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Abstract—Amidst the rising impact of machine learning and
the popularity of deep neural networks, learning theory is not a
solved problem. With the emergence of neuromorphic computing
as a means of addressing the von Neumann bottleneck, it is
not simply a matter of employing existing algorithms on new
hardware technology, but rather richer theory is needed to guide
advances. In particular, there is a need for a richer understanding
of the role of adaptivity in neural learning to provide a foundation
upon which architectures and devices may be built. Modern
machine learning algorithms lack adaptive learning, in that they
are dominated by a costly training phase after which they no
longer learn. The brain on the other hand is continuously learning
and provides a basis for which new mathematical theories may
be developed to greatly enrich the computational capabilities of
learning systems. Game theory provides one alternative mathe-
matical perspective analyzing strategic interactions and as such
is well suited to learning theory.

I. INTRODUCTION

A key differentiating capability of the brain is continuous
learning. While humans may have courses and intentional
moments in which we strive to learn content, fundamentally
the brain is continuously re-wiring itself and making synaptic
modifications as well as other forms of learning. Most machine
learning algorithms however do not. Rather, most tend to
have a fixed training phase and are then used as is. Machine
learning algorithms do not have a lack of learning paradigms
in fact there are many. For instance supervised and semi-
supervised paradigms address how to handle labeled data. And
methodologies such as batch, incremental, one-shot, and online
address how data is presented to learning algorithms [1].

But despite this existent theoretical basis, learning theo-
ries have limitations, particularly with respect to dynamic
environments. By design, the majority of machine learning
algorithms are developed to converge upon a fixed solution.
The optimization techniques fundamental to most learning
algorithms (whether minimizing an error parameter or energy
function) are designed to not only find a fixed state, but do so
with provable convergence and stability. These desirable traits
preclude the adaptivity of the algorithms. Instead of employing
continual learning as brains do, many of these algorithms
are more analogous to machine training. Not only do these
limitations constrain algorithmic advances, but they further-
more limit architectural development in systems built without
a theoretical basis. It is noted by Indiveri in [2] that, “For
example, the models of neurons and synapses implemented
on Neurogrid and BrainScales are hard-wired and cannot be

changed” which in effect constrains neural inspired computing
to be based upon hardware which in itself is also inflexible.
Or as another example, compression techniques allow for
vast reductions to the size of deep neural networks enabling
their deployment on GPUs or neuromorphic chips rather than
requiring a large computational cluster [3]. However, doing so
comes at the expense of the adaptivity of the neural network
as the pruned down result limits what the neural network may
learn.

II. LEARNING BOTTLENECK

While clever techniques are being developed to address
individual problems, a more holistic solution is needed. When
game theory was pioneered by John von Neumann in the
early 1940s [4], the motivating reason was that problems in
economics were inadequately formulated with standard meth-
ods from optimization theory. Real world economic problems
involving dynamic interactions were not adequately captured
by single global objective functions and therefore needed a
different approach [5]. An analogous statement can be said
about machine learning — many learning problems involve
dynamics not adequately captured by a traditional optimization
approaches, but rather are limited by a ‘Static Learning Bottle-
neck’. A static learning bottleneck in the sense that just as the
memory access bottleneck limits the computational throughput
of a von Neumann processor, likewise the static nature of
machine learning algorithms limits what they may compute.
Figure 1 illustrates this bottleneck in which distinct training
and testing phases necessitate that for a model to be updated
and learn it must be re-trained before it may be employed.
Therefore to alleviate this bottleneck, a different adaptive
learning approach is needed with alternative mathematics
beyond optimization.

The brain however, employs continuous adaption and learn-
ing through a variety of forms of neural plasticity. Synaptic
plasticity involves the dynamic alteration of the strength of
the connections between neurons and includes mechanisms
such as spike-timing dependent plasticity (STDP) [6] and
short-term plasticity. Structural plasticity involves the addition
and elimination of neural network infrastructure and includes
mechanisms such as neurogenesis [7] and homeostatic plas-
ticity [8]. These mechanisms have a variety of time scales
enabling different properties such as the long term stability
of the network as well as the short term encoding of novel
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Fig. 1. Static Learning Bottleneck: the learning process as a limiting factor in
the canonical training-testing paradigm of machine learning. By requiring a
model be trained separately from being used, this makes the learning process
a bottleneck

Fig. 2. Learning in the brain is a continuous and adaptive process rather than
a disjoint paradigm with distinct training and testing periods. Rather learning
occurs continuously throughout operation

stimuli. Effectively, neural plasticity mechanisms such as
these and others amount to a spectrum of adaptive learning
not captured by the operational mathematics or the learning
paradigms typically employed in machine learning and neural
network algorithms. But rather, they provide a foundation upon
which adaptive learning theory may be based. Figure 2 is
illustrative of a continuous learning paradigm brains employ
in which they operationally adapt without a bottleneck such
as forming new connections (dashed connectivity arrows),
strengthening and weakening connections (illustrated by the
width of connectivity arrows), or employing different activity
patterns to name a few neural learning characteristics.

