goal of current work (2013 – present) 
 Higher temperature (> 700 ˚C particle outlet) 

 Higher thermal efficiency (> 90%) 

 Continuous on-sun operation at 1 MWt 
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Jill Hruby 

Sandia President 



Particle Receiver Designs – Free Falling 
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Particle Receiver Designs – Pachinko 
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Particle Flow over Chevron Meshes 
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Pros:  particle velocity 

reduced for increased 

residence time and heating 

 

Cons:  Mesh structures 

exposed to concentrated 

sunlight (~1000 suns) 



Prototype System Design 
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~45 ft 

Olds 
Elevator 

Top hopper 
(two release 
slots) 

Receiver 

Bottom 
hopper 

Water-cooled 
flux target 

Work 
platforms 

Caged 
ladders 

Open space for 
1 MW particle 

heat exchanger 

Top of tower 
module 



Lifting the system to the top of the 
tower 
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On-Sun Tower Testing 
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Over 600 suns peak flux on receiver 

(July 20, 2015) 



On-Sun Tower Testing 
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Particle Flow Through Mesh Structures 

(June 25, 2015) 
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 Why do we need it? 

 How does it work? 

 What is the impact? 
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Impact - Performance 

 Designed and constructed world’s first continuously 
recirculating, on-sun, high-temperature particle receiver 
 Achieved average particle outlet temperatures > 800 ˚C 

 Peak particle outlet temperatures > 900 ˚C 

 Particle heating up to ~200 – 300 ˚C/(m of drop) 

 Thermal efficiency up to ~70% to 80% 

18 

0

50

100

150

200

250

0 200 400 600 800

A
ve

ra
ge

 P
ar

ti
cl

e
 D

T 
p

e
r 

U
n

it
 D

ro
p

 
Le

n
gt

h
 (

°C
/m

)

Average Irradiance (kW/m2)

~1 - 3 kg/s/m

~3 - 6 kg/s/m

Avg Particle Temperatures = 200 - 600 C

Master_FPR_tests_CorrectedMassFlow_v7_ckho.xlsx

0

50

100

150

200

250

300

350

400

100 300 500 700 900 1,100

A
ve

ra
ge

 P
at

ic
le

 D
T 

p
e

r 
U

n
it

 D
ro

p
 

Le
n

gt
h

 (
˚C

/m
)

Average Irradiance (kW/m2)

Original SS316 mesh insert (Avg
Particle T = 460 - 660 C)

New Multi-Material Mesh Insert
(Avg Particle T = 500 - 710 C)

Particle mass flow 
~1.5 - 2.5 kg/s/m

Master_FPR_tests_CorrectedMassFlow_v7_ckho.xlsx

Free-Fall Obstructed-Flow 



Impact – Advanced Modeling 

 Developed new coupled multi-
physics, multiphase models 
 Radiation, convection, discrete 

phase particles, turbulence 

 Optimization of receiver 
geometry, particle size, mass flow 
rate, release patterns, air flow 
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Publications & Patents 

 4 Patent Applications 

 Over 20 peer-reviewed publications 
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Falling Particle Solar Receivers, U.S. 

Patent Application 15095738, 4/11/16 



International Collaboration 

 German Aerospace Center (DLR) – Partner on DOE project 

 Australian Renewable Energy Agency and CSIRO (CRADA) 

 Spain (Abengoa) (work for others) 

 King Saud University – Partner on DOE project 
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300 kWt Falling Particle Receiver Plant, Riyadh, Saudi Arabia 



Commercial Interest 
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New Funding 

 Two DOE SuNLaMP Projects - $6M (FY16 – FY18) 
 Particle/sCO2 heat exchanger and particle release patterns 

 DOE APOLLO Project with Abengoa - $1M (Sandia share) 
 Integrated particle receiver for combined cycle plant 

 DOE ELEMENTS Project - $4M (Orgs. 6124 and 1815) 
 Thermochemical particle storage  

 

 DOE Next Generation CSP Plant Demonstration – up to $50M 
 Particle receiver is one of two options being pursued 
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Why do football coaches love CSP 
engineers? 

 Because we make great receivers! 
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Backup Slides 
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Free-Fall vs. Obstructed Flow 
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SEM Images of Used and Unused Particles 
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Figure 18.  Particle size distribution before and after testing. 
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July 24, 2015 – Nearly 700 suns 
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SS316 Mesh Failure Analysis 
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Mesh located far from failed region Mesh located within failed region 

(ceramic particles sintered on mesh) 



SS316 Mesh Failure Analysis 
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Top left:  cross-

sectional view of intact 

wire mesh 

 

Top right: cross-

sectional view of 

oxidized wire mesh 



SS316 Mesh Failure Analysis 
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Cross-sectional view of o idized wire mesh; wire ruptured and “leaked” molten steel out of 

oxidized shell (white is stainless steel, rough gray area is oxidized mesh) 



Irradiance Measurements 
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Measured Simulated using Ray Tracing 

(SolTrace) 



Temperature Measurements 
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 Evaluate use of air recirculation along 
aperture to reduce heat loss and 
impacts of external wind 
 Investigate particle size, location, particle 

flow rate, air flow rate, external wind 

Air Curtain Modeling (SNL) 

1 mm particle size 35 100 mm particle size 10 mm particle size 



Novel Particle Curtain Designs 

 Develop new particle release configurations that increase 
solar absorptance and thermal efficiency 

36 

U.S. Provisional Patent 62145136/SD12934.0 

April 9, 2015 


