Exceptional service in the national interest

IDC Reengineering Phase 2

E2 Prototyping Overview

Ryan Prescott
20 June 2015
SAND Number:

ST \ U.S. DEPARTMENT OF M/n ' 'om
{.)jﬁ ENERGY ﬂ’ VAvus‘ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Agenda

Prototyping Overview
= Timeline
= Current Prototyping Assumptions
= Conceptual Overview

= E2 Focus Areas
= Web Ul
= Data Services
= Data Provenance

= Development Tooling
= E3 Path Forward

Sandia
National _
Laboratories

Sandia
|I1 National

Laboratories

Prototyping Overview

= The US NDC Modernization project plan includes a

software prototyping component supporting
definition of the system architecture

" Prototyping is intended to facilitate:
= Definition of high-level design patterns

= Demonstration of key architecture concepts & features

= Selection of representative technologies
= System platform
= Software languages
* Third-party software

Sandia
|I1 National
Laboratories

Timeline

= Architecture Prototyping
= Focused on core design patterns and technologies

= Software language selection and third-party software evaluations for key software
mechanisms

= Reduced emphasis starting Q3 FY 2017 with transition to production development
= Ongoing architecture prototyping as needed throughout the Development phase

= Production Development
= Beginning Q1 2017
= Early focus:
= Establish production development envt./tools, including Cl, testbeds, etc.

= Core SW infrastructure development
" |nitial domain application development

CY 2017
Q3 Q4 Qi Q2 Q3 Q4
IDC RP2 Development Phase

CY 2015
Q1 Q2 Q3

CY 2016

Q2

Q4

Architecture Prototyping .

Product Development

US NDC Development Phase

-

Current Prototyping Assumptions — i) b
Platform & Languages

= Platform:

= |nfrastructure:

= Deployment: VMs + containers on dedicated physical hosts, custom cloud (e.g.
OpenStack), or possibly commodity cloud (e.g. AWS)

= OS: Centos 7+ (current) / RHEL 7+ (future)

= Storage architecture:

= Current: RDBMS (Postgres)

= Future: Likely will include other technologies for waveform storage, provenance support
= Software Development Languages:

= User Interface: Web Ul stack (.js, css, html), Java RCP as fallback

= Application Control & Orchestration: Java

= Domain Services:

= Multiple supported (C++, Java, Python)
= Only Java demonstrated to date
= Data Access:
= Code API: Java (C++ TBD)
= REST API: Multiple supported (C++, Python, Java, etc.), Java included in prototype

Sandia
|I1 National

Laboratories

Current Prototyping Assumptions - COTS

Web-Based User Interface
= Framework: Golden Layout, React, Redux, D3, ...
= Map displays: TBD (currently Cesium)

= Fallback Ul approach: Java rich client

= Netbeans RCP, JavaFX charts, OpenGL

" Processing Sequence Controller mechanism (PSC)
= Current: Activiti BPMN Engine

= |nter-process Communications
= Data Distribution (pub/sub): RabbitMQ / JSON
= Service Invocation (request/response): HTTP(S) / JSON (REST)

= Data Access (SCRUD)

= Code API - Java: Spring JPA (Hibernate), C++ (support TBD)
= REST API: Spring Data REST, Spring Web + JPA

Prototype Conceptual Overview

C—

Browser-Based
Analyst Ul

\ J
Golden Layout

React

Redux

D3

Cesium

<+—» HTTP Request/Response
<= —— AMQP Pub/Sub

Aemales |N

Sandia
r.h National _
Laboratories

Plugin Services — e.g.
—>
Filter '

«— & UlWebServer | PP
Activit BPMN -
Orchestration @ |¢——————
<+—— (Processing Sequence
Controller)
Application Services — e.g. g
D — @ | RabbitMq
Signal Enhancement §
Signal Detection ™ sl € ————— ————| w
 Signal Association
* Java (Spring Boot)
v
\

Java (Spring Boot)

A

y

Data Services —e.g.

