SAND2016- 5656C

Numerical Investigation of Probability Measures Uti-
lized in a Maximum Entropy Approach

M. Bonney !, D. Kammer ', M. Brake?
! The University of Wisconsin-Madison,
Department of Engineering Physics,
Madison, Wi

2 Sandia National Laboratories,
Albuquerque, NM

e-mail: msbonney@wisc.edu

Abstract

The quantification of uncertainty is an important aspect odern design. One relatively new
technique to quantify this uncertainty is the maximum guyrapproach. This approach charac-
terizes the physical system in terms of random matricesh Bathe random matrices is char-
acterized by a single dispersion parameter and is derivethiontain positive-definiteness of the
system matrix. The random matrices are generated to haveua vaie of the nominal system
and the variance is controlled by the dispersion paramdteis dispersion parameter charac-
terizes the model-form uncertainty, which is a large areausfent research. The maximum
entropy approach has the ability to characterize both théetriorm and parametric uncertainty
independently. The determination of the dispersion patami&done by creating the maximum
likelihood estimate. This estimate requires a numericabability measure for any real world
system since an analytical distribution cannot be detexthiThis paper investigates the effect
of multiple sampling techniques, such as Monte-Carlo artthlHypercube, and multiple prob-
ability measurements, such as histograms and density Ikestimmation. The investigation is
performed on a planar frame truss with uncertainty intredudue to a reduced model using
different reduction techniques such as free-interfacefiard-interface reductions. The induced
uncertainty is compared to the truth data from the non-redwsystem using the fixed-interface
and free-interface modes. This technique is a systematicad¢hat produces repeatable results
that can be used in model simulations to produce a stoch@agiptit range that is verified to the
desired truth data.



1 Introduction

Modern engineering design primarily uses the advancemecamputational ability to aid and
optimize a design. With the use of these techniques, designable to be developed that
meet the design requirements and can lead to reduced ovesallOne of the main techniques
used is the discretization of the system using finite elemehhe implementation of this and
other techniques introduces several assumptions thatdeattertainty. These uncertainties are
very important and needs to be quantified. One of the impbsanrces of uncertainty is the
selection of the model, the model form error. High-fidelityit® elements are used in order to
give accurate results, but using this computer model reguarlarge amount of computational
power. In order to perform multiple possible designs, a cedwrder model (ROM) is typically
used. By using ROMs, additional model form error is intraglliinto the system. Quantifying
this error is important to incorporate a confidence in the ehodtput.

Determination of the model form error is difficult and can b®mcterized by using different
methods. One classical approach to characterizing the lfadeerror is with the use of fuzzy
sets. This idea was originally derived in [1]. Fuzzy setsthoright of as a set that are defined
by non-distinct bounds. A non-engineering example of ayuzet is describing a person’s
height as tall or short. The basic concept of this technigugmple but the implementation in
computational codes is very complex. A review of this apphoand a comparison between this
and other techniques is presented in [2] and in [3].

Since the implementation of fuzzy sets is complicated, leroinethod is required to simplify

the calculation of the model form error. One technique istla@imum entropy, non-parametric

approach. This method is originally derived in [4] by incorgting random matrices into the
system equation of motion. Originally, this method is usedpply some randomness into the
system that is not associated with a specified cause. Theytlegeneralized and expanded in
[5]. Later on, in [6], this technique is expanded to be usechtracter the model form error and
the parametric error independently. A simplified methodwlof this technique is presented in
[7] with application on a wind turbine in [8]. Expansion oighmethod to increase repeatability
for the application of ROMs is presented in [9].

This paper explains the maximum entropy approach for théicgion of ROMs, primarily
fixed-interface and free-interface ROMs. One of the maiu$es of this paper is to quantify
the sensitivity of this method to the engineering choiceslend he main choices that are made
include: what type of distribution sampling technique te,usow many samples are used in
the sampling technique, and how the probability measural@itated. Section 2 describes the
maximum entropy approach that is used throughout this relsedn Section 3, the different
engineering choices are discussed and the underlyingytlié@ach choice is explained. This
technique is applied to a specific computer model that isrie=tin Section 4. Two different
ROMs are used and discussed: fixed-interface ROM is prasémiBection 5 and the results
from the free-interface ROM is discussed in Section 6. Scomelading remarks are presented
in Section 7.



