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Abstract
The quantification of uncertainty is an important aspect in modern design. One relatively new
technique to quantify this uncertainty is the maximum entropy approach. This approach charac-
terizes the physical system in terms of random matrices. Each of the random matrices is char-
acterized by a single dispersion parameter and is derived tomaintain positive-definiteness of the
system matrix. The random matrices are generated to have a mean value of the nominal system
and the variance is controlled by the dispersion parameter.This dispersion parameter charac-
terizes the model-form uncertainty, which is a large area ofcurrent research. The maximum
entropy approach has the ability to characterize both the model-form and parametric uncertainty
independently. The determination of the dispersion parameter is done by creating the maximum
likelihood estimate. This estimate requires a numerical probability measure for any real world
system since an analytical distribution cannot be determined. This paper investigates the effect
of multiple sampling techniques, such as Monte-Carlo and Latin Hypercube, and multiple prob-
ability measurements, such as histograms and density kernel estimation. The investigation is
performed on a planar frame truss with uncertainty introduced due to a reduced model using
different reduction techniques such as free-interface andfixed-interface reductions. The induced
uncertainty is compared to the truth data from the non-reduced system using the fixed-interface
and free-interface modes. This technique is a systematic method that produces repeatable results
that can be used in model simulations to produce a stochasticoutput range that is verified to the
desired truth data.
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1 Introduction

Modern engineering design primarily uses the advancement in computational ability to aid and
optimize a design. With the use of these techniques, designsare able to be developed that
meet the design requirements and can lead to reduced overallcost. One of the main techniques
used is the discretization of the system using finite elements. The implementation of this and
other techniques introduces several assumptions that leadto uncertainty. These uncertainties are
very important and needs to be quantified. One of the important sources of uncertainty is the
selection of the model, the model form error. High-fidelity finite elements are used in order to
give accurate results, but using this computer model requires a large amount of computational
power. In order to perform multiple possible designs, a reduced order model (ROM) is typically
used. By using ROMs, additional model form error is introduced into the system. Quantifying
this error is important to incorporate a confidence in the model output.

Determination of the model form error is difficult and can be characterized by using different
methods. One classical approach to characterizing the model form error is with the use of fuzzy
sets. This idea was originally derived in [1]. Fuzzy sets arethought of as a set that are defined
by non-distinct bounds. A non-engineering example of a fuzzy set is describing a person’s
height as tall or short. The basic concept of this technique is simple but the implementation in
computational codes is very complex. A review of this approach and a comparison between this
and other techniques is presented in [2] and in [3].

Since the implementation of fuzzy sets is complicated, another method is required to simplify
the calculation of the model form error. One technique is themaximum entropy, non-parametric
approach. This method is originally derived in [4] by incorporating random matrices into the
system equation of motion. Originally, this method is used to apply some randomness into the
system that is not associated with a specified cause. The theory is generalized and expanded in
[5]. Later on, in [6], this technique is expanded to be used tocharacter the model form error and
the parametric error independently. A simplified methodology of this technique is presented in
[7] with application on a wind turbine in [8]. Expansion of this method to increase repeatability
for the application of ROMs is presented in [9].

This paper explains the maximum entropy approach for the application of ROMs, primarily
fixed-interface and free-interface ROMs. One of the main focuses of this paper is to quantify
the sensitivity of this method to the engineering choices made. The main choices that are made
include: what type of distribution sampling technique to use, how many samples are used in
the sampling technique, and how the probability measure is calculated. Section 2 describes the
maximum entropy approach that is used throughout this research. In Section 3, the different
engineering choices are discussed and the underlying theory of each choice is explained. This
technique is applied to a specific computer model that is described in Section 4. Two different
ROMs are used and discussed: fixed-interface ROM is presented in Section 5 and the results
from the free-interface ROM is discussed in Section 6. Some concluding remarks are presented
in Section 7.



