SAND2016- 5538C

Approximate Dynamic Programming for
Simulation-Based Sequential Optimal Experimental Design

Xun Huan (xhuan@sandia.gov) & Youssef M. Marzouk (ymarz@mit.edu)

Sandia National Laboratories Massachusetts Institute of Technology

Approximate Dynamic Prgoramming

e Optimal sequential experimental design for nonlinear simulation mod-

e Equivalent problem, different form: e Represent value functions: linear architecture: Ji(zy) = ] ¢p(zp)

els requires dynamic programming (:[)I))7 batch (Open—loop) and dynamic programming form (Bellman equations)' gbk features (Selected from heuristics: using moments of p()steriofs)7 'L
gree.dy (myoplc) designs are prov.ably suboptimal o Ti(zh) = max Ey, lod, 195k, Ay Yx) + Je1 (Fi(zn, di, yr)] weights

e DP is expensive to solve, and requires repeated Bayesian inference under b e Construct value function approximations: approximate value iteration
different possible realizations of data In(zN) = gn(zN) (backward induction with regression):

e Near-optimal design policy can be found numerically using backward k=0,...,N —1; Jy(xy) are value functions .
induction with regression (approximate dynamic programming) — Optimal policy functions: df = pf(zz) Jp(xyp) = 77{ max By, 2. de [gk(:zjk, di, Yie) + T (Fi(xs, di, yk))] }

e Fast approximate inference is achieved by creating transport maps — Lots of existing research in approrimate dynamic programming

Start with Jy(zny) = gn(zwn), and proceed backwards k= N —1,...,1
P is regression operator

pi(xr) = argmax By, g, [gk(xk, Uk die) + Jrs1 (Fr (T Yk dk»] e Efficient regression point selection

transforming joint design-data-parameter random variables to standard | | e Represent policies: one-step lookahead
Gaussians under distribution equality

Goal: develop computational approaches to find near-optimal policy d.€D;, S . . . y ..
for a sequence of experiments, accommodating nonlinear models, con- : SN FO : 7 7 EXplO?atlf)n' randqm Giesigms, t].ry somethlp S IO, ieglanizaiion
. . i R . . —policy 7 implicitly parameterized by Ji(z1),. .., Jn(zy) Exploitation: applies current policy approximation, leverages current un-
tinuous variables, non-Gaussian distributions, and information mea- . § . . q i £ v00d boli
o T —if Jry1(Try1) = Jrr1(@pr), then py(xy) = py(zg) is optimal: erstanding of good policy ]
therefore want Ji1(xg11) close to Jii1(2p41) e Procedure to adapt iteratively as J;.’s are improved

Motivation
Fast Approximate Inference: Transport Maps

e Fast approximate inference Bayes’ theorem: posterior is simply con-

e How to numerically represent belief state (posterior)? ditioning the joint distribution
L —for general non-Gaussian continuous random variables (Oly) = f(yl0)(6) _ f(y,0)
wedium. —in a finite-dimensional manner f(y) /()
| —to easily perform Bayesian inference repeatedly in evaluating For one experiment: KR map from (d, v, 9) to & ~ N(0, 1) is:
contaminant? = N | i 1 i
Jk(xk) =P {max K d gk@ik, dy., yk) -+ Jk+1 (Fk(xk, dy., yk)) } &1 Td(d) K (F( ))
ma B, | | G| = [Ty | = | ot (Flyla)
% — = potentially MILLIONS of repeated Bayesian inferences 53 T6’|y a(d,y, 9) @ HEO|y,d)) )
—need approach that can quickly perform many Bayesian inferences iR map of posterior given reahzatlons J* and y* is:
Tr t . *
® ANnsport Mmaps TH]y*,d*((9> = o~ ( (‘9@ 7d ))
Question: what is the best sequence of locations to measure contami- ; This is precisely Ty, 4 conditioned on d* and y*: Ty, 4(d*, y*, 0)!
nant concentration, such that we can best infer the source location? £(6) . o Inference for multiple experiments:
The Optimal Sequential Design Problem k=0 1 2
e Experiment: £ =0,..., N — 1, total IV experiments, N < oo [ Sdo = 1, (do) Sdo = 1, (do) Sdo = 14, (do) ]
State: - 1 int : ded £ nal d €y = Tyo(do, Yo) €y = T3y (do, Yo) €y = T3y (do, Yo) )
o State: zj, = Tkp, Tgp) all information needed for optimal future de- €0, = Tpo (do, Yo, 0) [ €a, = Tu, (do, Yo, dq) a4, = Ty, (do, vo, d1)
S1gns = Ty (dos Yo, dr, y1) &y = Ty (dos Yo, da, 41) )
— Belief state: xj current state of uncertainty > 2 S6, = To,(do, Yo, d1, 1, 0) [ &az = Lap(do, Yo, d1, Y1, d2) ]
(e.g., posterior density xr = f(Oldo, ..., dr_1,Y0,- -, Yp_1)) /() €y = Ty (do, Yo, d1, Y1, da, ) )
’ €0, = T, (do, Yo, d1, Y1, da, Yo, 0)