2 Maximum Entropy Approach

In the system of interest, the equations of motion are basdthear mass and stiffness. The
mass matrix is positive definite while the stiffness matsxeither positive definite or semi-
positive definite depending if the system is constrainedontains rigid body motion. Due to
the definiteness of the matrices, these can be decomposedGisnlesky decomposition similar
to

[M] = [Ly]"[Lu], 1)

with [L /] is an upper triangular matrix that is the Cholesky decontjmwsdf the mass matrix
[M]. For a non-singular matriXL /] is a square, upper triangular matrix, while for a singular
matrix, [L /] is a full, rectangular matrix obtained by using a Choleskg-tlecomposition using
the covariance of the matrix. The Cholesky decompositianfisction of the input parameters
to the FE model. To incorporate model form error, a randonrmgsradded that is also generated
to be positive definite so that the resulting matrix is stijpive definite or semi-positive definite.
The germ is incorporated using the relation

[M] = [Ly]"[G(Oan)][Ll, 2

where |G| is a random germ with an expected valuelcénd d,, is the dispersion parameter
for the mass matrix. The variance of the random germ is a iiomaif 6 scaled by the size of
the matrix. More detail of how to formulate this germ is givien[4, 7, 8, 10]. The value of

J is bounded by the size of the system. This range is giveh @g0, ,/Z—f[é), wheren is the

size of the system. As the system becomes very large, thi® rapproache), 1) that leads to
the presentation of this value as a percentage, althougformeng this analysis of such a large
system can become computationally infeasible.

The dispersion parameter is chosen to best fit the truth ddizh corresponds to having the
highest probability in the probability density functionruth data can be given as many things
such as the frequency response function, mode shapes,ualnequencies. This research
uses the first1 elastic natural frequencies as the truth data. The prahatsilbest given as the
likelihood function, which is the objective function fortgemining the dispersion variable. The
main calculation is the likelihood value for each dispansi@ariable. This likelihood value is
defined as the joint probability that the truth data existhimithe model with a given value of
the dispersion parameter, and is shown as

L(9) = Pr(TruthDatal), (3)

whereL(6) is the likelihood value andPr() is the probability value that the truth data exists in
the model. For the simplicity of calculations, each natimaduency is treated as independent.
Due to the independence, the joint probability can be résvrias



Pr(TruthDatalé) = I1; Pr(w;|0). 4)

This calculation yields a value on the range[@fl]. The optimal dispersion value is defined
as the argument maximum of the likelihood function. Sinde talculation has a very small
range, the differences between each dispersion value caméak that can be affected by the
computer resolution error. In order to reduce this erra,ltfy-likelihood function is used. For
these calculations, the negative log-likelihood functisrused in order to simply expand this
method for the use of an optimization technique. The negdtig-likelihood is calculated by
computingl = ). —log(Pr(w;|d)). The reason this works is becauskyg() is a monotonically
decreasing function, which means that the argument minimiutime negative log-likelihood is
the same as the argument maximum of the likelihood function.

The calculation of the likelihood is based on the probabititeasure. There are two ways to
compute this probability: analytically or numerically. dnder to calculate the probability ana-
Iytically, the distribution of the natural frequency mustknown, which is very hard to generate.
These simulations calculate the probability numericaligdal on a distribution sampling simu-
lation. In order to calculate the probability, a histograam de used. For these calculations, the
tolerance band is based 6% of the nominal natural frequency. The probability is cadted
as the percentage of the number of times a natural frequandg lwithin this tolerance band.
This determination of the band is very critical in the exemutof this analysis. A band that
is too small will result in very large variability, while a bd that is too large will not be able
to differentiate between different dispersion values. argument minimum of this negative
log-likelihood function is the statistical estimate of #iepersion variable.

