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Overview

• Introduction and motivation for research

• Theory of fluorescence

• Simulations

– Standard method of data collection

– Novel method of data collection

• Results

• Conclusions and future directions
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Introduction

• Drug  discovery and development can be a long and costly 
process

– $881M 1 to $1.2B2

– 7-12 years3,4

• Rapid, high-throughput screening (HTS) of potential drug 
candidates can improve the discovery process. 

– Formerly, drug development based upon targeted chemical synthesis 
based on structure activity relationship5

– HTS evaluates all possible drug candidates looking for  activity “hits”5

• Molecular fluorescence measurements including emission 
wavelength and lifetime changes can indicate drug activity

• Multiway fluorescence measurements provide greater analytical 
power than single modalities

[1] G. F. Vande Woude, [Genomics in Cancer Drug Discovery and Development] Burlington : Elsevier Science, Burlington(2011).
[2] V. Litwin, [Flow Cytometry in Drug Discovery and Development] Hoboken : Wiley, Hoboken(2010).
[3] J. A. Rosier, [Global New Drug Development An Introduction] Hoboken : Wiley, Hoboken(2014).
[4] A. A. Ciociola, L. B. Cohen, P. Kulkarni et al., “How Drugs are Developed and Approved by the FDA: Current Process and 
Future Directions,” American Journal of Gastroenterology, 109(5), 620-623 (2014).
[5] [Integrated drug discovery technologies] New York : Marcel Dekker, New York(2002).
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Novel trilinear data collection scheme

• Excite using a boxcar-type pulses of varying widths

– e.g., widths of 1, 2, 5, 10 and 20 nanoseconds (nsec)

• Collect fluorescence emission with a boxcar-type window using a 
gated photomultiplier tube (PMT)

– Position the gate temporally to open immediately after the 
excitation pulse ends

• Employ a time-gated, multi-channel (anode) PMT to allow 
simultaneous collection of up to 32 wavelength bins

– Gives two-way data for each mixture sample

• Collection of multiple samples yields three-way data

• Simulation with a mixture of three chemical species

– Anthracene (ANT)

– 9,10 dibromoanthracene (DBA)

– 9,10 diphenylanthracene (DPA)
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Time-mode Collection Method
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Effect of short duration excitation pulse
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Effect of long duration excitation pulse
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DBA Spectral Factor Compression

Reduce from 116 
channels to 29 to simulate 
spectral binning with 
multichannel PMT
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PARAFAC (Conceptual)

• Objective

– Least squares model of D = {T,S,C} )+ E 

– T matrix of time-mode decay profiles

– S matrix of emission mode profiles

– C matrix of excitation mode profiles

• Decomposition of D

– Initialize with some guesses for T and C

– Using estimates for T and C, solve for S

– S = (TTTCTC)ǂ (TʘC) CTDS

– Using estimates for S and T, solve for C 

– C= (STSTTT)ǂ (SʘT) TSDC

– Using estimates for C and S, solve for T 

– T = (CTCSTS)ǂ (CʘS) SCDT

• Iterate until convergence

DataDataDataDataDataD

T

S

C

11



Simulated Standard Time Domain Data

• Time domain from 0-30 nsec at 0.2 nsec intervals

– Exponential decay based of lifetime

• Use 4x wavelength data compression

– Reduce from 116 increments to 29

– Makes comparable to pulse method

• Form triple product with same spectral and concentration pures

• Scale maximum values of 10,000 counts before adding noise

• Add “Poisson-like” noise using percentage of root maximum signal

– E.g., Root of 10,000 counts is 100 or 1%.  1% is root of max signal times 
values drawn from standard normal distribution

– Three levels 1%, 0.5% and 0.2%

• PARAFAC conditions

– First 1000 iterations impose rigorous nonnegativity

– Convergence at 10-8 RMSE difference between iterations

– Random starts for 10 trials
12



Design Concentrations

•Create additive design 
concentration matrix

•Simulates progressive 
additions to a pure solvent

•Provides high sample-to-
sample intensity contrast

•Used same design for both 
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Pure Spectral and Time Decay Components

14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

385 435 485

In
te

n
s
it

y
 (

a
.u

.)

Wavelength (nm)

ANT DBA DPA

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

Time (nsec)

ANT DBA DPA



Simulated Data
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Eigenvalues Traditional Data
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Wavelength-mode Factors (1% noise)
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Temporal-mode Factors (1% noise)
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Concentration-mode Factors (1% noise)
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Wavelength-mode Factors (0.5% noise)
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Temporal-mode Factors (0.5% noise)
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Wavelength-mode Factors (0.2% noise)
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Temporal-mode Factors (0.2% noise)
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Concentration-mode Factors (0.2% noise)
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Simulation Conditions for Pulse Method

• Create variable temporal pulse width excitations

– Use timescale of 250 nsec with 0.01 nsec steps

– Scale decays by integrated intensity

– 1, 2, 5, 10 and 20 nsec pulse widths

– Use 2 nsec PMT gates for all excitations

• Use 4x wavelength data compression

– Reduce from 116 increments to 29

– Approximate 32 channel PMT

• Scale maximum values of 10,000 counts before adding noise

• Add “Poisson-like” noise using percentage of root maximum signal

– Identical to standard method data

• PARAFAC conditions

– All iterations impose rigorous nonnegativity

– Convergence at 10-8 RMSE difference between iterations

– Random starts for 10 trials
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Pure Spectral and Temporal Components
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Simulated Data
Noiseless Trilinear Fluorescence DataTrilinear Fluorescence Data with 1% of Max Noise
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Eigenvalues for Pulsed Data
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Wavelength-mode Factors (1% noise)
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Temporal-mode Factors (1% noise)
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Wavelength-mode Factors (0.5% noise)
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Temporal-mode Factors (0.5% noise)
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Wavelength-mode Factors (0.2% noise)
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Temporal-mode Factors (0.2% noise)
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Results and Conclusions

• New data acquisition method theoretically 
produces excellent data quality for multivariate 
analysis

• New method takes advantage of rise-time 
phenomenon as well as exponential decay for 
exploiting physics of fluorescence

• Excitation pulse methods performs as well as or 
better than traditional waveform capture method 
when analyzed with PARAFAC
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Future Work

• Explore effects of narrow and long pulse widths 
on factor analysis of various mixtures

• Evaluate performance of method while varying 
PMT gate width and displacement from excitation 
pulse end

• Conduct experiments on samples including 
simple mixtures and drug discovery probes

– ANS (8-Anilinonaphthalene-1-sulfonic acid)
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