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•Optimal sequential experimental design for nonlinear simulation mod-
els requires dynamic programming (DP); batch (open-loop) and
greedy (myopic) designs are provably suboptimal

•DP is expensive to solve, and requires repeated Bayesian inference under
different possible realizations of data

•Near-optimal design policy can be found numerically using backward
induction with regression (approximate dynamic programming)

•Fast approximate inference is achieved by creating transport maps
transforming joint design-data-parameter random variables to standard
Gaussians under distribution equality

Goal: develop computational approaches to find near-optimal policy
for a sequence of experiments, accommodating nonlinear models, con-
tinuous variables, non-Gaussian distributions, and information mea-
sure objective

Summary

Question: what is the best sequence of locations to measure contami-
nant concentration, such that we can best infer the source location?

Motivation

•Experiment: k = 0, . . . , N − 1, total N experiments, N <∞
•State: xk = [xk,b, xk,p] all information needed for optimal future de-

signs

–Belief state: xk,b current state of uncertainty
(e.g., posterior density xk = f (θ|d0, . . . , dk−1, y0, . . . , yk−1))

–Physical state: xk,p deterministic variables (e.g., vehicle position)

•Design: dk = µk(xk); seek good policy π = {µ0, µ1, . . . , µN−1}
•Observations: yk distributed according to likelihood f (yk|θ, dk)

(e.g., yk = G(θ, dk) + ε, with ε Gaussian)

•System dynamics: xk+1 = F(xk, dk, yk) state evolution

–Belief state: Bayes’ theorem

xk+1,b =
f (yk|θ, dk)xk,b

f (yk|d0, . . . , dk, y0, . . . , yk−1)

–Physical state: physical process

•Stage reward: gk(xk, yk, dk) experiment rewards/costs

•Terminal reward: gN(xN) value of final state
e.g., information gain via Kullback-Leibler divergence

gN(xN) =

∫
Θ

xN,b ln

[
xN,b
x0,b

]
dθ

System dynamics
xk+1 = Fk(xk, yk, dk)

Policy (controller)
µk

State xkDesign dk

Observations yk

The sequential optimal experimental design (sOED) problem:

Find π∗ where

π∗ = argmax
π={µ0,...,µN−1}

Ey0,...,yN−1|π

[
N−1∑
k=0

gk (xk, yk, µk(xk)) + gN (xN)

]
s.t. xk+1 = Fk(xk, yk, dk),∀k

µk(xk) ∈ Dk,∀xk, k

The Optimal Sequential Design Problem

•Equivalent problem, different form:
dynamic programming form (Bellman equations):

Jk(xk) = max
dk∈Dk

Eyk|xk,dk [gk(xk, dk, yk) + Jk+1 (Fk(xk, dk, yk))]
JN(xN) = gN(xN)

k = 0, . . . , N − 1; Jk(xk) are value functions

–Optimal policy functions: d∗k = µ∗k(xk)
– Lots of existing research in approximate dynamic programming

•Represent policies: one-step lookahead

µk(xk) = argmax
dk∈Dk

Eyk|xk,dk
[
gk(xk, yk, dk) + J̃k+1 (Fk (xk, yk, dk))

]
– policy π implicitly parameterized by J̃1(x1), . . . , J̃N(xN)

– if J̃k+1(xk+1) = Jk+1(xk+1), then µk(xk) = µ∗k(xk) is optimal:
therefore want J̃k+1(xk+1) close to Jk+1(xk+1)

•Represent value functions: linear architecture: J̃k(xk) = r>k φk(xk)
φk features (selected from heuristics: using moments of posteriors), rk
weights

•Construct value function approximations: approximate value iteration
(backward induction with regression):

J̃k(xk) = P
{

max
dk∈Dk

Eyk|xk,dk
[
gk(xk, dk, yk) + J̃k+1 (Fk(xk, dk, yk))

]}
Start with J̃N(xN) ≡ gN(xN), and proceed backwards k = N − 1, . . . , 1
P is regression operator

•Efficient regression point selection
Exploration: random designs, “try something new”, regularization
Exploitation: applies current policy approximation, leverages current un-
derstanding of good policy

•Procedure to adapt iteratively as J̃k’s are improved

Approximate Dynamic Prgoramming

•How to numerically represent belief state (posterior)?