>
Waveforms
Signal Detections
NGINX Configuration

v
Data Store

Postgres

Spring JPA Repositories, REST controllers

E2 Focus Areas Overview) e

= Web Ul

= Golden Layout
= Continuous FK
= Undo/Redo

= Data Services

= REST Repositories
= REST Controllers

= Data Provenance
= Event Sourcing + CQRS

= Development Tooling
= Continuous Integration
= VM Packaging & Deployment

Sandia
m National
Laboratories

WEB Ul

Web Ul Prototype Overview) .

= Three primary efforts in E2:

1. Golden Layout

o Goal: Evaluate Golden Layout as an alternative to OWF for display
window management

o Status: Replaced OWF with Golden Layout in current prototype
2. Continuous FK

o Goal: Demonstrate responsive displays for a computationally-intensive
processing function as part of the Web vs. Java thick client Ul trade

o Status:
o Developed an initial prototype for the ‘Continuous FK’ feature
o Performance assessment and optimization is ongoing

3. Basic Undo/Redo

o Goal: Demonstrate an initial, global-history undo/redo capability to
better understand the web Ul solution space

o Status: Developed a browser-side prototype using Redux undo

Web Ul Prototype Design

Sandia
National
Laboratories

mh

Publish state
changes

— |

User slides a detection window through
time, showing change in FK heat map
User can resize the detection window

Undo/Redo
Stack Display

(Not Shown)

Waveforms
Signal Detections
FK Results

' ’ Undo/Redo actions
Populate Waveforms from Data Service Browser (Workstation)
\ \
Generate FK Store Signal \
Via Data SerVice Waveform Data
Services
FK Plugin Service
] . . Data Store
FK Plugin Signal Detection
Data Services
Postgres
Spring JPA Repositories, REST controllers Appl’ cation (Serv er,)

Java (Spring Boot)

Sandia
|I1 National
Laboratories

Golden Layout

= Golden Layout is a popular OSS alternative to Ozone Widget
Framework (OWF), providing similar features

= User customizable browser display layouts
= Save/load configurations
= Manage display components
= Data bus for synchronizing display data across components

= |Impressions
= Easier to integrate than OWF - does not require components to use
specific patterns & SW
= Supports display component ‘tear off’ into separate browser instance,
with continuity of data synchronization
= Greater flexibility for display configuration across multiple screens

Continuous FK rh) pes

= Previously investigated options for translating C/C++ & Java into
JavaScript for browser-local invocation of e.g. FK functions
= Looked at GWT & Emscripten
= |mpression: complex solution better suited to standalone applications
than individual components of a system
" Prototyped service-based FK computation as an alternative

= Multi-threaded FK service for a given window; parallel HTTP service
invocations from Ul

= Multi-threaded batch FK service for a given window, time range and step
size; single service call from Ul

= Pre-fetch optimization where possible

* Follow-on work

= Ongoing performance assessment, including simulation of remote
performance

= Further prototyping of optimization options

Undo/Redo)

= |ntegrated the Redux framework to provide a shared, global
state cache across components of the browser-based Ul

"= |Implemented a global undo/redo history with associated
display component using the Redux Undo framework

= User support for undo & redo of most recent action as well as those
farther back in the history

= Limited action set included in the prototype: signal detection creation,
phase assignment, re-timing, FK-based azimuth/slowness feature

measurement
* Follow-on work

= Extend the prototype to support multiple undo/redo histories, e.g. per
event and for unassociated signal detections

= |nvestigate design tradeoffs for state restoration vs. re-execution

" |nvestigate server-side state management use cases

DATA SERVICES

Sandia

Data Services Prototype Overview Wi

= Prototyped two approaches for providing HTTP/JSON SCRUD
interfaces to persistent data:

1. REST repositories (Spring Data REST + JPA)

= Supports the HATEOAS REST constraint (Hypertext As The Engine Of
Application State)

- Associations between data model entities are discoverable and traversable
via Hypertext Application Language (HAL) links embedded in data response

= Automatic generation of REST interfaces for all data entities

= Does not support cascade of updates to associated data entities

— Separate update service calls required for all associated entities that are
modified

2. REST controllers exposing JPA generated APIs (Spring Web + JPA)
= Enables server-side cascade of updates to associated data entities
= Does not provide built-in support for the HATEOAS
= Requires custom controller software; no auto-generated interfaces

Data Services Prototype Overview (@E.

