
Neighbor Discovery for Algebraic Multigrid

and Matrix Migration
Chris Siefert

Sandia National Laboratories

6/22/16

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2016-00000

SAND2016-6136C



Outline

What is neighbor discovery?

Efficient neighbor discovery for matrix migration

Conclusions



Parallel Sparse Matrices

Congratulations! You can store a parallel sparse matrix w/ MPI!

What’s next?

You probably want to be able tomultiply this matrix by a vector.

What sort of communication structures do we need (presuming

row-wise storage)?

The domain distribution of the vector.

The column distribution of the matrix.

The list of (data,destination) pairs each rank sends.

The list of (data,source) pairs each rank receives.



Finding Neighbors in General

So, supposing we had this:

Mesh = 42 31

A =


� �
� � �

� � �
� �

 X =


�
�
�
�


How do we fill out our send and receive lists?



Data Distribution #1

Mesh = 42 31

A =


� �
� � �

� � �
� �

 X =


�
�
�
�


Rank Sends Receives

� (1,�) (2,�)

� (2,�) (2,�) (1,�) (3,�)

� (3,�) (3,�) (2,�) (4,�)

� (4,�) (3,�)



General Algorithms

Idea: Use assumed partition [1] or rendezvous scheme.

Create assumed partition w/ easy to calculate range.

Each owning proc talks to assumed owner.

Each proc asks assumed owner who owns needed unknowns.

Requires O(log(p)) distributed termination detection [2].

Message: You need to exploit structure (of some kind) to get

O(1) storage and communication.

BUT, once you have a hammer, everything looks like a nail.

[1] Barker, Falgout and Yang, 2006.

[2] Pinar and Hendrickson, 2001.



Outline

What is neighbor discovery?

Efficient neighbor discovery for matrix migration

Conclusions



Data Distribution #1

Mesh = 42 31

A =


� �
� � �

� � �
� �

 X =


�
�
�
�


Rank Sends Receives

� (1,�) (2,�)

� (2,�) (2,�) (1,�) (3,�)

� (3,�) (3,�) (2,�) (4,�)

� (4,�) (3,�)



Data Distribution #2

Mesh = 1 2 3 4

A =


� �
� � �

� � �
� �

 X =


�
�
�
�


Rank Sends Receives

� (1,�) (2,�)

� (2,�) (3,�) (1,�) (4,�)

� (4,�) (3,�)



So what do we do?


� �
� � �

� � �
� �

 ⇒


� �
� � �

� � �
� �


What happens?

Rank� gets row 3 from Rank�.

Rank� now has a new neighbor, Rank� (and the reverse).

How do we solve this? Try Rank�’s perspective.

Rank� passes row 3 to Rank�.

Rank� already knows that Rank� is a neighbor.

Basic Idea: What if Rank� tells� that?



Algorithm (� edition)


� �
� � �

� � �
� �

 ⇒


� �
� � �

� � �
� �


Forward round: If I pass a row to�, I tell� who that row’s

neighbors are (e.g. �).

Reverse round: If I passed a row to� telling him that� is now

his neighbor, I must tell� that� is now her neighbor.

Idea: Use the send/recv structure in both directions.



Algorithm (in more detail)

Forward round

∀ send row id i, ∀ nonzeros in row i , pass a (value, global column

id, owning rank) triplet.

Combine recv’d global column ids with existing global column ids

to generate a column distribution map.

Reverse round

∀ recv’d row id i, pass a list of ranks to whom an entry in global

column i was sent during the forward round.

Send/recv list generation

Combine forward round “owning ranks” with other existing recvs

to get recv list.

Combine reverse round “communicated ranks” with other

existing sends to get send list.

Note: “New” stuff is in blue.



Computational Example

Example: 3D Laplacian (A) and prolongator (P) from

Trilinos/MueLu.

Matrix migration: Off-processor portions of P needed to

compute C = A P.

Compare: Communication costs

Building communication structures ex nihilo.

Building them via the aforementioned algorithm.

Trilinos/Epetra code used in both cases.

Two machines

SNL’s Redsky.

NERSC’s Edison.

Note: Pack/unpack costs will be neglected to focus on comm.



Edison: 15k Unknowns / Core



Redsky: 5k Unknowns / Core



Redsky: 15k Unknowns / Core



Redsky: 60k Unknowns / Core



Redsky: Speedup



Outline

What is neighbor discovery?

Efficient neighbor discovery for matrix migration

Conclusions



Conclusions

There is enough structure in matrix migration to get O(1) cost
neighbor discovery.

This kernel is especially useful in AMG’s triple product.

A screwdriver usually does a better job than a hammer…

But with the right machine and enough data per core, maybe a

hammer is good enough.

Future directions

Other applications: Repartitioning, off-processor FEM assembly.

Complete deployment in Trilinos/Tpetra utility routines.

Further optimization of communication.


	Introduction
	Matrix migration
	Conclusions

