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Introduction and Spatial Solution Methods

Two Types of Strongly Random Media

Spatially-continuous mixtures

Random density/mixing
Atmospheric radiative transfer
BWR coolant

Spatially-discontinuous materials

Random discrete material
mixing
Rayleigh-Taylor instabilities
Porous materials
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Introduction and Spatial Solution Methods

The Random Transport Equation

Steady-state, one-dimensional, mono-energetic,
isotropically-scattering, neutral-particle, stochastic transport
equation:

µ
∂ψ(x , µ, ω)

∂x
+Σt (x , ω)ψ(x , µ, ω) =

Σs(x , ω)

2

∫ 1

−1
dµ′ψ(x , µ′, ω),

0 ≤ x ≤ s; − 1 ≤ µ ≤ 1,
ψ(0, µ, ω) = δ(1− µ), µ > 0; ψ(s, µ, ω) = 0, µ < 0

(1)

Quantities of interest (QoI) derived from ψ(x , µ, ω)

e.g., 〈φm(x)〉, 〈Jm(x)〉, P(Jm(x))
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Introduction and Spatial Solution Methods

Random Transport Solution Approach

Spatial Solution Methods:
MC - Monte Carlo transport
WMC - MC with Woodcock sampling

Random Geometry Modeling:
KL - Karhunen-Loève expansion
lognormal, Nataf transformations

Stochastic Solution Methods:
RS - Random Sampling
SC - Stochastic Collocation (isotropic/anisotropic)
PCE - Polynomial Chaos Expansion
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Introduction and Spatial Solution Methods

Spatial Solution Methods

MC - traditional Monte Carlo particle simulation
WMC - MC with Woodcock interaction rejection scheme:

Choose Σ∗t equal to or greater than Σt for possible particle
tracklength
Stream based on Σ∗t
Accept or reject interaction based on Σ∗

t
Σt

Table: MC and WMC Mechanics
Stream Accept? Scatter?

MC ln(η)
Σt

N/A Σs
Σt

WMC ln(η)
Σ∗

t

Σ∗
t

Σt

Σs
Σt
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Random Geometry Modeling: Lognormal Transformation

Random Geometry Modeling: KL Expansion

Karhunen-Loève (KL) expansion:

w(x , ω) = 〈w〉+
∞∑

k=1

√
γkφk (x)ξk (ω) (2)

Discrete in random space: countably-infinite number of
random variables
Preserve second order statistics:

Mean 〈w〉
Variance vw
Autocovariance Cw (x , x ′)

Solve transport equation on realizations of KL expansion
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Random Geometry Modeling: Lognormal Transformation

Random Geometry Modeling: Autocovariance
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Random Geometry Modeling: Lognormal Transformation

Numeric KL Eigenvalue and Eigenvector Solution

KL eigenspectrum and eigenvectors from Fredholm integral
equation: ∫

Ω
Cw (x , x ′)φk (x ′)dx ′ = φk (x)γk (3)

Nyström method for numerical solve:

N∑
j=1

wjCw (xk , xj)φ̂i(xj) = γ̂i φ̂i(xk ), k = 1, . . . ,N (4)

or
CWyi = γiyi → W

1
2 CW

1
2 y∗i = γ̂iy∗i , yi = W−

1
2 y∗i (5)
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Random Geometry Modeling: Lognormal Transformation

Motivation for Lognormal Transformation: Positivity
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Random Geometry Modeling: Lognormal Transformation

Lognormal Transformation

Lognormal Transformation Definition:

Σ(x , ω) = exp
[
w(x , ω)

]
, w(x , ω) = 〈w〉+

K∑
k=1

√
γkφk (x)ξk (ω)

(6)
Transformation of Second-order Information:

〈w〉 = ln

(
〈Σ〉2√

vΣ + 〈Σ〉2

)
; vw = ln

(
vΣ
〈Σ〉2

+ 1

)
(7)

ρw (x , x ′) =
ln
(
ρΣ(x , x ′) vΣ

〈Σ〉 + 1
)

ln
(

vΣ
〈Σ〉2 + 1

) , ρw =
Cw

vw
, ρΣ =

CΣ

vΣ
(8)
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Random Geometry Modeling: Lognormal Transformation