= The two approaches offer advantages for different use cases

1. REST repositories are well-suited for data access (query, read)
= HAL link traversal is an appealing solution for data associations

2. JPA REST controllers well-suited for data updates (create, update,
delete)

= Server-side cascade of updates to associated entities is efficient and
provides a simpler interface without the need for aggregated service
interfaces

= Follow-on work
= Select a design for further prototyping

= A hybrid design combing both approaches may be viable

= Under an event sourcing/CQRS design, the System separate read and
write interfaces (and data models)

= See the Data Provenance section for information

DATA PROVENANCE

Sandia
|I1 National

Laboratories

Motivation

= The IDC System Specification includes requirements to
preserve the history of the System state

= Motivated by the desire to track the provenance of
information

= SSD 1926: The System shall provide the Analyst the capability to view
the complete history of an event

m SSD 5736: The System shall maintain a history of the system
configurations

= SSD 2134: The System shall store raw waveform data availabilities for
specific points in the processing history

Sandia
|I1 National
Laboratories

Event Sourcing

= Event Sourcing (ES) is an architectural approach that seeks to
address this type of requirement
= Generalized solution to historical state tracking

= Typically seen in industries where:
= Rigorous audit logging is a critical requirement &/or
= State is most naturally defined as the sum of a sequence of events

= E.g. Banking, stock trading

Sandia
r.h National _
Laboratories

Event Sourcing

= How it works
= Every change in System state is captured as an event
= Events are persisted as sequences in an event store (“streams”)
= Current state is accessed by applying the sequence of events
= Snapshots provide an optimization, reducing the number of events
that must be applied to produce the System’s current state

= There are many good resources describing Event Sourcing

= Martin Fowler

= Greg Young

= More Fowler

https://www.youtube.com/watch?v=aweV9FLTZkU
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0ahUKEwjonanMuqDNAhVW2GMKHbxkCUYQtwIIHDAA&url=https://www.youtube.com/watch?v=JHGkaShoyNs&usg=AFQjCNHcasRQSK-S4HP5IiPEzp1xblERgA&sig2=mA-xtSYGxX309zX7lR8qIg&b
http://martinfowler.com/eaaDev/EventSourcing.html

Event Sourcing Conceptual Design

Sandia
m National
Laboratories

(Command T

1. State Change
Commands

»
»

Handler

2. Are mapped
to a Domain
Model

Command
Domain Model

Aggregates

The System

Event Streams

R [§ |
» Event Store HEEE
[5 3 |

3. And converted
to change events

4. Which are stored
as event sequences
in an event store

Command Query Responsibility Segregation (i)
(CQRS)

= Supporting queries is a problem for Event Sourcing

= The Event Log does not provide a view into current state

= Replaying the Event Log in for each query likely is not practical

= CQRS addresses this problem

= An architecture pattern where the System uses separate models for
modifying and querying state
= |n an event sourcing system, a separate cache or DB instance provides a
view of System state for query purposes that is populated from the
stream of events published via an event bus
= There are many good resources describing CQRS
= Martin Fowler

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjvycjEu6DNAhVDVWMKHUSkDPEQFgguMAM&url=http://martinfowler.com/bliki/CQRS.html&usg=AFQjCNF7obR53HfXyJ6nWrNsTI9FXPqddA&sig2=YF7NcuA8sSmjf3xJEV4qMw

Sandia
National _
Laboratories

i

Event Sourcing + CQRS Conceptual Design

Command
Domain Model

3. And converted
to change events

Event Streams
HE)
T T 4. Which are stored
s 3 | as event sequences

In an event store

3 Handler
3 1. State Change
Q Commands 2. Are mapped
3_ toa Domain |
Model N Aogregates
J <
"""""""""""""""""""" 5. And used to build
Query Domain a state cache
o Model _
<2 User queries < > W State View

\._ JPA Entities

6. Providing a separate
domain model

The System

Sandia
|I1 National

Laboratories

Event Sourcing + CQRS Prototype

= Developed an initial ES + CQRS prototype in E2
= Goals:

