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Prototyping Overview

 The US NDC Modernization project plan includes a 
software prototyping component supporting 
definition of the system architecture

 Prototyping is intended to facilitate:

 Definition of high-level design patterns

 Demonstration of key architecture concepts & features

 Selection of representative technologies
 System platform

 Software languages

 Third-party software
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Timeline
 Architecture Prototyping

 Focused on core design patterns and technologies

 Software language selection and third-party software evaluations for key software 
mechanisms

 Reduced emphasis starting Q3 FY 2017 with transition to production development

 Ongoing architecture prototyping as needed throughout the Development phase

 Production Development

 Beginning Q1 2017

 Early focus:

 Establish production development envt./tools, including CI, testbeds, etc.

 Core SW infrastructure development

 Initial domain application development
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Current Prototyping Assumptions –
Platform & Languages
 Platform:

 Infrastructure:

 Deployment: VMs + containers on dedicated physical hosts, custom cloud (e.g. 
OpenStack), or possibly commodity cloud (e.g. AWS)

 OS: Centos 7+ (current) / RHEL 7+ (future)

 Storage architecture: 
 Current: RDBMS (Postgres)

 Future: Likely will include other technologies for waveform storage, provenance support

 Software Development Languages:

 User Interface: Web UI stack (.js, css, html), Java RCP as fallback

 Application Control & Orchestration: Java

 Domain Services:

 Multiple supported (C++, Java, Python)

 Only Java demonstrated to date

 Data Access:

 Code API: Java (C++ TBD)

 REST API: Multiple supported (C++, Python, Java, etc.), Java included in prototype
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Current Prototyping Assumptions - COTS

 Web-Based User Interface

 Framework: Golden Layout, React, Redux, D3, …

 Map displays: TBD (currently Cesium)

 Fallback UI approach: Java rich client
 Netbeans RCP, JavaFX charts, OpenGL

 Processing Sequence Controller mechanism (PSC)
 Current: Activiti BPMN Engine

 Inter-process Communications
 Data Distribution (pub/sub): RabbitMQ / JSON

 Service Invocation (request/response): HTTP(S) / JSON (REST)

 Data Access (SCRUD)
 Code API - Java: Spring JPA (Hibernate), C++ (support TBD)

 REST API: Spring Data REST, Spring Web + JPA
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Prototype Conceptual Overview
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E2 Focus Areas Overview

 Web UI
 Golden Layout

 Continuous FK

 Undo/Redo

 Data Services
 REST Repositories

 REST Controllers

 Data Provenance
 Event Sourcing + CQRS

 Development Tooling
 Continuous Integration

 VM Packaging & Deployment

8



WEB UI

9



Web UI Prototype Overview

 Three primary efforts in E2:
1. Golden Layout

o Goal: Evaluate Golden Layout as an alternative to OWF for display 
window management

o Status: Replaced OWF with Golden Layout in current prototype

2. Continuous FK

o Goal: Demonstrate responsive displays for a computationally-intensive 
processing  function as part of the Web vs. Java thick client UI trade

o Status:

o Developed an initial prototype for the ‘Continuous FK’ feature

o Performance assessment and optimization is ongoing

3. Basic Undo/Redo

o Goal: Demonstrate an initial, global-history undo/redo capability to 
better understand the web UI solution space

o Status: Developed a browser-side prototype using Redux undo
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Web UI Prototype Design
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Golden Layout

 Golden Layout is a popular OSS alternative to Ozone Widget 
Framework (OWF), providing similar features
 User customizable browser display layouts

 Save/load configurations

 Manage display components

 Data bus for synchronizing display data across components

 Impressions
 Easier to integrate than OWF - does not require components to use 

specific patterns & SW

 Supports display component ‘tear off’ into separate browser instance, 
with continuity of data synchronization

 Greater flexibility for display configuration across multiple screens
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Continuous FK
 Previously investigated options for translating C/C++ & Java into 

JavaScript for browser-local invocation of e.g. FK functions
 Looked at GWT & Emscripten

 Impression: complex solution better suited to standalone applications 
than individual components of a system

 Prototyped service-based FK computation as an alternative
 Multi-threaded FK service for a given window; parallel HTTP service 

invocations from UI

 Multi-threaded batch FK service for a given window, time range and step 
size; single service call from UI

 Pre-fetch optimization where possible

 Follow-on work
 Ongoing performance assessment, including simulation of remote 

performance

 Further prototyping of optimization options
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Undo/Redo

 Integrated the Redux framework to provide a shared, global 
state cache across components of the browser-based UI

 Implemented a global undo/redo history with associated 
display component using the Redux Undo framework
 User support for undo & redo of most recent action as well as those 

farther back in the history

 Limited action set included in the prototype: signal detection creation, 
phase assignment, re-timing, FK-based azimuth/slowness feature 
measurement

 Follow-on work
 Extend the prototype to support multiple undo/redo histories, e.g. per 

event and for unassociated signal detections

 Investigate design tradeoffs for state restoration vs. re-execution

 Investigate server-side state management use cases
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DATA SERVICES
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Data Services Prototype Overview

 Prototyped two approaches for providing HTTP/JSON SCRUD 
interfaces to persistent data:
1. REST repositories (Spring Data REST + JPA)

 Supports the HATEOAS REST constraint (Hypertext As The Engine Of 
Application State)

– Associations between data model entities are discoverable and traversable 
via Hypertext Application Language (HAL) links embedded in data response

 Automatic generation of REST interfaces for all data entities

 Does not support cascade of updates to associated data entities

– Separate update service calls required for all associated entities that are 
modified

