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Developing an experimentally validated model for grain-
scale deformation (crystal plasticity)
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Atomic Mechanisms Single-Crystal Polycrystalline
Of Plasticit Plasticity Models Deformation Response
RSS/C44=0.0353
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(101)

112

Goal: Provide a science-based foundation for design, analysis,
and qualification capabilities that links mesoscopic/microscopic
inhomogeneity to property variability.
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Stochastic Outcomes
From Different Configurations
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Reduced Order Modeling

System Reliability For Efficient Stochastic Computations



Recent i i
Sandia advances in Polycrystal Plasticity:
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Predicting Stochastic Behavior of Polycrystals i) e
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VM stress fields after 3% deformation
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On the horizon: System-scale simulations with explicit )

microstructural representations.

Homogenization

8K elements

Direct Numerical Simulation

35M elements, 350K grains eﬁe"“"e—"’g—:‘g‘;;
2400 processors (Chama) o:msi
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On the horizon: System-scale simulations with explicit ) i
microstructural representations.
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Sandia
Polycrystal plasticity employs finite element method to i) Nators
discretize crystallographic slip at the crystallographic-level.

1/m
. . o [T . .
Slip rate: % =g (—a> (Hutchinson, 1976) 24 <111>{110} slip systems
Slip resistance: g% = max (75, — T, 0) + Tops  (Weinberger, 2012)
Q Obstacle stress

Lattice friction

Obstacle stress: 75, = aub Z PP (Taylor, 1934)
B=1

NS
P& = (/11 Zpﬂ — mgpa) |yl (Kocks, 1976)
B=1
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Options for Experimental Validation at Grain-Scale i) Mo
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Deformation gradient can be decomposed into a product of stretch and rotation
F=UR

/\

stretch rotation

Analagously, experimentally we measure shape change and rotation

Digital Image Correlation Electron Backscatter Diffraction
Surface Profilometry Precession Electron Diffraction
Synchrotron X-ray microdiffraction Synchrotron X-ray microdiffraction

]
2/12/2016 9



Quantifying Shape Change

e
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Previous Work on Sim.- Exp. Comparison i) s
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“Quantitative comparisons between the model and experiments”

Zr 702 polycrystal (Heripre et al, 2007) OFHC Cu polycrystal (Musienko et al, 2007)
(2.5 % strain) (5 % strain)
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Limited success has been achieved in modeling polycrystal deformation
behavior due to unknown subsurface grains
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Experimental Setup ) e,

* Tantalum oligocrystals with mostly columnar 2D grain structure
eliminate unknown subsurface grain morphology.

* In-situ load frame developed at Sandia

*  HR-DIC (surface strain fields) and EBSD (crystal orientations)
measurements at load inside SEM
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15 grains

- 18 grains
(1,426,650 elements)

- 12 grains
(1,664,150 elements)

(2,140,020 elements)
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Side-by-side qualitative comparison ) ls

Experimental measurement of strains within 2D slice of a 3D simulation of strain inhomogeneity
individual grains using SEM Digital Image based on crystal plasticity finite element modeling.
Correlation
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A Quantitative Model-Experiment Difference Map ) feses_

CPFEM
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The advantage of quantitative difference mapping:

AeE =2 T (ePeeim)”
=1
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= A rational RMS goodness-of-fit metric to compare and discriminate

effectiveness and locate deficiencies.

Deviabion Applied strain (e;)
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Quantifying Rotation Change



Sandia
II1 National
Laboratories

Global vs Local Rotation Measurements

Global (100) X-ray Pole
Texture Figures
Evolution D
RD, J P
Experiment Prédiction
S.R. Kalidindi, A. Bhattacharyya, and R.D. Doherty, Proc. Roy. Soc. Lond. A 460 (2004) 1-22.

Misorientation

Ave_Misor

46183648

Local Crystal
Orientation

Experiment

Courtesy of A.D. Rollett

, Experiment Simulation




Texture Predictions
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Specimen 1 (6.8%)
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EBSD measurement
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CP-FEM prediction
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Specimen 2 (19.2%)
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Specimen 3 (10.0%)

[T11]

EBSD measurement

[001]

CP-FEM prediction

[001] [011]

IPF contour plots indicate very good agreement between model and experiment.
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Reference Orientation Deviation Map (ROD) ) &
reference pixels to a specific orientation in a grain

Misorientation between all pixels in a grain and the grain’s current average orientation

Deformed Configuration
~22% Strain (4t strain step)

Original Configuration

* Conventional approach —does not require a

: . . . 10°
correlation between maps Misorientation

—— Grain boundaries

2.52 threshold exceeded between
adjacent pixels

m  Pixels not indexed

* deformation history not captured




A new type of ROD map, referencing to the ()&=

Laboratories

average orientation of originally defined grains

Original Configuration

* Must tra_Ck gra.ln ID durlng defqrmatlon to — Boundaries of originally defined grains
allow orientation relative to original —— Boundaries of new grains
* Requires ability to perform in-situ EBSD 2.§° threShold exceeded between
measurements during deformation adjacent pixels _
. Easily Compared to a CPEEM model = Pixels not correlated or indexed




Comparison of pixel misorientation relative tof) s
original average grain orientation

4.2% Strain 6.8% Strain
Experiments (EBSD Maps)

CPFEM Simulations

OO

——2.5° Minimum misorientation angle
— ;g relative to the undeformed grain orientation

I
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Grain boundary transmissivity

e
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There are many models for grain boundary slip transmissibility e Sandia

How does slip transfer across GBs? Dependence on GB type?

