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Used
Fuel Crystalline Disposal R&D Work Packages

Disposition

B Objectives

— Advance our understanding of long-term disposal of
used fuel in crystalline rocks;

— Develop experimental and computational capabilities to
evaluate various disposal concepts in such media.
B Focus on two key components of deep geologic
repository in crystalline rocks

— Better characterization and understanding of fractured
media and fluid flow and transport in such media

— Designing effective engineered barrier systems for
waste isolation

B Fully leverage international collaborations
— Korean Atomic Energy Research Institute
— Asp6 Hard Rock Laboratory (Sweden)
— DECOVALEX (Bedrichov Tunnel Tests, Czech)
— Colloid Formation & Migration Project (Switzerland)
— Others

Institutions involved: ANL, LANL, LBNL, LLNL, SNL
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Relevant Physical & Chemical
Conditions
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Experimental & modeling activities for
used fuel disposition in crystalline rocks
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Integration & coordination among

Fuel institutions
Disposition
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Integration & coordination

Modeling
capability

Data Laboratory/field
capability

Infrastructure

« Expertise

» Integration processes

International Generic Disposal
Disposal R&D System Analysis

>

[

development & data

collection
—>

Argillite
Disposal R&D

Engineered
Material
Performance

Crystalline
Disposal R&D

Development of
reference case
.

Deep Borehole

Disposal

Disposal of Dual
Purpose Canisters

Regional
Geology R&D

Institutions involved: ANL, LANL, LBNL, LLNL, SNL
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FY16 Work

Disposition

B Objectives

Advance our understanding of long-term disposal of used fuel in
crystalline rocks;

Develop experimental and computational capabilities to evaluate
various disposal concepts in such media.

B Focus on two key components of deep geologic
repository in crystalline rocks

Better characterization and understanding of fractured media and
fluid flow and transport in such media

Designing effective engineered barrier systems for waste
isolation

B Fully leverage international collaborations

Korean Atomic Energy Research Institute

Aspd Hard Rock Laboratory (Sweden)

Bedrichov Tunnel Tests (Czech)

Colloid Formation & Migration Project (Switzerland)
Others

B Model development & integration

Integration with GDSA: PA model for crystalline media
Wrapping up some activities (e.g. colloid formation & transport)
Model demonstration with actual data

Used Fuel Disposal in
Crystalline Rocks: Status and
FY14 Progress

Fuel Cycle Research & Development

APPENDIX A

RESEARCH & DEVELOPMENT (R&D) PLAN FOR USED FUEL
DISPOSAL IN CRYSTALLINE ROCKS

Note: This R&D plan is a revision of an early developed R&D plan for namral
system evaluation and tool development (Wang, 2013). In this revision, the newly
added research topics are indicated in red. The topics that are no longer applicable
to crystalline rocks are indicated in gray.

ALO  Objectives

The US. Department of Energy Office of Nuclear Energy, Office of Fuel Cycle
Technology established the Used Fuel Disposition Campaign (UFDC) in fiscal year 2010
(FY10) 1o conduct the research and development (R&D) activities related to storage,
transportation and disposal of used nuclear fuel and high level nuclear waste. The
Mission of the UFDC is

To Identify alternatives and conduct scientific research and technology
development to emable storage, tramsportation and disposal of used
nuclear fuel and wastes generated by existing and funire nuclear fuel
eyeles




Il:]seld KAERI Underground Research
o Tunnel (KURT)

Disposition

B SNL and KAERI have developed a multi-
year plan for joint field testing and
modeling crystalline disposal media.

B Work currently planned includes three
tasks:

— Streaming potential (SP) testing
— Sharing KURT site characterization data
— Technique development for in-situ borehole
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Streaming potential test: the Concept
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Streaming potential testing —
experimental setup

Connecting
Electrode
o
multimeter

Upstreal
overflow

Upstream
overflow

1meter length
hand made
screened well
covered by 200
u size mesh to
filtrate water
from sand

Down stream

overflow

1 meter
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Fuel Numerical simulation of tracer test

Disposition
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Streaming potential testing
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Used
Fuel Hydrologic Borehole Tracer Testing
Disposition

B The contractor shall conduct hydrologic testing in their existing granite boreholes to
provide data and experience to increase the likelihood of success in the deeper and
larger-diameter DOE-NE deep borehole project.

B Tracer testing will be conducted using a three-packer system in the KAERI deep
granite borehole that allows testing between two adjacent packed-off borehole
intervals.

B [njection will occur into one interval and recirculation pumping will occur into another
interval. A push-pull (injection followed by withdrawal from the same packer) tracer
test will be conducted before and will overlap with a vertical dipole tracer test (injection
of tracer from one packer and withdrawal with recirculation from another packer).

B Different tracers will be used in the push-pull and vertical dipole tracer tests, to allow
interpretation of both tests independently.

B The contractor shall be responsible for instrumentation, testing and data acquisition.
SNL and the contractor will work jointly on experimental design and data
interpretation.