Using a histogram is one method to compute the probabilityerically; kernel estimation is
another useful method to compute the probability. This wetbf determining the probabil-
ity is a classical statistical approach that is commonlydusegenerate the probability density
function. The calculation of the density function is basédba finite number of samples and
increases the accuracy of the probability compared to wsingtogram. An analysis of the un-
derlying calculations can be found in [11]. This descrillesmmath in terms of a generic kernel:
a discussion of various kernels is presented in [12]. Thepaoison between using a kernel
estimator and histograms is presented in [13] and the smbeot a smoothing parameter that is
used in several kernel functions is discussed in [14]. Ia tesearch, a Gaussian kernel that is
programmed into Matlab is used. Future work includes thelt®fom the selection of different
kernel functions.

Determining the probability is very dependent on the samgpinethods, and the probability
will vary based on what samples are used. In order to redusedhdomness, the empirical
likelihood function is applied. The empirical negative Jlikelihood is a technique that is able
to reduce the randomness due to the sampling technique.cdloiglation can be determine by
using the expression

EL(8) = sup 4(6), (5)



in which, i is the independent evaluation of the negative log-likedthd;. This empirical formu-
lation accounts for the randomness in the sampling teclenifibe optimal dispersion parameter
is then chosen based on

goptimal — are min EL(9). (6)

The optimal dispersion parameter is used in a forward prafiag of the matrices to determine
the distribution of the desired output, such as reliabititgasures or dynamic characteristics.

3 Theory of Specific Engineering Decisions

The use of the maximum entropy approach requires severaimgg®ns to be made. Each
additional assumption or choice can have an effect on theuoof the method. One of the main
decisions is how the distribution is sampled. This disars#s very dependent on the available
computational ability. Two methods of sampling are desttiin this section. Along with the
different sampling methods, the theory of the model reduactechniques is also described in
this section.

3.1 Sampling Methods

One of the major decisions in the maximum entropy approabbusthe distribution should be
sampled in order to determine the probability. Since thdyéinal solution is not known, the
probability needs to be computed numerically. This reqguiihe input distribution to be sampled
and then the deterministic process is evaluated at eachledmpint. Two types of sampling
methods are presented here: Monte-Carlo (MC) and Latin téybe (LHC). The MC method is

a simple technique but requires a large amount of samplesng@thod to reduce the number of
samples is the LHC method that divides the distribution g@otions and samples each section.
Each method is described in detail in this section.

3.1.1 Monte-Carlo Sampling

The first sampling technique is the most simple and strasgivdird of the techniques, MC sam-
pling. This idea was originally proposed in [15] and name&eérathe famous casino in Monte-
Carlo, France. This technique is based on the pseudo-ramdwnber generator that is pro-
grammed in computer software. These pseudo-random nurrdsgrse a distribution in order
to generate the values that will be used in the determirsstitilations.

The basic concept of this method is to perform a large numbsginwlations with varied input
parameters then to describe the output of the simulatioerimg of a probability distribution.
In order to use this method, several engineering decisianst e made. The first decision is
the input distribution of the parameters. This must be chdmsesed on the physical character-
istics and previous knowledge of these parameters. Onem&arhthis could be a machining



tolerance that is specified, setting the bounds of the bigtdn, or using previous test data for
material properties.

Another decision that must be made is the number of simuatibat can be performed. This
is a very important decision. The method requires a largebeurof simulations in order to
produce accurate results, but the computational burdehatagsbe considered. This number of
simulations can be increased by using a less accurate marteas ROMs or surrogate models.
One study, presented in [16], shows that the convergencé/@ aimulation is exponential but
very slow so a large number of samples are required for thénestjaccuracy.

In this type of analysis, each simulation is treated as égpabbable and each simulation is
treated as independent. This leads to a very simple cotitmuato parallel processing. The

output distribution is generated based on the fact that theerprobable input parameter will

have more simulations than the less probable parametegzsialithere are several variations on
this method. This particular method involves random numigemerated independently from
the computer list of quasi-random numbers.