2 Maximum Entropy Approach

In the system of interest, the equations of motion are based on linear mass and stiffness. The
mass matrix is positive definite while the stiffness matrix is either positive definite or semi-
positive definite depending if the system is constrained or contains rigid body motion. Due to
the definiteness of the matrices, these can be decomposed using Cholesky decomposition similar
to

[M ] = [LM ]T [LM ], (1)

with [LM ] is an upper triangular matrix that is the Cholesky decomposition of the mass matrix
[M ]. For a non-singular matrix,[LM ] is a square, upper triangular matrix, while for a singular
matrix, [LM ] is a full, rectangular matrix obtained by using a Cholesky-like decomposition using
the covariance of the matrix. The Cholesky decomposition isa function of the input parameters
to the FE model. To incorporate model form error, a random germ is added that is also generated
to be positive definite so that the resulting matrix is still positive definite or semi-positive definite.
The germ is incorporated using the relation

[M ] = [LM ]T [G(δM )][LM ], (2)

where[G] is a random germ with an expected value ofI andδM is the dispersion parameter
for the mass matrix. The variance of the random germ is a function of δ scaled by the size of
the matrix. More detail of how to formulate this germ is givenin [4, 7, 8, 10]. The value of

δ is bounded by the size of the system. This range is given asδ ∈ [0,
√

n+1

n+5
), wheren is the

size of the system. As the system becomes very large, this range approaches[0, 1) that leads to
the presentation of this value as a percentage, although, performing this analysis of such a large
system can become computationally infeasible.

The dispersion parameter is chosen to best fit the truth data,which corresponds to having the
highest probability in the probability density function. Truth data can be given as many things
such as the frequency response function, mode shapes, or natural frequencies. This research
uses the first11 elastic natural frequencies as the truth data. The probability is best given as the
likelihood function, which is the objective function for determining the dispersion variable. The
main calculation is the likelihood value for each dispersion variable. This likelihood value is
defined as the joint probability that the truth data exists within the model with a given value of
the dispersion parameter, and is shown as

L(δ) = Pr(TruthData|δ), (3)

whereL(δ) is the likelihood value andPr() is the probability value that the truth data exists in
the model. For the simplicity of calculations, each naturalfrequency is treated as independent.
Due to the independence, the joint probability can be rewritten as



Pr(TruthData|δ) = Πi Pr(ωi|δ). (4)

This calculation yields a value on the range of[0, 1]. The optimal dispersion value is defined
as the argument maximum of the likelihood function. Since this calculation has a very small
range, the differences between each dispersion value can besmall that can be affected by the
computer resolution error. In order to reduce this error, the log-likelihood function is used. For
these calculations, the negative log-likelihood functionis used in order to simply expand this
method for the use of an optimization technique. The negative log-likelihood is calculated by
computingℓ =

∑

i−log(Pr(ωi|δ)). The reason this works is because−log() is a monotonically
decreasing function, which means that the argument minimumof the negative log-likelihood is
the same as the argument maximum of the likelihood function.

The calculation of the likelihood is based on the probability measure. There are two ways to
compute this probability: analytically or numerically. Inorder to calculate the probability ana-
lytically, the distribution of the natural frequency must be known, which is very hard to generate.
These simulations calculate the probability numerically based on a distribution sampling simu-
lation. In order to calculate the probability, a histogram can be used. For these calculations, the
tolerance band is based on0.1% of the nominal natural frequency. The probability is calculated
as the percentage of the number of times a natural frequency lands within this tolerance band.
This determination of the band is very critical in the execution of this analysis. A band that
is too small will result in very large variability, while a band that is too large will not be able
to differentiate between different dispersion values. Theargument minimum of this negative
log-likelihood function is the statistical estimate of thedispersion variable.

