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Abstract

Largely absent from kinetic, low-temperature plasma simulations is the capability for simulating radiation transport. It is largely
acknowledged that self-produced radiation from gas discharges may have an impact on plasma formation and there is a need to include
this physics into modern simulation codes [1,2]. As such, there has been some effort in including photon dynamics into plasma
simulations [3,4] although they are generally only applicable to a single gas mixture such as air or focus on a small subset of transitions.
In this work, a thorough kinetic description of Helium [3] is included into a massively parallel Particle-in-Cell (PIC) utilizing Direction
Simulation Monte Carlo (DSMC) for electron-neutral interactions. Additionally, a method for radiation transport is included that includes
both natural and Doppler line broadening as well as self-absorption mechanisms. This method demonstrates the capability of modern
PIC simulations to simulate temporally and spatially-resolved emission spectra and include energy-dependent photon dynamics such as
photo-emission from the electrode surfaces.

Implementation

=  Photons are modeled as discrete particles and are pushed independently through the simulation.
=  The wavelength of each photon is chosen corresponding to a Voigt distribution.

_At
(1) Determine if an excited particle radiates via the equation R<l-e 4
(2) Select wavelength to account for natural line broadening A, = tan((r — 0.5))AA, + A,

(3) Determine the vector for photon propagation (chosen isotropically), vy, and the vector of the emitting particle, v,,.
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(4) The final wavelength, accounting for Doppler line broadening, is selected by A, =
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Simulation Setup . :
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Simulation Results
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Conclusions

= A discrete photon approach is used that enables photons to be created from excited states with a wavelength corresponding
to a Voigt distribution.

=  Simulations in one dimension demonstrate the method’s ability to simulate emission spectra and show the effect of photo-
emission on discharge currents.

=  New models will look to investigate the effect of photo-ionization on streamer formation in atmospheric pressure air plasmas
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