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Time-Resolved PIV with a Pulse-Burst Laser

Current TR-PIV capability isn’t enough for a high-speed wind tunnel.
» Faster repetition rates for briefer time scales.
* Higher energy required.

« Scatter light off smaller particles

 Expand laser sheet for larger field of view

A pulse-burst laser allows high
energy and high repetition rates.

But a very low duty cycle.

Pulse-Burst Laser:
« Manufactured by Spectral Energies, LLC

* Up to 500 kHz of pulse pairs, 20-500 mJ
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- Our First Test Application

Supersonic Jet in Transonic Crossflow
Installed in Sandlas Trlsonlc Wlnd Tunnel

A jet nozzle mounts on top wall of
TWT, driven by high-pressure air.

View the far-field of the interaction.




High-Speed Cameras

Photron SA-X2 cameras

 Two side-by-side for wider
field of view

« Combined 1280 x 384 pix
« Two-component PIV

Cameras at 50 kHz.

Frame straddle laser pulse
pairs at 25 kHz.

« At=2.00 ps

« 2.5 ms burst, 175 mJ/pulse
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Field of View

Combined field of view:

Image turbulent eddies at
the outward mixing layer.

Today’s data at J=8.1

Far from jet core and
sparser turbulent eddies.

Makes data more visually
interpretable.
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A Sample Pulse-Burst PIV Movie
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This is a 2.5 ms movie with 63 vector fields acquired at 25 kHz.
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Velocity fluctuations are shown.

Final pass uses 24 x 24 pixel interrogation

Counter-rotating eddies convect past, typically in pairs.
« About 8-10 mm separating eddies in a pair
* About 20-30 mm separating pairs @ Sandia
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PSD,, (1/VHz)

What frequency content do we find in
Pulse-Burst PIV?

Compute power spectra from the time signal of each vector.
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Peak corresponds to about
twice the spacing of eddy
pairs.
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Inertial subrange should
show -5/3 slope.

Does not begin until
about 20-30 kHz.

But we do see an
apparent “-1” power law.

Historically elusive
and controversial for
velocity fields.

Or is it a measurement

We need higher frequency response...

artifact?
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Velocity Supersampling

Use the supersampling algorithm of Scarano and Moore (2012).

“Pour space into time”

Between successive
velocity fields, the
flow convects by 16
vector spacings.

Use local convection
velocity and Taylor’s
hypothesis to convert
the intervening 15
vectors from space
to time.
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,. | Velocity Supersampling

Use the supersampling algorithm of Scarano and Moore (2012).
t=920 s
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We see a much smoother movie with more detail
vortex rotation and deformation.

End effects are an artifact of extrapolati
of view.

What does supersampling reveal in frequency space?
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Velocity Supersampling Power Spectrum

This will extend the power spectrum to much higher frequencies.

The -1 region is
substantiated.

Lasts for one full
decade.

Any remaining
aliasing or denoising
effects 2 100 kHz.

Scales of the -1 regime:

Pope predicts inertial
subrange starts at
Al6 =40 kHz ~ 6 mm.

PIV spatial resolution
is about 1 mm.

Corresponds fto the
dominant turbulent
eddies measured by
PIV.
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Second Application: Cavity Flow

Our cavity is a rectangular cute
built into the test section floor:

« 5" long x 5" wide x 1" deep
 Cavity floor is glass for laser access
Tested at Mach 0.6, 0.8, and 0.94.

Upgrade cameras to Photron SA-Z’s.

PIV framing rate now 37.5 kHz.

Flow over a cavity creates a harsh
aeroacoustic environment.

Multiple strong resonance tones.
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the velocity field too.
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We have a lot of 10-Hz PIV data on this flow.
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Streamlines clearly visualize the recirculation region and strong reverse
velocities are evident.

The pulse-burst PIV field of view visualizes most of the recirculation region
and will capture reverse velocities.

The behavior of large-scale structures is key to the acoustic tones
produced by the cavity resonance
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= A Sample Pulse-Burst PIV Movie
This is a 10.2 ms movie with 386 vector fields acquired at 37.5 kHz.
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The pulse-burst PIV field of view visualizes most of the recirculation region
including reverse velocities.

The flowfield is a combination of multiple acoustic resonances and turbulent

Sandia
National

activity in the shear layer and recirculation region.
@ Laboratories



SPL (dB/\Hz)

Can we identify the cavity resonances

using Pulse-Burst PIV?
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Compare power spectra to a pressure sensor in the aft wall.

We find resonances in the
velocity field matching those
from pressure sensors.
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Modes 2 — 4 match very
well.

PSD,, (1/INHz)

Mode 1 is trickier to locate
in the velocity data.
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But to guide LES/DES model
development, we need to measure
much higher turbulent frequencies.
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Velocity Supersampling for the Cavity Flow
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Supersampled Power Spectra

Where the frequency response
is sufficient, we see good

agreement with the -1 and -5/3
power laws of turbulent decay.
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Out-of-plane motion is larger
downstream.

Better frequency response
upstream.

Local convection velocity is
smaller deeper in the cavity.

Better frequency response
higher in the shear layer.
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o e Can we measure turbulent spectra

— i ‘ in our shock tube?

We see reasonable agreement
with the -1 and -5/3 power laws
of turbulent decay.

True in the near wake.

Further downstream, we find poorer
agreement with turbulent scaling laws.

Possibly due to an interaction of large ]
vortices downstream.

Scarano and Moore suggested this
violates advected frozen turbulence.
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Turbulence Decay Laws

1o Jet in Crossflow - Cavity Flow
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The -5/3 power law is well known and theoretically predicted for all flows.
It has been found previously by careful, well-planned experiments.

The -1 power law is predicted for wall-bounded turbulence.

It has been measured in high-Reynolds-number experiments.
It is not known for free shear flows.
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Validation

tations, so we better validate our results.

imi

“Postage-Stamp PIV”
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Introducing

We know supersampling has |
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This isn’t much use for describing the flow...
...but it is great for measuring spectra!
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Preliminary Results from Postage-Stamp PIV

Sample movie from the
cavity flow.

Jet in Crossflow Spectra
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-1 power-law regime!

Data at 400 kHz confirm the

High noise floor in

can improve this.

preliminary data analysis.
Advanced algorithms
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Conclusions

Supersampling has proven effective increasing the frequency
response of pulse-burst PIV.

But, supersampling has limitations:
 The assumption of convected frozen turbulence breaks down
when large-scale vortices interact.

 When out-of-plane motion is large, the correct turbulent
fluctuations cannot be found.

* The finite spatial resolution of a velocity vector attenuates
higher frequencies.

Data at points not subject to these limitations appear to reveal
a previously unremarked turbulent scaling law.

High-speed free-shear flows show a -1 power-law dependence
for a frequency range corresponding to energetic eddies.
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