Using a histogram is one method to compute the probability numerically; kernel estimation is
another useful method to compute the probability. This method of determining the probabil-
ity is a classical statistical approach that is commonly used to generate the probability density
function. The calculation of the density function is based off of a finite number of samples and
increases the accuracy of the probability compared to usinga histogram. An analysis of the un-
derlying calculations can be found in [11]. This describes the math in terms of a generic kernel:
a discussion of various kernels is presented in [12]. The comparison between using a kernel
estimator and histograms is presented in [13] and the selection of a smoothing parameter that is
used in several kernel functions is discussed in [14]. In this research, a Gaussian kernel that is
programmed into Matlab is used. Future work includes the results from the selection of different
kernel functions.

Determining the probability is very dependent on the sampling methods, and the probability
will vary based on what samples are used. In order to reduce this randomness, the empirical
likelihood function is applied. The empirical negative log-likelihood is a technique that is able
to reduce the randomness due to the sampling technique. Thiscalculation can be determine by
using the expression

EL(δ) = sup
i

ℓi(δ), (5)



in which,i is the independent evaluation of the negative log-likelihood, ℓi. This empirical formu-
lation accounts for the randomness in the sampling technique. The optimal dispersion parameter
is then chosen based on

δoptimal = argmin EL(δ). (6)

The optimal dispersion parameter is used in a forward propagation of the matrices to determine
the distribution of the desired output, such as reliabilitymeasures or dynamic characteristics.

3 Theory of Specific Engineering Decisions

The use of the maximum entropy approach requires several assumptions to be made. Each
additional assumption or choice can have an effect on the output of the method. One of the main
decisions is how the distribution is sampled. This discussion is very dependent on the available
computational ability. Two methods of sampling are described in this section. Along with the
different sampling methods, the theory of the model reduction techniques is also described in
this section.

3.1 Sampling Methods

One of the major decisions in the maximum entropy approach ishow the distribution should be
sampled in order to determine the probability. Since the analytical solution is not known, the
probability needs to be computed numerically. This requires the input distribution to be sampled
and then the deterministic process is evaluated at each sampled point. Two types of sampling
methods are presented here: Monte-Carlo (MC) and Latin Hypercube (LHC). The MC method is
a simple technique but requires a large amount of samples. One method to reduce the number of
samples is the LHC method that divides the distribution intosections and samples each section.
Each method is described in detail in this section.

3.1.1 Monte-Carlo Sampling

The first sampling technique is the most simple and straightforward of the techniques, MC sam-
pling. This idea was originally proposed in [15] and named after the famous casino in Monte-
Carlo, France. This technique is based on the pseudo-randomnumber generator that is pro-
grammed in computer software. These pseudo-random numbersrequire a distribution in order
to generate the values that will be used in the deterministicsimulations.

The basic concept of this method is to perform a large number of simulations with varied input
parameters then to describe the output of the simulation in terms of a probability distribution.
In order to use this method, several engineering decisions must be made. The first decision is
the input distribution of the parameters. This must be chosen based on the physical character-
istics and previous knowledge of these parameters. One example of this could be a machining



tolerance that is specified, setting the bounds of the distribution, or using previous test data for
material properties.

Another decision that must be made is the number of simulations that can be performed. This
is a very important decision. The method requires a large number of simulations in order to
produce accurate results, but the computational burden must also be considered. This number of
simulations can be increased by using a less accurate model such as ROMs or surrogate models.
One study, presented in [16], shows that the convergence of aMC simulation is exponential but
very slow so a large number of samples are required for the required accuracy.

In this type of analysis, each simulation is treated as equally probable and each simulation is
treated as independent. This leads to a very simple continuation into parallel processing. The
output distribution is generated based on the fact that the more probable input parameter will
have more simulations than the less probable parameter values. There are several variations on
this method. This particular method involves random numbers generated independently from
the computer list of quasi-random numbers.

The major strength of this method is its simplicity that requires almost zero code modification
in order to perform. This allows an engineer without much Uncertainty Quantification (UQ)
experience to perform this type of analysis. One of the majorweaknesses is the computational
burden of the method. This burden can be reduced via parallelcomputing or surrogate modeling.