Lognormal and Gaussian Cross Section Realizations
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Random Geometry Modeling: Lognormal Transformation

Lognormal Transformation Moment Preservation
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Reduced Order Modeling of KL Coefficients

Stochastic Solution Methods

Quantity of Interest (QoI) Solution Methods:

Random Sampling (RS): Monte Carlo
QoI moments
QoI PDF

Deterministic Sampling: Stochastic Collocation (SC)
QoI moments

Surrogate Model: Polynomial Chaos Expansion (PCE)
QoI moments
QoI PDF
QoI surface
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Reduced Order Modeling of KL Coefficients

Solution of Response Moments

Response calculated:

〈φm〉 =

∫
ξN

· · ·
∫
ξ1

φm(x , ξ1, . . . , ξN)P(ξ1, . . . , ξN)dξ1 · · · ξN , (9)

Probability density P(ξ1, . . . , ξN) factors into a product of
standard normals:

P(ξ1, . . . , ξN) =
N∏

n=1

P(ξn), ∀ ξn ∈ N(0,1) (10)
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Reduced Order Modeling of KL Coefficients

Random Sampling (RS) & Stochastic Collocation (SC)
Expectation
through RS:

Expectation
through SC:

〈φm〉 ≈ 1
R

R∑
i=1

φm(x , ξi
1, . . . , ξ

i
N) (11)

〈φm〉 ≈
QN∑
qN

· · ·
Q1∑
q1

wq1 · · ·wqN φ
m(x , ξq1

1 , . . . , ξ
qN
N ) (12)

Table: RS and SC Properties

RS SC

Number of samples: R
∏N

n=1 Qn

Convergence rate: R−0.5 variable

Curse of dimensionality: no
yes, can mitigate with anisotropic SC,

e.g., on KL monotonic decrease
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Reduced Order Modeling of KL Coefficients

Polynomial Chaos Expansion (PCE)

N-dimensional, K -order model of φ(x , ω) as a function of
coefficients uκ(x) and Hermite polynomials Hκ(ξ):

φ(x , ω) =u0(x)H0 +
N∑

i1=1

ui1(x)H1(ξi1) +
N∑

i1=1

i1∑
i2=1

ui1 i2(x)H2(ξi1 , ξi2) + · · ·

+
N∑

i1=1

· · ·
i1∑

iK−1=1

ui1···iK−1(x)HK−1(ξi1 , · · · , ξiK )

(13)

Written more succinctly:

φ(x , ω) =
Kt∑

κ=0

ûk(κ)(x)Hk(κ)(ξ) (14)

Where the number of terms is:

Kt + 1 =
(N + K )!

N!K !
(15)
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Reduced Order Modeling of KL Coefficients

Solution of PCE Coefficients Using SC (SC-PCE)
Begin with the expansion and note i.i.d. bases for factoring joint
polynomials into univariate polynomials:

φ(x , ω) =
Kt∑

κ=0

ûk(κ)(x)Hk(κ)(ξ); H(ξ1, . . . , ξN) =
N∏

n=1

H(ξn) (16)

Take multi-dimensional inner-product:〈
φ(x , ξ),Hj(ξ)

〉
= ûk(x)

〈 Kt∑
κ=0

Hk(ξ),Hj(ξ)
〉
=

ûj(x)
aj

, aj =
N∏

n=1

1√
2πjn!δkn jn

(17)

Solve flux coefficients:

ûk(x) = ak

〈
φ(x , ξ),Hk(ξ)

〉
(18)

Integrate using stochastic collocation



22/35

Radiation Transport in Random Media With Large Fluctuations

Continuous Media Results

Outline

1 Introduction and Spatial Solution Methods

2 Random Geometry Modeling: Lognormal Transformation

3 Reduced Order Modeling of KL Coefficients

4 Continuous Media Results

5 Random Geometry Modeling: Nataf Transformation

6 Conclusions and Future Work



23/35

Radiation Transport in Random Media With Large Fluctuations

Continuous Media Results

Lognormal KL Flux Averages
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AM: Atomic Mix

