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Metal-Organic Frameworks (MOFs)

 Porous solids made of an extended network of metal clusters coordinated 
to multidentate organic linkers

 Surface areas up to 6000 m2g-1

 “Crystalline sponges”
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Oxyfuel for Cleaner Power Plants

 Coal-burning power plants major 
source of carbon dioxide emissions

 Interest in capturing CO2 emissions

What comes out depends on what 
goes in!
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Hu, Y. CO2 Capture from Oxy-Fuel Combustion Power Plants. Licentiate Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2011

Oxyfuel for Cleaner Power Plants

 Oxyfuel advantages

 75% reduction in flue gas volume

 Decreased NOx emissions

 Greater thermal efficiency

 More energy efficient (not using energy 
to heat N2)

 Easier to capture CO2

 Goal: MOFs for O2 separation

 Alternative to energy-intensive 
cryogenic separation
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Literature MOFs Separate O2/N2
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Long, J. R., et.al.,  J. Am. Chem. Soc. 2010, 132, 7856. Long, J. R. et.al, J. Am. Chem. Soc. 2011, 133, 14814

Cr3(btc)2 Fe2(dobdc)
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MOFs for O2/N2 Separation
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Cr3(btc)2 Fe2(dobdc)

Cages: 6.9 Å, 11.1 Å, 13.2 Å
Windows: 4.1 Å, 6.9 Å

Channels: 10.8 Å
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DFT Calculations

 MOF

 M3(btc)2 analogs

 M2(dobdc)analogs

 Metals

 Gas (one molecule per primitive 
cell)

 O2

 N2

 Plane wave DFT geometry 
optimizations, periodic structure

 PBE density functional with 
dispersion correction (PBE-D2), 
PAW potentials for core electrons

 Spin polarization
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Vienna ab initio simulation package (VASP)
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Parkes, M. V.; Sava Gallis, D. F.; Greathouse, J. A.; Nenoff, T. M. J. Phys. Chem. C 2015, 119, 6556. 
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metal M3(btc)2 binding energy (kJ/mol) M2(dobdc) binding energy (kJ/mol)

O2 N2 O2 N2

Sc -328 -46 -215 -43

Ti -329 -26 -354 -79

V -158 -10 -264 -90

Cr -100 -52* -147 -10

Mn -264 -188 -116 -26

Fe -45 -12 -88 -7

Co -81 -62 -83 -41

Ni -53 -44 -79 -46

Cu -103 -100 -31 -29*

Zn -22 -38 -21 -21

O2, N2 Binding Energies (ΔE),   Δ Δ E = ΔEN2 – ΔEO2
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O2 and N2 Binding Modes

O2

 Side-on

 Bent

N2

 Bent

 Linear

10
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metal M3(btc)2 binding energy (kJ/mol) M2(dobdc) binding energy (kJ/mol)

O2 N2 O2 N2

Sc -328 -46 -215 -43

Ti -329 -26 -354 -79

V -158 -10 -264 -90

Cr -100 -52* -147 -10

Mn -264 -188 -116 -26

Fe -45 -12 -88 -7

Co -81 -62 -83 -41

Ni -53 -44 -79 -46

Cu -103 -100 -31 -29*

Zn -22 -38 -21 -21

O2, N2 Binding Energies (ΔE): Highlighting M-MOFs
easily made by metal center ion exchange
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O2 binding to Cr2(dobdc)

 Side-on bonded, but not showing thermal bent 
geometry at dynamic binding 

 -147 kJ/mol

 Static configuration

 0 K

Minimum-energy configuration doesn’t tell the whole 
story! “Snap Shot”, no thermal effect

Minimum Energy Binding Mode
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Static

Dynamic

68º

1.8 Å1.9 Å
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AIMD Calculations

 MOF

 M2(dobdc) analogs

 Metals

 Temperatures

 201 K

 258 K

 298 K 

 AIMD simulations

 NVT ensemble

 27.5 ps

 0.5 fs timestep

 PBE density functional with 
dispersion correction (PBE-D2), 
PAW potentials for core electrons, 
spin polarization
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Vienna ab initio simulation package (VASP)

Parkes, M.V.; Sava Gallis, D. F.; Greathouse, J.A.; Nenoff, T.M. PCCP, 2016, 18, 11528.
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Initial Gas Positions From Static DFT
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2 O2 bound
4 O2 unbound

2 N2 bound
4 N2 unbound

6 N2 bound
4 O2 unbound

6 O2 bound
4 N2 unbound

Single
component

Mixed gas
Competitive

binding

Metals

Temperatures

201 K
258 K
298 K

Red Sky Supercomputer
36 Simulations

3,800 processor-days each

http://hpc.sandia.gov/

Guests
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Cr2(dobdc)
6 N2 + 4 O2

298 K

NVT
Time 2 ps – 15 ps

1 frame = 25 fs

• O2 slow to bind, but once on
metal center, binding holds

• N2 rapid bind and release from
metal centers

• O2 long term binding is
consistently ’bent’

• Selective for O2

PCCP, 2016, 18, 11528 
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● O2 bound bent
● O2 bound side-on
● N2 bound

Gas Occupancy at Each Metal Site

-147 kJ/mol-10 kJ/mol

~ Shaded section
viewed in 
previous video
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Gas Occupancy at Each Metal Site:
previous slide shaded area

● O2 bound bent
● O2 bound side-on
● N2 bound

-147 kJ/mol-10 kJ/mol

DFT for screening: predicted side-on binding
AIMD resource are intensive but
Accurate binding configuration with time and temp
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Study of Early Transition Metal MOFs for O2 Selectivity

Binding Energy Calculated as a Function of Metal Site
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Sc/BTC/DMF/HCl

Sava Gallis, D. F., Greathouse, J.A.; Rodriguez, M.A.; Parkes, M.V.; Chapman, K.W.;
Nenoff, T.M. Chem. Mater. 2016, 28(10), 3327. 19

US  Provisional Patent 2015

Unique synthesis:

Mixed Sc(NO3)3•xH2O and 
1,3,5–benzetricarboxylic acid
in N,N’-dimethylformamide and 
HCl.

Heated to 373K overnight

Sc-MIL-100 for O2 Selectivity
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O2 vs. N2 @258K O2 vs. N2 @298K O2 vs. N2 @313K
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Isotherm trends mimic those predicted by GCMC
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Sc-MIL-100: Enhanced Quanitity of O2 vs N2 Adsorbed
over Wide Temperature Range (at least to 313K)
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21US provisional Patent 2015

Isosteric heat of Adsorption (kJ/mol)
Higher binding energy for O2 vs N2
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22US provisional Patent 2015
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O2 Adsorption and Desorption 
over 10 cycles, 298K, 1 atm
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Conclusions

 Metal matters!

 Mid transition metal trends are consistent in two different MOF frameworks

 Focus on mid transition metals

 Easy to synthesize

 Mild yet preferential O2 binding

 Novel use of AIMD

 Use AIMD to obtain more insights into mechanism of binding

 Differences in O2/N2 binding to metal sites

 O2 binds and sticks

 N2 binds on-off

 Early Transition Metals: Open MIL-100 framework, Sc shows optimum binding for O2

23
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