— Physical state: zy, deterministic variables (e.g., vehicle position)

o Design: di — ux(xs); seek good policy 7 = {10, 1, - - - fry—1) — & ~ reference distribution, z ~ target distribution

— Posterior map after Bayesian inference on k£ + 1 experiments is the ng-

: e . LFL, Fouival - distributs id . . 9
e Observations: y; distributed according to likelihood f(yx|6, di) — Equivalence in distribution § = T'(z) N o dimensional Ty, g ys.....dz 47 (0)
(e.g., yr = G(0,d) + €, with € Gaussian) — Knothe-Rosenblatt (KR) maps: defined by conditional distribu- —Components grouped by the red rectangular boxes are identical; concate-
o System dynamics: ;. = F(x, dy, yp) state evolution tions, 1s triangular and monotone, exists and is unique nate unique parts and construct overall map in one shot
_ Belief state: Bayes’ theorem — Easy to construct: a convex optimization problem —Map constructed using samples of trajectory simulation (exploration and
F(yrlf, di)zr s exploitation)
Thk+1p = ’
| (Yrldos - s dis Yo, -+ Yr—1) Results: source inversion in 1D s
) ) Y ) ) S pace
— Physical state: physical process Greedy design (left) vs. sOED (right)
e Stage reward: gi(xy, yi, di) experiment rewards/costs Expected reward: greedy (0.07), sOED (0.15)
e Terminal reward: gy(xy) value of final state S 10 + du(t) — zpes | 15— 1.5
e.g., information gain via Kullback-Leibler divergence Y = exp | — - + €
g g . 5 V212+/(0.3 + Dt) 2(4) (0.3 + Dt) 1 e | ) *
gy(zN) = / Ty In Nb} do A~
© _ZEOZ) '5‘ 057 w ¥ | 6{ 057 **

e 2 experiments
lObservations Yk o0 ~ N(0,2% starting location: 5.5 0 » « e f 0 s

Desion d . State e Strong wind blows to the right after first experiment e 0k
g &k Systeﬂ}d(ynamm; | k e Quadratic movernent penalty >1-0.75-05-025 0 0.25 0.5 2107505025 0 0.25 0.5
Le+1 = Sk Tk Yk, Ok , , , d d
e Sample evolution trajectory of physical state and plume (left) and ! !
belief state (right) Batch design (left) vs. sSOED (right)
06 A more precise instrument available only if prior variance < 3
i —PDF of x . n
Policy (controller) | _ Guttl) - PDE o X?E Expected reward: batch (0.15), SOED (0.26)
o 7() Ol X9 ‘ ‘ ‘
ik .-’ <3 0.4| 2 f i i
[z, 21 2
The sequential optimal experimental design (sOED) problem: ~ g il * al * :ﬁ}**
Find 7* where = L = o ”’ .
"N -1 } 0! * 1 0l dets,
o — *
mt = argmax K, oo | gk (% Yk (mk) + g (z) 1 —1|
T={Hose 1N -1} k=0 | 210 5 0 5 10 15 20 2 8
st Tres = Folzr, up, di), Vk 15 -1 =05 0 05 15 -1 =05 0 05

Results: source inversion in 2D space

Sample evolution trajectory of phyiscal state and  Good agreement of samples from joint distribution (left) and transport map (right)
plume (top row) and belief state (bottom row) do.o d0o
® 3 experiments r— — o

A more challenging problem:

“““““““““““

e 2D parameter and physical spaces

=¥ (5] [i 3])

starting location = |5, 5]

Yo Yo

e 15 dimensional joint map
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e Variable wind: blows north after experi-
ment 1, north-east after experiment 2 Another sample evolution trajectory
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= Take away: policy inherently adaptive,
best design based on what occurred so far!
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