= |nvestigate technologies
= |nvestigate data model implications
= Demonstrate ES design for signal detections

= Selected Technologies
= Axon framework (Java ES + CQRS framework)
= Spring Boot (Java application development framework)

= RabbitMQ (event bus implementation supporting distributed, polyglot
system)

= MongoDB (event store implementation)

Sandia
|I1 National

Laboratories

Event Sourcing + CQRS Prototype Design

Event Streams

Event Store

:) Mongodb
7 % B Command ‘"‘ —)
< w g - Domain Model ™ P
Signal Detection b L 9
Create/Updat & = H &] \
/—ﬁfl" ;/J 507\/ e S = = Event Hander J
9 (i) g 2 3 AMQP (rabbitmq) Events
> = > o >
o — — \. Aggregates — , Spring Boot App
%
ul
0 Future Work Lommmdmmmmmm e
c [I
o | | e J e
<
I.;I'EI Query Domain
< wn Model
< —
Signal Detection Queries c;EJ < > H
(HTTP/JSON) §
g
=
9 . JPA Entities

} Spring Boot App

Sandia

' 1 '11 Il“aat}m%ries
Findings

= ES+ CQRS

= Appears to be a viable approach to recording state history in the
reengineered system

= May support some or all replay requirements
= Adds complexity to the architecture

= Separate data models, separate event store and state DB, snapshotting,
playback)

= There are few OSS frameworks providing ES/CQRS support
= Does not appear to be a widely-used pattern
= Axon

= |s fairly easy to work with, although there are few code examples to
draw on

= |s under active development

= Redis and Cassandra event store implementations
= Kafka event bus implementation (TBD)

Sandia
|I1 National

Laboratories

Follow-On Work

= Elaborate the command-side data model to identify the
events and aggregates

= Estimate scaling needs of the event store based on predicted
network size

= Prototype a query-side database populated from the event
bus, using the existing data model as a starting point

= Characterize performance for more realistic signal detection
loads

= Command processing & event dispatching

DEVELOPMENT TOOLING

Development Tooling Prototype i,
Overview

= E2included early work to establish a production-quality

development tool set anticipating the transition to production
development
= Two focus areas:

1. Continuous Integration (Cl)
2. Virtual Machine (VM) packaging & deployment

Continuous Integration) S

= Looked at a few well-known CI tools (Jenkins, Travis Cl, Gitlab
Cl)

= Developed a Cl pipeline prototype using Gitlab Cl
= Automatic build, unit test execution, service APl documentation
generation
= Upon git push of any branch
= Upon acceptance of merge request into the ‘develop’ branch
= Executed on commodity Centos 7 VMs using docker containers
= Minimizes host VM dependencies on third-party software

= Follow-on work:

= Add code formatting, javadoc generation and static analysis (Sonar) to
the pipeline

= Add web Ul third-party software libraries (NPM) to the build
repository

VM Packaging & Deployment).

= |mplemented RPM packaging of third-party development
tools and initial scripts to build development environment
VMs

= Separate VM images targeting individual development environments
(VirtualBox) and shared testbed environment (OpenStack)
= |nvestigated tools for automated configuration and
deployment of VM images across environments (VirtualBox,
OpenStack)

= Evaluated Puppet and Ansible

= Follow-on work:

= Prototype automated VM configuration/deployment (likely with
Ansible)

= Ultimate goal: automated, dynamic VM provisioning for Cl pipeline,
virtual testbeds

E3 Path Forward)

= Web Ul

= Further prototyping and performance assessment of key displays supported
by services

= Include remote Ul performance assessment
= Elaboration of the undo/redo prototype
= Separate undo/redo histories e.g. per event and for unassociated signal detections
= Data Services
= Select a design path forward reconciling the two approaches
= Elaborate the prototype based on the design selection

= Data Provenance
= Consider alternatives and select a path forward

= Consider data scale implications of ES

= Development Tooling

= Create VM configuration/deployment tooling to support development, Cl and testbed
deployment

= QOther Focus Areas
= Continue elaboration of the data model