3.1.2 Latin Hypercube

The LHC sampling technique is a stratification of the traditional MC technique. This was origi-
nally introduced in [17] to improve on the number of requiredsamples to converge to a solution.
This is done by dividing the probability density function into equally probable sections. Within
each of the sections, one design point is selected. Then the deterministic simulations are per-
formed at each of the selected values, and are treated as equally probable. Extensive use of LHC
for various distributions and data sets is studied in [18].

The selection of the value within the equally probable section can be determined via two different
ways: deterministically or randomly. The deterministic approach uses the mid-point within the
section as the selected value. A random approach is to assigna uniform distribution to the
section and choose a value based on this distribution. As thenumber of samples increase, the
difference between these two selection methods decreases.This is due to the range of each
section decreasing, and the difference between the mid-point and a random point becomes small.

This technique is very effective on bounded distributions such as beta or uniform distributions.
There are several numerical issues that can arise for semi-bounded or non-bounded distributions
such as normal or exponential distributions. The main numerical instability involves the tails of
the distribution. As the number of samples increases, the bounds on the tail section increases
and produce a very large number that can create bit resolution errors in the computer code.
Another issue is the memory requirements to use this sampling technique. All the values have
to be determined before the simulations are performed. These values must be stored in global



memory. This issue is not a large problem for projects that only have low dimensionality for the
stochastic variables but can become important for higher dimensionality.

This technique is very useful for simulations that require avery large amount of computational
power. The LHC is able to give an accurate representation with far less number of samples. This
difference is about an order of magnitude less that traditional MC sampling as studied in [19].

3.2 Reduction Techniques

One commonly used method to reduce the computational burdenis to design and analyze compo-
nents individually and then assemble the full system using asubstructuring technique. Typically
each substructure is further reduced in order to lessen the computational burden. The reduction
is usually done by transforming the non-interface degrees of freedoms (DOFs) into modal DOFs
and then truncated, typically based on frequency. Mode shapes can also be used to determine
the truncation [20]. There are two main types of reduction used in this research, free-interface
and fixed-interface reductions. This refers to the modal DOFthat are used and the reduced.
The fixed-interface reduction is called the Craig-Bampton (CB) reduction. This was originally
proposed in [21] and reviewed along with other methods in [22]. The theory of this reduction
is further explained in Section 3.2.1. The other commonly used reduction uses free-interface
modes. This reduction is used in the Craig-Chang (CC) synthesis technique originally proposed
in [23]. The theory of this reduction and synthesis is given in detail in Section 3.2.2.

3.2.1 Fixed-Interface/Craig-Bampton Reduction

The CB representation is a mixed coordinate system that contains fixed-interface modal DOF
and physical interface DOF together [21]. This formulationis also called the primal formula-
tion in [24]. There are two different approaches to forming the ROMs. In [24], Rixen uses a
Lagrange multiplier technique and in [25], Craig uses a morephysical approach. This section
uses the more physical approach taken by Craig. The displacement vector takes the form of
u = [η uj]

T whereη is the fixed-interface modal DOF anduj are the physical displacement
interface DOF. This representation allows for a truncationof the fixed-interface modal DOF
according to frequency or desired mode shapes [20] that can greatly decrease the size of the
subsystem if there are only a few interface DOF. The transformation of the displacement from
the full subsystem to the CB representation is given by

[

ui
uj

]

=

[

Φ̂ Ψc

0 I

] [

η

uj

]

= Tcb ucb (7)

whereui are the interior physical DOF, and̂Φ are the kept fixed-interface modes that are mass
normalized.Ψc is the constraint modes, which is the displacement of the interior DOF due to a
unit deflection at one of the interface DOF and maintaining zero deflection at the other interface
DOF, 0 is a matrix of zeros, andI is an identity matrix. The constraint modes are generated
geometrically by



