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Targeted application: compressible fluid flow (e.g., captive-carry)

* Majority of fluid MOR approaches in the literature are for incompressible flow.

e There has been some on MOR for compressible flows.

* Energy-based inner products: Rowley et al., 2004 (isentropic); Barone et al.,
2007 (linear); Serre et al., 2012 (linear); Kalashnikova et al., 2014 (nonlinear).

* GNAT method/Petrov-Galerkin projection: Carlberg et al., 2014 (nonlinear).

MOR for nonlinear, compressible fluid flows is still in its infancy!
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Governing equations

* 3D compressible Navier-Stokes equations in primitive specific volume form:

(,t + (,juj — (uj,j =0

1
Uie + Uil +CP; — 5oCTij,; = 0 (1)

1
12 ~r L2 SR = (p Re)( (PZ)J) - <—e> U, Ty =0

[PDEs]




Projection-based model order reduction @i

Governing equations

3D compressible Navier-Stokes equations in primitive specific volume form:

Cet+Cjuj —qu;; =0

1
ui,t+uijuj+fpi——(Tijj=0 (1)

[PDEs]
-1
P 0 Wbt Vi 0 (p Re)( (PZ)J) —e u;,jTij =0

* Spectral discretization* (q(x,t) = Y-, a;(t)U;(x)) + Galerkin
projection applied to (1) yields a system of n coupled quadratic ODEs:

da
[ROM] T =C+la+ la"QWa + a"Q@a + -+ a’ QMWa]|" (2)

where € € R*, L € R™" and QW € R™" foralli =1, ...,n

* Here we use a Proper Orthogonal Decomposition (POD) basis U;(x).
-
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ROM limitations due to basis truncation

Projection-based MOR necessitates truncation.

 POD s, by definition and design, biased towards the large, enerqy producing
scales of the flow (i.e., modes with large POD eigenvalues).

* Truncated/unresolved modes are negligible form a data compression point of
view (i.e., small POD eigenvalues) but are crucial for the dynamical
equations.

* For fluid flow applications, higher-order modes are associated with energy
dissipation = low-dimensional ROMs are often inaccurate and sometimes

unstable.

For a ROM to be stable and accurate, the
truncated/unresolved subspace must be accounted for.

v N\
Turbulence Modeling Subspace Rotation
(traditional approach) (our approach)
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Traditional linear eddy-viscosity approach

* Dissipative dynamics of truncated higher-order modes are modeled using
an additional linear term:

da
7= CtU+L)a+ [a"QWa + a”QPa + - + aT QWa]"

L, is designed to decrease magnitude of positive eigenvalues and increase
magnitude of negative eigenvalues of L + L., (for stability).

 Disadvantages of this approach:

1. Additional term destroys consistency between ROM and Navier-
Stokes equations.

2. Calibration is necessary to derive optimal L,, and optimal value is flow
dependent.

3. Inherently a linear model — cannot be expected to perform well for
all classes of problems (e.g., nonlinear).
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Proposed new approach

Instead of modeling truncation via additional linear term, model the truncation
a priori by “rotating” the projection subspace into a more dissipative regime

lllustrative example
» Standard approach: retain only the most energetic POD modes, i.e., U, U5,
Us, Uy, ..
* Proposed approach: choose some higher order basis modes to increase
dissipation, i.e., U1, U,, Ug, Ug, ...

* More generally: approximate the solution using a linear superposition
of n + p (with p > 0) most energetic modes:

U, =X"7X;U;, i=1,..,n (3)

where X € R("*P)X" s an orthonormal (XTX = I,,,,) “rotation” matrix.
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Goals of proposed new approach

Find X such that:

1. New modes U remain good approximations of the flow

— minimize the “rotation” angle, i.e., minimize ||X — I(n+p),n||p

2. New modes produce stable and accurate ROMs.

— ensure appropriate balance between energy production and
energy dissipation.

 Once X is found, the result is a system of the form (2) with:

QW = Yol o1 X5iQ® o X Xy, L XTLX, €< X'C

s,q,r=1
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Minimal subspace rotation: trace minimization on Stiefel manifold

. . . T
minimizexey, .. » —tr(X I(n+p)><n)

(9)
subjectto  tr(XTLX) = n

* Viup)n € (X € RPN XTxX = [ p > 0} is the Stiefel manifold.

* Constraint is traditional linear eddy-viscosity closure model ansatz — involves
overall balance between linear energy production and dissipation / vanishing
of averaged total power (= tr(XT LX) + energy transfer).

* 1 € R: proxy for the balance between linear energy production and
energy dissipation (calculated iteratively using modal energy).

* Equation (9) is solved efficiently offline using the method of Lagrange
multipliers (Manopt MATLAB toolbox).

* See (Balajewicz, Tezaur, Dowell, 2016) and Appendix slide for Algorithm.
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Accounting for modal truncation ) ..

Remarks

Proposed approach may be interpreted as an a priori consistent
formulation of the eddy-viscosity turbulence modeling approach.

e Advantages of proposed approach:

1. Retains consistency between ROM and Navier-Stokes equations —
no additional turbulence terms required.

2. Inherently a nonlinear model — should be expected to outperform
linear models.

3.  Works with any basis and Petrov-Galerkin projection.

 Disadvantages of proposed approach:

1. Off-line calibration of free parameter 7 is required.
2. Stability cannot be proven like for incompressible case.
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Channel driven cavity: low Reynolds number case

Flow over square cavity at Mach 0.6, Re = 1453.9, Pr=0.72
= n = 4 ROM (91% snapshot energy).