III. GAME THEORETIC APPROACH

One example alternative mathematical perspective is that
of game theory. Just as game theory provided an alternative
approach to optimization in economics, as a branch of applied
mathematics to formally analyze strategic interactions it is well
suited to formalize neural plasticity mechanisms as well. For
example - voting, auction, and coalition mechanisms may de-
scribe synaptic and structural interactions implicit in learning.
And concepts such as strategy profiles, equilibria, and repeated
game play are applicable to temporal dynamics. Additionally,

game theory encompasses many innate properties such as
independence and an iterative and distributive nature which
are well suited traits for adaptive scenarios.

An example in which a game theoretic approach has been
successfully applied to adaptive machine learning problems
is the SVM Game [9]. This game theoretic formulation of
the Support Vector Machine (SVM) algorithm is an online
iterative algorithm by which repeated interactions between
data points leads to the identification of the salient ‘support
vectors’ from which a discriminant may be formed. As an
iterative game, the algorithm is able to address the inclusion of
addition data by playing further game iterations and updating
accordingly without having to re-compute the entire problem.
Effectively the algorithm is able to address concept drift
scenarios as a particular type of dynamic learning problem in
which there are changes to the problem data over time such
as a streaming domain or due to variation in underlying data
distributions. For example, 3 illustrates the result of the SVM
Game adaptation of a linear discriminant into a piecewise
linear discriminant. The top half of the figure shows an original
linearly separable problem for which the two classes later
expand as shown in the lower half of the figure (for example
this may be due to receiving additional sensor recordings
over time) resulting in a later piecewise linear solution. This
game theoretic formulation is based upon coalitional dynamics
which may be related to ensembles of neural activity.

IV. CONCLUSION

In summary, the lack of adaptivity in most learning algo-
rithms results in a static learning bottleneck. To overcome
this limitation, neural plasticity mechanisms and dynamics
could provide a basis for which new mathematical theories
of adaptive learning may be developed. Game theory serves
as one such mathematical basis with multifaceted applicability
to learning theory. From a descriptive standpoint, it is capable
of analyzing and providing explanations for the behaviours
exhibited across a breadth of learning algorithms. Further-
more, it may also be used as the underlying decision-making
mechanism governing the strategic decision making processes
that comprise a learning problem. Effectively, game theory
provides a strategic perspective as a means of interpreting,
understand, and implementing learning problems.

Advances in the theory of learning have the potential
to greatly enrich the computational capabilities of learning
systems. In particular, a richer understanding of the role of
adaptivity not only will help overcome the static learning
bottleneck, but additionally provides a foundation upon which
architectures and devices may be built.
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Fig. 3. An illustration of the SVM Game adapting a linear discriminant to a
piecewise curved discriminant as a result of concept drift in the data

of Energys National Nuclear Security Administration under
contract DE-AC04-94AL85000.

REFERENCES

[1] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine
learning. MIT press, 2012.

[2] G. Indiveri and S.-C. Liu, “Memory and information processing in
neuromorphic systems,” Proceedings of the IEEE, vol. 103, no. 8, pp.
1379–1397, 2015.

[3] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv preprint arXiv:1510.00149, 2015.

[4] L. J. Neumann and O. Morgenstern, Theory of games and economic
behavior. Princeton university press Princeton, NJ, 1947, vol. 60.

[5] M. Bicego, V. Murino, M. Pelillo, and A. Torsello, “Similarity-based
pattern recognition,” Pattern Recognition, vol. 39, no. 10, pp. 1813–1814,
2006.

[6] G.-q. Bi and M.-m. Poo, “Synaptic modification by correlated activity:
Hebb’s postulate revisited,” Annual review of neuroscience, vol. 24, no. 1,
pp. 139–166, 2001.

[7] P. S. Eriksson, E. Perfilieva, T. Björk-Eriksson, A.-M. Alborn, C. Nord-
borg, D. A. Peterson, and F. H. Gage, “Neurogenesis in the adult human
hippocampus,” Nature medicine, vol. 4, no. 11, pp. 1313–1317, 1998.

[8] G. G. Turrigiano and S. B. Nelson, “Homeostatic plasticity in the
developing nervous system,” Nature Reviews Neuroscience, vol. 5, no. 2,
pp. 97–107, 2004.

[9] C. M. Vineyard, S. J. Verzi, C. D. James, J. B. Aimone, and G. L.
Heileman, “Repeated play of the svm game as a means of adaptive
classification,” in Neural Networks (IJCNN), 2015 International Joint
Conference on. IEEE, 2015, pp. 1–8.