The major strength of this method is its simplicity that regs almost zero code modification
in order to perform. This allows an engineer without much &fainty Quantification (UQ)

experience to perform this type of analysis. One of the mageiknesses is the computational
burden of the method. This burden can be reduced via pacalteputing or surrogate modeling.

3.1.2 Latin Hypercube

The LHC sampling technique is a stratification of the tradtiéil MC technique. This was origi-

nally introduced in [17] to improve on the number of requisaginples to converge to a solution.
This is done by dividing the probability density functiortarequally probable sections. Within
each of the sections, one design point is selected. Thenetieeninistic simulations are per-

formed at each of the selected values, and are treated diyyquobable. Extensive use of LHC

for various distributions and data sets is studied in [18].

The selection of the value within the equally probable seatian be determined via two different
ways: deterministically or randomly. The deterministigpagach uses the mid-point within the
section as the selected value. A random approach is to aasignform distribution to the

section and choose a value based on this distribution. Asuh®er of samples increase, the
difference between these two selection methods decreddes.is due to the range of each
section decreasing, and the difference between the mit-and a random point becomes small.

This technique is very effective on bounded distributionshsas beta or uniform distributions.
There are several numerical issues that can arise for semnided or non-bounded distributions
such as normal or exponential distributions. The main nigakinstability involves the tails of

the distribution. As the number of samples increases, tiwadmon the tail section increases
and produce a very large number that can create bit resoletimors in the computer code.
Another issue is the memory requirements to use this sagicthnique. All the values have
to be determined before the simulations are performed. eltaalsies must be stored in global



memory. This issue is not a large problem for projects that bave low dimensionality for the
stochastic variables but can become important for highmaedsionality.

This technique is very useful for simulations that requireey large amount of computational
power. The LHC is able to give an accurate representatidmfaitless number of samples. This
difference is about an order of magnitude less that traditiMC sampling as studied in [19].

3.2 Reduction Techniques

One commonly used method to reduce the computational bisdedesign and analyze compo-
nents individually and then assemble the full system usisigistructuring technique. Typically
each substructure is further reduced in order to lessendtimputational burden. The reduction
is usually done by transforming the non-interface degréégedoms (DOFs) into modal DOFs
and then truncated, typically based on frequency. Modeeshapn also be used to determine
the truncation [20]. There are two main types of reductioadus this research, free-interface
and fixed-interface reductions. This refers to the modal DI are used and the reduced.
The fixed-interface reduction is called the Craig-Bampt©B) reduction. This was originally
proposed in [21] and reviewed along with other methods if. [dde theory of this reduction
is further explained in Section 3.2.1. The other commonkduseduction uses free-interface
modes. This reduction is used in the Craig-Chang (CC) sgigtiechnique originally proposed
in [23]. The theory of this reduction and synthesis is givedetail in Section 3.2.2.

3.2.1 Fixed-Interface/Craig-Bampton Reduction

The CB representation is a mixed coordinate system thaarmnfixed-interface modal DOF
and physical interface DOF together [21]. This formulatisralso called the primal formula-
tion in [24]. There are two different approaches to formihg ROMs. In [24], Rixen uses a
Lagrange multiplier technique and in [25], Craig uses a npingsical approach. This section
uses the more physical approach taken by Craig. The displtevector takes the form of
u=[n uj]T where is the fixed-interface modal DOF and are the physical displacement
interface DOF. This representation allows for a truncatbrihe fixed-interface modal DOF
according to frequency or desired mode shapes [20] that izatlyg decrease the size of the
subsystem if there are only a few interface DOF. The transfition of the displacement from
the full subsystem to the CB representation is given by