"|IIIII'I'" v
it

Figure 1: Domain and mesh for viscous channel driven cavity problem.




National

Applications ) i,

Channel driven cavity: low Reynolds number case
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Figure 2: (a) evolution of modal energy, (b) phase plot of first and second temporal basis
a,(t) and a,(t), (c) illustration of stabilizing rotation showing that rotation is small:

||X—I n n”F
(n'l'p) = 0188;X ~ I(n+p),n
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Channel driven cavity: low Reynolds number case
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Figure 3: Pressure power spectral density (PSD) at location x = (2, —1);
stabilized ROM minimizes subspace rotation.
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Channel driven cavity: low Reynolds number case
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Figure 4: Channel driven cavity Re = 1500 contours of u-velocity at time of final
snapshot.
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Channel driven cavity: moderate Reynolds number case

Flow over square cavity at Mach 0.6, Re =5452.1, Pr=0.72
= n = 20 ROM (71.8% snapshot energy).
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Figure 5: Domain and mesh for viscous channel driven cavity problem.
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Channel driven cavity: moderate Reynolds number case
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-- standard
ROM (n=20)

— stabilized
ROM (n=p=20)
— DNS

Figure 6: (a) evolution of modal energy, (b) illustration of stabilizing rotation showing

X-1
that rotation is small: ” (’:p)’"”F =0.038,X = I(nip)n
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Channel driven cavity: moderate Reynolds number case ROM (n=p=20)
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Figure 7: Pressure cross PSD of of p(xy, t) and p(x,, t) where x, = (2,—0.5), x, = (0,—0.5)

Power and phase lag at fundamental frequency, and first two super harmonics are
predicted accurately using the fine-tuned ROM (A = stabilized ROM, &1 = DNS)
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Applications

Channel driven cavity: moderate Reynolds number case
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Figure 8: Channel driven cavity Re = 5500 contours of u-velocity at time of final
snapshot.
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Summary h) e,

 We have developed a non-intrusive approach for stabilizing and fine-
tuning projection-based ROMs for compressible flows.

* The standard POD modes are “rotated” into a more dissipative regime to
account for the dynamics in the higher order modes truncated by the
standard POD method.

 The new approach is consistent and does not require the addition of
empirical turbulence model terms unlike traditional approaches.

 Mathematically, the approach is formulated as a gquadratic matrix
program on the Stiefel manifold.

* The constrained minimization problem is solved offline and small enough
to be solved in MATLAB.

* The method is demonstrated on several compressible flow problems and
shown to deliver stable and accurate ROMs.
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Future work rih) et

e Application to higher Reynolds number problems.

* Extension of the proposed approach to problems with generic nonlinearities,
where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD).

 Extension of the method to minimal-residual-based nonlinear ROMs.

* Extension of the method to predictive applications, e.g., problems with varying
Reynolds number and/or Mach number.

» Selecting different goal-oriented objectives and constraints in our optimization
problem:

minimizexEV(ner)'n f(X)
subjectto g(X,L) =0

e.g.,
* Maximize parametric robustness:

f =Y BillU(u)X — U* ()l p-
* ODE constraints: g = ||la(t) — a*(t)]|.
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Appendix: Accounting for modal truncatich -

Stabilization algorithm: returns stabilizing rotation matrix X.

Inputs: Initial guess 7(9) = tr(L(1:n.1:n)) (X = linip)xn): ROM size n and p > 1,
ROM matrices associated with the first n + p most energetic POD modes,
convergence tolerance TOL, maximum number of iterations kmax.

fﬂrk:[},"' ,kmax
Solve constrained optimization problem on Stiefel manifold:

. e KT
{krinmlmlze — tr (X{ ) "[n+p}xn)
XV (n+p),n

subject to tr{X{HTLX{H} = k).

Construct new Galerkin matrices using (4).
Integrate numerically new Galerkin system.
Calculate “modal energy” E(t)(%) = Z?[a{r}?“}g.

Perform linear fit of temporal data E{r}”‘]' o c{“t + cé,“, where c{“ —energy growth.

Calculate € such that C{H{E] = 0 (no energy growth) using root-finding algorithm.

Perform update nkt1) = k) 4+ ¢
if |9 < ToL

x = x

terminate the algorithm.
end

end
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Applications ) e

CPU times (CPU-hours) for offline and online computations

Procedure Low Re Cavity | Moderate Re

Cavity
| FOM # of DOF 288,250 243,750
Time-integration of FOM 72 hrs 179 hrs
é’ _ Basis construction (size n + p ROM) 0.88 hrs 3.44 hrs
5 Galerkin projection (size n + p ROM) 5.44 hrs 14.8 hrs
_ | Stabilization 14 sec 170 sec

o ROM # of DOF 4 20

% { Time-integration of ROM 0.16 sec 0.83 sec

7 Online computational speed-up 1.6e6 7.8e5

 Stabilization is fast (O(sec) or O(min)).

* Significant online computational speed-up!