2. REST controllers  exposing JPA generated APIs (Spring Web + JPA)

 Enables server-side cascade of updates to associated data entities

 Does not provide built-in support for the HATEOAS

 Requires custom controller software; no auto-generated interfaces
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Data Services Prototype Overview

 The two approaches offer advantages for different use cases
1. REST repositories are well-suited for data access (query, read)

 HAL link traversal is an appealing solution for data associations

2. JPA REST controllers well-suited for data updates (create, update, 
delete)

 Server-side cascade of updates to associated entities is efficient and 
provides a simpler interface without the need for aggregated service 
interfaces

 Follow-on work
 Select a design for further prototyping

 A hybrid design combing both approaches may be viable

 Under an event sourcing/CQRS design, the System separate read and 
write interfaces (and data models)

 See the Data Provenance section for information
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DATA PROVENANCE
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Motivation

 The IDC System Specification includes requirements to 
preserve the history of the System state

 Motivated by the desire to track the provenance of 
information
 SSD 1926: The System shall provide the Analyst the capability to view 

the complete history of an event

 SSD 5736: The System shall maintain a history of the system 
configurations

 SSD 2134: The System shall store raw waveform data availabilities for 
specific points in the processing history
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Event Sourcing

 Event Sourcing (ES) is an architectural approach that seeks to 
address this type of requirement
 Generalized solution to historical state tracking

 Typically seen in industries where:
 Rigorous audit logging is a critical requirement &/or

 State is most naturally defined as the sum of a sequence of events

 E.g. Banking, stock trading
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Event Sourcing

 How it works
 Every change in System state is captured as an event

 Events are persisted as sequences in an event store (“streams”)

 Current state is accessed by applying the sequence of events

 Snapshots provide an optimization, reducing the number of events 
that must be applied to produce the System’s current state

 There are many good resources describing Event Sourcing
 Martin Fowler

 Greg Young

 More Fowler
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Event Sourcing Conceptual Design
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Command Query Responsibility Segregation
(CQRS)

 Supporting queries is a problem for Event Sourcing
 The Event Log does not provide a view into current state

 Replaying the Event Log in for each query likely is not practical

 CQRS addresses this problem 
 An architecture pattern where the System uses separate models for 

modifying and querying state

 In an event sourcing system, a separate cache or DB instance provides a 
view of System state for query purposes that is populated from the 
stream of events published via an event bus

 There are many good resources describing CQRS

 Martin Fowler
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Event Sourcing + CQRS Conceptual Design
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Event Sourcing + CQRS Prototype

 Developed an initial ES + CQRS prototype in E2

 Goals:
 Investigate technologies

 Investigate data model implications

 Demonstrate ES design for signal detections

 Selected Technologies
 Axon framework (Java ES + CQRS framework)

 Spring Boot (Java application development framework)

 RabbitMQ (event bus implementation supporting distributed, polyglot 
system)

 MongoDB (event store implementation)
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Event Sourcing + CQRS Prototype Design
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Findings

 ES + CQRS
 Appears to be a viable approach to recording state history in the 

reengineered system

 May support some or all replay requirements

 Adds complexity to the architecture

 Separate data models, separate event store and state DB, snapshotting, 
playback)

 There are few OSS frameworks providing ES/CQRS support
 Does not appear to be a widely-used pattern

 Axon
 Is fairly easy to work with, although there are few code examples to 

draw on

 Is under active development

 Redis and Cassandra event store implementations

 Kafka event bus implementation (TBD)
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Follow-On Work

 Elaborate the command-side data model to identify the 
events and aggregates

 Estimate scaling needs of the event  store based on predicted 
network size

 Prototype a query-side database populated from the event 
bus, using the existing data model as a starting point

 Characterize performance for more realistic signal detection 
loads
 Command processing & event dispatching
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DEVELOPMENT TOOLING
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Development Tooling Prototype 
Overview

 E2 included early work to establish a production-quality 
development tool set anticipating the transition to production 
development

 Two focus areas:
1. Continuous Integration (CI)

2. Virtual Machine (VM) packaging & deployment
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Continuous Integration

 Looked at a few well-known CI tools (Jenkins, Travis CI, Gitlab 
CI)

 Developed a CI pipeline prototype using Gitlab CI
 Automatic build, unit test execution, service API documentation 

generation

 Upon git push of any branch

 Upon acceptance of merge request into the ’develop’ branch

 Executed on commodity Centos 7 VMs using docker containers

 Minimizes host VM dependencies on third-party software

 Follow-on work:
 Add code formatting, javadoc generation and static analysis (Sonar) to 

the pipeline

 Add web UI third-party software libraries (NPM) to the build 
repository
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VM Packaging & Deployment

 Implemented RPM packaging of third-party development 
tools and initial scripts to build development environment 
VMs
 Separate VM images targeting individual development environments 

(VirtualBox) and shared testbed environment (OpenStack)

 Investigated tools for automated configuration and 
deployment of VM images across environments (VirtualBox, 
OpenStack)
 Evaluated Puppet and Ansible

 Follow-on work:
 Prototype automated VM configuration/deployment (likely with 

Ansible)

 Ultimate goal: automated, dynamic VM provisioning for CI pipeline, 
virtual testbeds
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E3 Path Forward
 Web UI

 Further prototyping and performance assessment of key displays supported 
by services

 Include remote UI performance assessment

 Elaboration of the undo/redo prototype

 Separate undo/redo histories e.g. per event and for unassociated signal detections

 Data Services

 Select a design path forward reconciling the two approaches

 Elaborate the prototype based on the design selection

 Data Provenance

 Consider alternatives and select a path forward

 Consider data scale implications of ES

 Development Tooling
 Create VM configuration/deployment tooling to support development, CI and testbed 

deployment

 Other Focus Areas

 Continue elaboration of the data model
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