Ui | _ Ci) v, n _
[u]l_[o IH%’]_TC!’M (7)

whereu; are the interior physical DOF, anibl are the kept fixed-interface modes that are mass
normalized. V. is the constraint modes, which is the displacement of thexiot DOF due to a
unit deflection at one of the interface DOF and maintaining geflection at the other interface
DOF, 0 is a matrix of zeros, and is an identity matrix. The constraint modes are generated
geometrically by



U, = -K;'K;; (8)

with the subscripi corresponds to the interior DOF and the subscripbrresponds to the inter-
face DOF. This transformation matriX,, is a non-square transformation that can be applied to
the equations of motion by the mass and stiffness matrixengby

M=TY MT,. (9)

3.2.2 Free-Interface/Craig-Chang Reduction

The CB method uses fixed-interface modes as the DOF thatduea#. In the CC formulation,
free-interface modes are the modal DOF that are used. Ustagiriterface modal DOF can
also be used for method such as the ones used by MacNeal [@R@in [27]. These use
physical displacement interface DOF while the CC method (88s the forces at the interface.
The same DOF are used in the dual formulation of CB substrestintroduced by Rixen in
[28]. The dual CB only enforces force equilibrium at the ifaee while CC enforces this and
displacement compatibility. This difference does notetfthe substructure itself, but does effect
the synthesized system. The main affect is that the systetnicesmare no longer semi-positive
definite, which prevents the use of the maximum entropy ambro

This representation is produced with the free-interfacelescalong with residual attachment
modes as presented in [23]. The transformation from phlyBiCd to a CC DOF set is given by

where®,, are the kept free-interface modes that are mass normalizgale the residual attach-
ment modesF; are the free-interface modal coordinates, @&h)care the interface generalized
coordinates that correspond to the force at each DOF on tidane. The free-interface modes
are the normal modes when the interface is unconstrainethapaontain the rigid body motion
of the system. The residual attachment modes are the resfmasinit force at a single interface
DOF and are linearly independent of the free-interface mode ensure linear independence,
the residual attachment modes are derived based on theak8ekibility matrix, which can be
expressed as

G' =K' — &0 M) (12)

where G% is the residual flexibility matrix,K is the physical stiffness matrix, an’d,;1 is a

diagonal matrix containing the inverse of the eigenvaluethe free-interface modes on the
diagonal. One complication of this method is the inversehefgtiffness matrix. For a system
that contains rigid body motion, this stiffness matrix isgilar, which implies that the inverse
of the matrix does not exist. One method to eliminate thieaffs with the use of oblique



projectors [29]. These project the stiffness matrix ontooa-singular domain. This implies
that the inverse exists, which is mathematically expressgd0] and the implementation for
structural dynamics is expressed in [31]. The residuathitteent modes can be written in terms
of the residual flexibility matrix as

el
ij
W, = . (12)
d
G

With this transformation matrix, the equations of motiom & transformed into the new coor-
dinates by

M=TL MT,,. (13)

4 Example System

The system used to illustrate these techniques is a plamar féath an appendage. This system
is shown in Figure 1, and contains two subsystems that ardioech to form the full system
separated at the red nodescat 0. The subsystem to the right is called system "B” and the sub-
system to the left with the appendage is called system "DésElsubsystems are reduced using
the desired ROM technique. The red connection nodes aredsbatween the two subsystems
and are defined as the interface. The nodes shown in Figuee doanected using Euler beam
elements. Each of the two subsystems h2&s DOF. This system is relatively small but large
enough to show the complexity of the techniques and how theye applied to larger systems.

The simulations for the CB reductions are based on matcliagystem frequencies for the
first 11 elastic free-free modes. For subsystem B,1hé natural frequency i4656.4 Hz and
subsystem D has an eleventh natural frequen&y Hit.5 Hz. This selection of the firdtl elastic
free-free modes was chosen based on the idea that the highaehcy modes are more subject
to model form error.