RS (MC): 10,000 realizations

iSC: Ks = Ka = 4, Qn = 3
(6561 realizations)

aSC: Ks = 4, Qks = {4,3,3,2}
Ka = 3, Qka = {4,3,2}
(1728 realizations)
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Continuous Media Results

Lognormal KL Flux Standard Deviations
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Figure: Flux Standard Deviations
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Continuous Media Results

Lognormal KL Transmission Moments

RS (MC): 10,000 realizations

iSC: Ks = Ka = 4, Qn = 3
(6561 realizations)

iSC-PCE: K = 3

aSC: Ks = 4, Qks = {4,3,3,2}
Ka = 3, Qka = {4,3,2}
(1728 realizations)

aSC-PCE: K = 3

Table: Transmission Moments

x̄T sT sx̄T

RS 0.06629 0.10529 0.00105

iSC 0.06422 0.10484 N/A

iSC-PCE 0.06422 0.10436 N/A

aSC 0.06866 0.10585 N/A

aSC-PCE 0.06866 0.10557 N/A
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Random Geometry Modeling: Nataf Transformation

Nataf Transformation
Transform Gaussian field Y (x) to discrete field Z ∗(x) and
normalize to zero mean and unit variance (E [Z ] = 0, V [Z ] = 1) :

Z ∗(x) =

{
1 if in mat 1
0 if in mat 0

⇒ Z (x) =


p0−1√

p0(1−p0)
if in mat 1

p0√
p0(1−p0)

if in mat 0
(19)

Solve Gaussian value wt for which FY (wt ) = p0:

FY (wt ) =

∫ wt

−∞

1√
2π

exp
[
− (x)2

2

]
dx ′ = p0 ⇒ wt =

√
2erf−1(2p0−1) (20)

Utilize wt in definition of Nataf transformation:

z = c(w) =


p0−1√

p0(1−p0)
if w < wt

p0√
p0(1−p0)

if w > wt
(21)
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Random Geometry Modeling: Nataf Transformation

Nataf Transformation: Gaussian Covariance Function

Relate Gaussian (RYY ) and field (RZZ ) covariance:

RZZ (x1, x2) =E [Z (x1),Z (x2)] = E [c(Y (x1)), c(Y (x2))]

=

∫ ∞
−∞

∫ ∞
−∞

c(w1)c(w2)pyy (w1,w2,RYY )dw1dw2
(22)

Expand bivariate Gaussian pdf (pyy ) with Hermite polynomials (Hm) and
simplify:

RZZ =
∞∑

m=0

K 2
mRm

YY , Km =
1√
m!

∫ ∞
−∞

c(y)Hm(y)φ(y)dy (23)

Solve RYY (r), r = |x1 − x2|, numerically.
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Random Geometry Modeling: Nataf Transformation

Discrete KL Realization Visualization

Figure: Discrete KL Realization Figure: Discrete KL Realization
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Random Geometry Modeling: Nataf Transformation

Example Markov Realizations
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Random Geometry Modeling: Nataf Transformation

Discrete KL Moment Preservation

Figure: Observed Cross Section Moments
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Random Geometry Modeling: Nataf Transformation

Numerical Sampling of Discrete KL Covariance

Figure: Process, Gaussian, and Sampled Covariances
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Conclusions and Future Work

Conclusions

Lognormal transform of Gaussian process maintains positivity in
reconstructions

Karhunen-Loève models which require a relatively-low
truncation order can be computed on efficiently using stochastic
collocation, especially anisotropic stochastic collocation

Polynomial Chaos Expansion models allow PDF generation
using SC scheme

Discontinuous media can be modeled with Gaussian input
distributions using the Nataf transformation
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Conclusions and Future Work

Future Work
Planned:

Complete full-transport implementations
Perform convergence studies to investigate stochastic smoothness

Possible:
Examine non-exponential covariance functions for discontinuous media
Extend discontinuous media modeling to multi-D
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Conclusions and Future Work

Questions?
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