Ψc = −K−1

ii Kij (8)

with the subscripti corresponds to the interior DOF and the subscriptj corresponds to the inter-
face DOF. This transformation matrix,Tcb, is a non-square transformation that can be applied to
the equations of motion by the mass and stiffness matrix, given by

M̂ = T T
cb M Tcb. (9)

3.2.2 Free-Interface/Craig-Chang Reduction

The CB method uses fixed-interface modes as the DOF that are reduced. In the CC formulation,
free-interface modes are the modal DOF that are used. Using free-interface modal DOF can
also be used for method such as the ones used by MacNeal [26] and Rubin [27]. These use
physical displacement interface DOF while the CC method [23] uses the forces at the interface.
The same DOF are used in the dual formulation of CB substructures introduced by Rixen in
[28]. The dual CB only enforces force equilibrium at the interface while CC enforces this and
displacement compatibility. This difference does not affect the substructure itself, but does effect
the synthesized system. The main affect is that the system matrices are no longer semi-positive
definite, which prevents the use of the maximum entropy approach.

This representation is produced with the free-interface modes along with residual attachment
modes as presented in [23]. The transformation from physical DOF to a CC DOF set is given by

[

ui
uj

]

=
[

Φk Ψd

]

[

Pi

Pj

]

= Tcc ucc (10)

whereΦk are the kept free-interface modes that are mass normalized,Ψd are the residual attach-
ment modes,Pi are the free-interface modal coordinates, andPj are the interface generalized
coordinates that correspond to the force at each DOF on the interface. The free-interface modes
are the normal modes when the interface is unconstrained andthey contain the rigid body motion
of the system. The residual attachment modes are the response to a unit force at a single interface
DOF and are linearly independent of the free-interface modes. To ensure linear independence,
the residual attachment modes are derived based on the residual flexibility matrix, which can be
expressed as

Gd = K−1 −ΦkΛ
−1

k
ΦT
k (11)

whereGd is the residual flexibility matrix,K is the physical stiffness matrix, andΛ−1

k is a
diagonal matrix containing the inverse of the eigenvalues of the free-interface modes on the
diagonal. One complication of this method is the inverse of the stiffness matrix. For a system
that contains rigid body motion, this stiffness matrix is singular, which implies that the inverse
of the matrix does not exist. One method to eliminate this effect is with the use of oblique



projectors [29]. These project the stiffness matrix onto a non-singular domain. This implies
that the inverse exists, which is mathematically expressedin [30] and the implementation for
structural dynamics is expressed in [31]. The residual attachment modes can be written in terms
of the residual flexibility matrix as

Ψd =





Gd
ij

Gd
jj



 . (12)

With this transformation matrix, the equations of motion can be transformed into the new coor-
dinates by

M̂ = T T
cc M Tcc. (13)

4 Example System

The system used to illustrate these techniques is a planar fame with an appendage. This system
is shown in Figure 1, and contains two subsystems that are combined to form the full system
separated at the red nodes atx = 0. The subsystem to the right is called system ”B” and the sub-
system to the left with the appendage is called system ”D”. These subsystems are reduced using
the desired ROM technique. The red connection nodes are shared between the two subsystems
and are defined as the interface. The nodes shown in Figure 1 are connected using Euler beam
elements. Each of the two subsystems has129 DOF. This system is relatively small but large
enough to show the complexity of the techniques and how they can be applied to larger systems.

The simulations for the CB reductions are based on matching the system frequencies for the
first 11 elastic free-free modes. For subsystem B, the11th natural frequency is4656.4 Hz and
subsystem D has an eleventh natural frequency at5511.5 Hz. This selection of the first11 elastic
free-free modes was chosen based on the idea that the higher frequency modes are more subject
to model form error.