– for general non-Gaussian continuous random variables
– in a finite-dimensional manner
– to easily perform Bayesian inference repeatedly in evaluating

J̃k(xk) = P
{

max
dk∈Dk

Eyk|xk,dk
[
gk(xk, dk, yk) + J̃k+1 (Fk(xk, dk, yk))

]}
–⇒ potentially MILLIONS of repeated Bayesian inferences
– need approach that can quickly perform many Bayesian inferences

•Transport maps:

z

ξ

fz(z)

T (z)
fξ(ξ)

– ξ ∼ reference distribution, z ∼ target distribution

–Equivalence in distribution ξ
i.d.
= T (z)

–Knothe-Rosenblatt (KR) maps: defined by conditional distribu-
tions, is triangular and monotone, exists and is unique

–Easy to construct: a convex optimization problem

•Fast approximate inference Bayes’ theorem: posterior is simply con-
ditioning the joint distribution

f (θ|y) =
f (y|θ)f (θ)

f (y)
=
f (y, θ)

f (y)

For one experiment: KR map from (d, y, θ) to ξ ∼ N (0, I) is: ξ1

ξ2

ξ3

 =

 Td(d)
Ty|d(d, y)
Tθ|y,d(d, y, θ)

 =

Φ−1 (F (d))
Φ−1 (F (y|d))
Φ−1 (F (θ|y, d))


KR map of posterior given realizations d∗ and y∗ is:

Tθ|y∗,d∗(θ) = Φ−1 (F (θ|y∗, d∗))
This is precisely Tθ|y,d conditioned on d∗ and y∗: Tθ|y,d(d

∗, y∗, θ)!

• Inference for multiple experiments:

k = 0 1 2 · · ·
ξd0 = Td0(d0) ξd0 = Td0(d0) ξd0 = Td0(d0)
ξy0 = Ty0(d0, y0) ξy0 = Ty0(d0, y0) ξy0 = Ty0(d0, y0)
ξθ0 = Tθ0(d0, y0, θ) ξd1 = Td1(d0, y0, d1) ξd1 = Td1(d0, y0, d1)

ξy1 = Ty1(d0, y0, d1, y1) ξy1 = Ty1(d0, y0, d1, y1)
ξθ1 = Tθ1(d0, y0, d1, y1, θ) ξd2 = Td2(d0, y0, d1, y1, d2)

ξy2 = Ty2(d0, y0, d1, y1, d2, y2)
ξθ2 = Tθ2(d0, y0, d1, y1, d2, y2, θ)

–Posterior map after Bayesian inference on k + 1 experiments is the nθ-
dimensional Tθk|d∗0,y∗0,...,d∗k,y∗k(θ)

–Components grouped by the red rectangular boxes are identical; concate-
nate unique parts and construct overall map in one shot

–Map constructed using samples of trajectory simulation (exploration and
exploitation)

Fast Approximate Inference: Transport Maps

yk =
s√

2π2
√

(0.3 + Dt)
exp

(
−‖ θ + dw(t)− zk+1 ‖2

2(4) (0.3 + Dt)

)
+ εk

• 2 experiments

• θ ∼ N (0, 22) starting location: 5.5

• Strong wind blows to the right after first experiment

•Quadratic movement penalty

• Sample evolution trajectory of physical state and plume (left) and
belief state (right)
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Greedy design (left) vs. sOED (right)
Expected reward: greedy (0.07), sOED (0.15)
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Batch design (left) vs. sOED (right)
A more precise instrument available only if prior variance < 3
Expected reward: batch (0.15), sOED (0.26)
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Results: source inversion in 1D space

A more challenging problem:

• 3 experiments

• 2D parameter and physical spaces

θ ∼ N
([

0
0

]
,

[
22 0
0 22

])
starting location = [5, 5]

• 15 dimensional joint map

•Variable wind: blows north after experi-
ment 1, north-east after experiment 2

⇒ Take away: policy inherently adaptive,
best design based on what occurred so far!

Sample evolution trajectory of phyiscal state and
plume (top row) and belief state (bottom row)
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Another sample evolution trajectory
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Good agreement of samples from joint distribution (left) and transport map (right)
d0,0

d0,1

y0

d1,0

d1,1

y1

d2,0

d2,1

y2

d0,0

d0,1

y0

d1,0

d1,1

y1

d2,0

d2,1

y2

Results: source inversion in 2D space
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