For the CC simulations, the use of free-free modes for thetautiure truth data is redundant
since that information is used in the reduction. So in ordeest the CC reduction, the fixed
interface modes are used for the truth data. These simudasidl| use the first1 elastic modes.
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Figure 1: Planar Frame Example System

5 Fixed-Interface Results

The first results for this system are when the fixed-inteffaBereductions are used for each
substructure. One consideration in using this maximumoegtapproach is the selection of
the truth data. For both of the model reduction techniques,tfuth data is determined from
the non-reduced system. This is the data that is used tondegthe probability. Another
important truth data is the true dispersion parameter.eSine true probability density function
is not known, an approximation needs to be performed. Ferdpproximation, a very large
scale MC sampling is used. This MC analysis uB#s 000 samples and is performedd times
for the empirical likelihood. In addition to the large numlod samples, the Gaussian kernel
estimator is also used to generate the truth data. Thisidedisbased on the available time and
computational resources.

There are four different analysis compared in this sectiwn:different sampling and two differ-
ent methods of determining probability. For the MC samptimgthod,10, 000 samples are used,
and for the LHC sampling methodp0 samples are used. All of analyses are performed with
30 evaluations for the empirical likelihood. These numbersarhples are chosen based on the
computational time to perform the analysis. The total tioveslach analysis takes approximately
the same amount of time on the author’'s computer.

The main result to report is the optimal dispersion paramelais was determined based on
the mass matrix, while treating the stiffness as determnini©ne of the main reasons for this
judgment is the topology of the stiffness matrix. When thiégtss matrix is converted into the
CB reduction, the reduced matrix is block-diagonal while thass matrix is a full matrix. In

order to maintain this block diagonal form, the stiffnesgh®sen to be deterministic and the



mass to be stochastic.

The first system to be analyzed is system B. The optimal digpemparameter for the mass
matrix can be seen in Figure 2, where the blue lines represamng the Gaussian kernel estimator
and the red lines represent using a histogram to determénprtibability measure. The solid

line represents using a MC analysis and the dashed lines&mrgeusing a reduced sampling
method, LHC. Truth data in Figure 2 is shown in the solid blkcé.
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Figure 2: System B using CB reduction

There are a couple trends in Figure 2 of interest. The firstdtie the difference between

using a histogram and the kernel estimator. Using the kestehator gives a larger dispersion
parameter that corresponds to a more conservative analyjséssecond trend is that using the
LHC compared to the MC produced smaller optimal dispersiarameters. This leads to the
trend that the MC analysis is more conservative than the L&t@pding techniques. The final

trend is the accuracy of each analysis compared to the tatth d\s can be seen in Figure 2,
the kernel estimated data produces more accurate resuits p@&ssible reason for this trend is
that the truth data is generated using the kernel estimBberiruth data using a histogram is not
calculated due to computational and time restrictions.intakhe difference between the truth
data and the kernel estimator data does not yield a trendorA¢ values, the truth data is more
conservative while some other points have the kernel etimazs a more conservative value.
The same analysis is also performed on system D. This asalgeibe seen in Figure 3.

There are several differences between the two systemsys$tens D, all four analyses have very
similar values. Figure 3 shows that visually, the methodsdificult to differentiate. The only

visual trend is for the LHC sampling always produced an oglidispersion parameter smaller
than the truth data. This inability to differentiate betwebe analysis leads to the necessity of
a quantitative difference between the analyses. The datvei result used is the root-mean-
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Figure 3: System D using CB reduction

square (RMS) of the percent difference between the anadysighe truth data and is shown in
Table 1.

Table 1: RMS error of optimal dispersion parameter for fikgdrface reduction

Analysis System B Error [%]| System D Error [%)]
Kernel 5.30 6.69
Histogram 65.94 16.99
LHC Kernel 7.54 20.00
LHC Histogram 68.21 17.56

The first note about Table 1 is that the MC analysis gives a rmotarate result than the LHC
for both the kernel estimator and the histogram. Table 1 giges the same quantitative re-
sults for system B. This system has large differences betvle® analyses both visually and
guantitatively.