For the CC simulations, the use of free-free modes for the substructure truth data is redundant
since that information is used in the reduction. So in order to test the CC reduction, the fixed
interface modes are used for the truth data. These simulations still use the first11 elastic modes.
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Figure 1: Planar Frame Example System

5 Fixed-Interface Results

The first results for this system are when the fixed-interface/CB reductions are used for each
substructure. One consideration in using this maximum entropy approach is the selection of
the truth data. For both of the model reduction techniques, the truth data is determined from
the non-reduced system. This is the data that is used to determine the probability. Another
important truth data is the true dispersion parameter. Since the true probability density function
is not known, an approximation needs to be performed. For this approximation, a very large
scale MC sampling is used. This MC analysis uses100, 000 samples and is performed30 times
for the empirical likelihood. In addition to the large number of samples, the Gaussian kernel
estimator is also used to generate the truth data. This decision is based on the available time and
computational resources.

There are four different analysis compared in this section:two different sampling and two differ-
ent methods of determining probability. For the MC samplingmethod,10, 000 samples are used,
and for the LHC sampling method,200 samples are used. All of analyses are performed with
30 evaluations for the empirical likelihood. These numbers ofsamples are chosen based on the
computational time to perform the analysis. The total time for each analysis takes approximately
the same amount of time on the author’s computer.

The main result to report is the optimal dispersion parameter. This was determined based on
the mass matrix, while treating the stiffness as deterministic. One of the main reasons for this
judgment is the topology of the stiffness matrix. When the stiffness matrix is converted into the
CB reduction, the reduced matrix is block-diagonal while the mass matrix is a full matrix. In
order to maintain this block diagonal form, the stiffness ischosen to be deterministic and the



mass to be stochastic.

The first system to be analyzed is system B. The optimal dispersion parameter for the mass
matrix can be seen in Figure 2, where the blue lines representusing the Gaussian kernel estimator
and the red lines represent using a histogram to determine the probability measure. The solid
line represents using a MC analysis and the dashed line represents using a reduced sampling
method, LHC. Truth data in Figure 2 is shown in the solid blackline.
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Figure 2: System B using CB reduction

There are a couple trends in Figure 2 of interest. The first trend is the difference between
using a histogram and the kernel estimator. Using the kernelestimator gives a larger dispersion
parameter that corresponds to a more conservative analysis. The second trend is that using the
LHC compared to the MC produced smaller optimal dispersion parameters. This leads to the
trend that the MC analysis is more conservative than the LHC sampling techniques. The final
trend is the accuracy of each analysis compared to the truth data. As can be seen in Figure 2,
the kernel estimated data produces more accurate results. One possible reason for this trend is
that the truth data is generated using the kernel estimator.The truth data using a histogram is not
calculated due to computational and time restrictions. Taking the difference between the truth
data and the kernel estimator data does not yield a trend. At some values, the truth data is more
conservative while some other points have the kernel estimator as a more conservative value.
The same analysis is also performed on system D. This analysis can be seen in Figure 3.

There are several differences between the two systems. For system D, all four analyses have very
similar values. Figure 3 shows that visually, the methods are difficult to differentiate. The only
visual trend is for the LHC sampling always produced an optimal dispersion parameter smaller
than the truth data. This inability to differentiate between the analysis leads to the necessity of
a quantitative difference between the analyses. The quantitative result used is the root-mean-
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Figure 3: System D using CB reduction

square (RMS) of the percent difference between the analysisand the truth data and is shown in
Table 1.

Table 1: RMS error of optimal dispersion parameter for fixed-interface reduction

Analysis System B Error [%] System D Error [%]
Kernel 5.30 6.69

Histogram 65.94 16.99
LHC Kernel 7.54 20.00

LHC Histogram 68.21 17.56

The first note about Table 1 is that the MC analysis gives a moreaccurate result than the LHC
for both the kernel estimator and the histogram. Table 1 alsogives the same quantitative re-
sults for system B. This system has large differences between the analyses both visually and
quantitatively.