0 Explicit MD examination
- Sangid-Ezaz-Sehitoglu-Robertson, Acta Mater. 2011

(3 boundaries)

GB

transparent to

0 Geometrical criteria: diajocatjon| ___ b . | —
- N factor from Livingston-Chalmers, Acta Metall. (1957) ))"\ ))li**
GB

- SWC factor from Shen-Wagoner-Clark, Acta Metall. (1988) 6B
- LRB factor from Lee-Robertson-Birnbaum, Scripta Metall. &)1)2}89:11\( 'T;efitfableTGB
- m’ factor from Luster -Morris, Metal. Mat. Trans. A (1995) O

- The residual Burgers vector, Metal. Trans. (1970) l s GBI

- The A function from Werner and Prantl, Acta Metall. (1990)
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Surface profile for interpreting grain boundary transmissivity i Sandia
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Grain boundary slip transmissivity provides an
estimate for how resistant a grain boundary is to
allowing dislocations to pass through.

Deformed surface (10%)

i \
e mmmem e L

n : slip plane normals GB ,
s : slip directions \Li 'Lj) X (Si 'Sj)
L : intersection line between GB and slip plane

ow/dx \d

o R P LR Mo ‘ F
JL Profilometry Measurements T mm
X

Our transmissivity-based model for boundary — dislocation interactions provides qualitative
agreement with measurements of slip band formation and surface profilometry.
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Fullwood/Wagoner/Homer Collaboration:
Quantitatively validate transmissability laws at
individual boundaries

Ta Bicrystal — Lattice Curvature

* 0.1 mm Plastic Extension in Mini Instron iy _ '
Experiment (KAM Map) SD Simulated (Lattice Curvature) Non-SD Simulated (Le;ftjce Cﬁ"ry.ature)

e ‘ﬁw?'ﬂ’ Fi ST ¥ L 5

— Same Scale

T

ROI Lattice Curvature (rad/mm)  Experiment SD Model Non-SD
Average 1.20 0.91 1.98
Maximum 2.15 1.33 2.56
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Grain boundaries are not always as simple as ‘just’ 5

degrees of freedom!!!
HAADF-STEM = 5
<001>GBin Fe

HAADF-STEM
Inclination from {310}: 26.3°
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Observations

O Thermal faceting into “hill-and-valley” morphelogy 5

O Boundary is faceted on {210} and {310} inclinations aCe
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Void Behavior and Damage

-
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The crystal plasticity model predicts localized hot spots in strain (g v
at the same location where cracking is observed...
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Background: Ductile Fracture

= |Initiation of voids through
decohesion at second-phase
particles or inclusions

= Voids continue to grow in
response to high stresses

= Eventual coalescence of voids,
leading to failure
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How do voids initiate in
pure metals?
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Void Formation in 99.9%Ta ) e
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I60%IRemaining Strength

= Arrays of voids aligned along tensile axis

= EBSD shows elongated, inclined [001] subgrains
associated with each void

= Alternating regions of [122] indicates high angle
GBs

Ta failure is void-driven, with deformation-induced microstructural
changes and stress state controlling the initiation/growth of voids
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Nanoscale Analysis of Void Initiation i)

99.9% Ta deformed to 40% UTS = Focused lon Beam (FIB) used to locate subsurface,
: deformation-induced voids in interrupted tensile
bar.

= Preliminary TEM shows void shape aligned with
angle of sub-boundaries

= Transmission Kikuchi Diffraction (TKD) to determine
Visible _ crystallographic orientation near void.

Suriasd = Orientations are consistent with EBSD analysis
showing void nucleation along high angle

misorientation boundaries

—
250 nm
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Probing relationships between void formation and ) e,
. . . Laboratories
crystallographic orientation
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= Investigated a void formed during tensile testing of a Ta single crystal <011>. Imaging at the
specimen midplane.

=  Crystallographic rotations near a void in single crystal specimens improve our
understanding of void formation in polycrystals.

= Void formation is associated with developing <001> and <111> crystallographic
orientations.

= We are investigating whether substructure leads to these crystallographic rotations which
leads to voids or whether the formation of voids causes the crystallographic rotations.



Summary )t
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Grain-scale validation of crystal-plasticity models is still largely
qualitative

Both distortion and rotation can be mapped relative to the original
undeformed configuration

With an ability to map back to the original undeformed configuration, it
is possible to begin to assess quantitative difference metrics.

These new statistical metrics may help identify and address gaps in
CP-FEM theory:

= @Grain boundary slip transmissibility

= Void nucleation and growth
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