Both systems have similar trends. In general, the kernghagir gives more accurate results
compared to the histogram with1% tolerance bands. This value for the tolerance band is
chosen as a singular value to work for both systems over tive €ange of interest. For systems
with a smaller optimal dispersion parameter, a smalleraolee band should be able to get more
accurate results, but is dependent on the engineering jewigai this determination. Using a
kernel estimator eliminates the engineering choice ofttierance band and is more accurate.



6 Free-Interface Results

The same analysis that is performed on the fixed-interfaCe#iuction is also performed on
the free-interface reduction. This analysis results inessimmilar trends and some new trends as
well. The first result is for system B and is presented in Fégur
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Figure 4: System B using CC reduction

One new trend by using the free-interface reduction is tmatconservative trend is no longer
followed. At some data points, the LHC sampling is more coreg&e while at other points,
the MC sampling is more conservative. This occurs when thienap dispersion parameter is
less thar0.3%. One reason for this change in trend is believed to be duesteetolution of the
sweep. The dispersion parameter is swept up from zero wigs@ution 0f0.01% to a value
larger than the optimal value. As the optimal dispersiorapaater becomes a small number, the
differences between the probability measures at each eélhe dispersion parameter becomes
small and more subject to the natural randomness of the sagnpethod. This trend is more
apparent in system D that is shown in Figure 5.

One important aspect to notice in Figure 5 is the value of {h#m@l dispersion parameter.
The largest optimal dispersion parametef.i1% and thus is more subject to the randomness
of the distribution sampling. Future work will look into a &nresolution in a sweep and an
investigation into using an optimization technique. Amstinteresting trend is the histogram
produced a zero optimal dispersion parameter. This is dtleettolerance band being too large
for the optimal dispersion values that are small.
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Figure 5: System D using CC reduction

7 Conclusions

The study of model form error is an important consideratimnuincertainty quantification of a
system. This is particularly important for systems thatuarable to have a large amount of ex-
perimental data available. The maximum entropy approaohasmethod for the determination
of model form error. This is done with the combination of gsithe maximum entropy to deter-
mine a distribution and the use of random matrices. One naajegintages of this method is that
the variability can be expressed by a single bounded paesiniiis method requires two major
engineering choices: how to sample the distribution aloith how many samples to use, and
how to determine the joint probability. The research presgm this paper looks at two differ-
ent techniques for each of those choices. Monte-Carlo atid hgpercube sampling techniques
are studied and the probability is determined using a Ganssirnel estimator and a histogram.
These methods are studied on the reduction of two systemg bsith a free-interface and a
fixed-interface reduction techniques commonly used intsuttsiring. This error represents the
model form error of using a reduced order model.

The fixed-interface reduction technique shows some infagerends. Both systems show that
the use of the reduced sampling technique yielded optinspledsion parameters less than the
truth values. For one system, using a histogram gives a eegg Idifference compared to the
truth data while the other system shows accuracy for all ththads to be very similar. This is
believed to be due to tolerance band and how it related tatlesoptimal dispersion parameter.
A system that has a small optimal dispersion parameter nesja smaller tolerance band in
order to account for all the sampled values to lie within thlerance band.

The free-interface reduction technique yielded similauhes to the fixed-interface results with



two main differences. One of the main differences is the gdrsize of the optimal dispersion
values. The CB method has larger values compared to the Clibthedne of the ramifications
of this difference is that the resolution in the parameteeegwneeds to be more refined, or an
optimization technique should be implemented. The secaoaid difference is that the conser-
vative trends are not followed. This is believed to be reld@tethe resolution of the parameter
sweep as well.

The use of the maximum entropy approach is one way to chaizethie model form error of

a system. One major advantage is that this method desclibasntertainty in the system as
a bounded scalar value. While this method only producesglesiralue, several engineering
decisions are required and can have an affect of the outpdew/of the major decisions are

discussed in this paper and the effect of each decisiondgeston the test systems. The method
proposed in this paper is a straight foreword methodology tlan be applied to most of the
engineering decisions made in an analysis, and demorsstreteise on three different decisions.
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