Both systems have similar trends. In general, the kernel estimator gives more accurate results
compared to the histogram with0.1% tolerance bands. This value for the tolerance band is
chosen as a singular value to work for both systems over the entire range of interest. For systems
with a smaller optimal dispersion parameter, a smaller tolerance band should be able to get more
accurate results, but is dependent on the engineering judgment of this determination. Using a
kernel estimator eliminates the engineering choice of thistolerance band and is more accurate.



6 Free-Interface Results

The same analysis that is performed on the fixed-interface/CC reduction is also performed on
the free-interface reduction. This analysis results in some similar trends and some new trends as
well. The first result is for system B and is presented in Figure 4.
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Figure 4: System B using CC reduction

One new trend by using the free-interface reduction is that the conservative trend is no longer
followed. At some data points, the LHC sampling is more conservative while at other points,
the MC sampling is more conservative. This occurs when the optimal dispersion parameter is
less than0.3%. One reason for this change in trend is believed to be due to the resolution of the
sweep. The dispersion parameter is swept up from zero with a resolution of0.01% to a value
larger than the optimal value. As the optimal dispersion parameter becomes a small number, the
differences between the probability measures at each valueof the dispersion parameter becomes
small and more subject to the natural randomness of the sampling method. This trend is more
apparent in system D that is shown in Figure 5.

One important aspect to notice in Figure 5 is the value of the optimal dispersion parameter.
The largest optimal dispersion parameter is0.24% and thus is more subject to the randomness
of the distribution sampling. Future work will look into a finer resolution in a sweep and an
investigation into using an optimization technique. Another interesting trend is the histogram
produced a zero optimal dispersion parameter. This is due tothe tolerance band being too large
for the optimal dispersion values that are small.
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Figure 5: System D using CC reduction

7 Conclusions

The study of model form error is an important consideration for uncertainty quantification of a
system. This is particularly important for systems that areunable to have a large amount of ex-
perimental data available. The maximum entropy approach isone method for the determination
of model form error. This is done with the combination of using the maximum entropy to deter-
mine a distribution and the use of random matrices. One majoradvantages of this method is that
the variability can be expressed by a single bounded parameter. This method requires two major
engineering choices: how to sample the distribution along with how many samples to use, and
how to determine the joint probability. The research presented in this paper looks at two differ-
ent techniques for each of those choices. Monte-Carlo and Latin hypercube sampling techniques
are studied and the probability is determined using a Gaussian kernel estimator and a histogram.
These methods are studied on the reduction of two systems using both a free-interface and a
fixed-interface reduction techniques commonly used in substructuring. This error represents the
model form error of using a reduced order model.

The fixed-interface reduction technique shows some interesting trends. Both systems show that
the use of the reduced sampling technique yielded optimal dispersion parameters less than the
truth values. For one system, using a histogram gives a very large difference compared to the
truth data while the other system shows accuracy for all the methods to be very similar. This is
believed to be due to tolerance band and how it related to the true optimal dispersion parameter.
A system that has a small optimal dispersion parameter requires a smaller tolerance band in
order to account for all the sampled values to lie within the tolerance band.

The free-interface reduction technique yielded similar results to the fixed-interface results with



two main differences. One of the main differences is the general size of the optimal dispersion
values. The CB method has larger values compared to the CC method. One of the ramifications
of this difference is that the resolution in the parameter sweep needs to be more refined, or an
optimization technique should be implemented. The second main difference is that the conser-
vative trends are not followed. This is believed to be related to the resolution of the parameter
sweep as well.

The use of the maximum entropy approach is one way to characterize the model form error of
a system. One major advantage is that this method describes the uncertainty in the system as
a bounded scalar value. While this method only produces a single value, several engineering
decisions are required and can have an affect of the output. Afew of the major decisions are
discussed in this paper and the effect of each decision is studied on the test systems. The method
proposed in this paper is a straight foreword methodology that can be applied to most of the
engineering decisions made in an analysis, and demonstrates the use on three different decisions.
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