13



Used
Fuel General observations
Disposition

B Clear objectives are the key to the success
— KURT data for development reference cases
— KURT data for discrete fracture network model demonstration
B Need substantial commitment for actual technical work
— Funding for actual technical work
— Face-to-face meeting
— Need stable and predictable funding
B Opportunities
— Newly extended tunnel
— In-situ Engineered Barrier System (EBS) testing program
—  Fluid flow and transport in major fracture zones
— Inclusive & responsive
— Able to directly participate in experimental design

14



Used DECOVALEX — Task 2: Multiple environmental

Fuel . :
: e tracer test at Bedrichov Tunnel, Czech Republic
Disposition
Model 2 Model 3 Model 4
(V6) (V2) (V4)
tunnel depth [m] -39 -140 -91 WSW il ENE
thickness of shallow
zone [m] -20 -15 -20
parameter
group 2 K shallow [m/s] 1.00E-06 1.00E-06  1.00E-06 Lo Dot Stalowpart  Under ol
- >
Bored 10f the t “’:‘iﬂ;
K fract [m/s] 1.14E-07 1.29E-10  2.35E-08
POR2 K deep [m/s] 547E-10 3.17E-12  4.04E-10
n shallow 0.02 0.02 0.02
n fract 0.04354 0.00004 0.073
n deep 00225  0.00004 0.073 Tracers: 5180, 52H, 3H, CFC
dispersion length (L/T)
(m) 1-May 1-May 1-May
tortuosity 1 1 1
diffusion coef. (m?%s) 6.00E-10  6.00E-10  6.00E-10

15



Used
Fuel PFLOTRAN

Disposition

B 3D integral finite volume
B Multi-physics:
— Multiphase, heat and fluid flow and reactive transport
B Massively parallel
B Here we used Richards Mode with flow equation:

0
5;(930) =V (pg) = Qu
B And the multi-component reactive transport equation:
% N N dS;
ot (d)zazsa‘ljj) +Vv- za:(Qa - quaDQV)‘IJj = Qi — Zvjmfm - a—tj

m

B PFLOTRAN is 3D only, thus fractures must be treated as a 3D portion of the
domain

16



Model domain

Used
Fuel

Disposition
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Used

Fuel Initial Conditions — Transient Flux

Disposition

B Model “spin up”

— First assumed fully saturated
column at hydrostatic pressure

« Set tunnel to atmospheric pressure
« Set recharge to 200 mm across the top

* Run model until steady state achieved for
initial flow field

— Assign average tracer
concentration throughout

— These initial condition are used in
transient simulation where
transient tracer concentration and
recharge are applied across the
top

* Recharge 20% of monthly average

 Isotope composition inverse distance
weighted precipitation composition

Idocolor

18
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Modeled and Observed Discharge

Fuel M2.V6
Disposition ’
Variable Flow
3.5e+07 . | . . 150000
T Recharge ——
[ Discharge —<— 1 140000
3e+07 - | 1 Observed =
wi | 1 130000
I f
2.5e+07 | ||‘| i |'|| { 120000
l |II I' | e
5 | A ) | 10000 T
a = | lII Ii * ,II III | *:K g lII \ a
= 2er0 | ‘l i |I|| L 2 I' l’ * | f\ . % ¥ { 100000 =
) | | N A * [ ) -"I I" Yeoae | X\ {1 . <
_r:j 1.5e+07 —Jj |* .'I ’ﬁg ||\ I'. *e*; ﬁe;‘—’U Wﬁe;{;ﬁ *, * I'. f%"’i K 4| ?:'. \ /| }\\X’ 90000 _f:‘:
2 0 \| e Lhx [ 'T || T f\ V A\ l;'\ A ]/ soooo &
i Y|« ¥ | = A P \ X\
1e+07 | | | | P i
aﬁrxjﬁ, Jll \ '.‘I" L f\/ﬂ; * | ‘Il ’ll “‘k-.i ’i\ II| |I 70000
/ U || r \u 8 \\/\ \ N ] w \ || M 60000
5e+06 + l\\f . JI \ fll *. \(} \ { \ J II
P \ | \ | 1 50000
0 ' \ ' ' 40000
5 6 7 8 9 10

19



Modeled and Observed 5180 —

M2,V6

Used

Fuel

Disposition

Stable Isotopes

Time (yn)
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DECOVALEX Task C1: On fracture
opening and closure

Reversed flow (20 °C)
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Fracture opening and closure

Fuel

isposition

D

[edid v

35

HHHHH

i
pH
M
i
M

3

i
. 3
i
5
25

Time (hr)

D L
1 15

&
d
1
05

x L - - . o
E ¢ §F 8 B § R #
= {wn) aunysdy 3)INIRAH sARsaYT

"
T 1 L]
| mmam =
H "Wumf..m..m_ =
£iid

fl u.muwm 19
|ooem | =
| —— e
-
.._n_ = ]
- |M
L s a®
- - B e
a ® & = 2 2
2 {wn) ainysdy sinaipiy sAse)s

T —I‘h_ T
g
L o]
v
£
@
B2
£ .
e
[
——
i [ - i
2 2 8 & =] 2 &
=] S =] = o = =
[=] [=] &
[now] en
b
% =
L - -]
. - L
[ ] = g
L]
L |
L ]
[ ]
L]
P L
y ||
L ]
* | |
L)
(e .III| .
] 7 & &
o
= {wn} sinyedy SNBIpfH SAReyS ™
~
- m
— B HH
[23E L ©
gk ®
a5e |8 ®
IEl L) .”
H 8 S
] o 3
S
=
L]
8
" 1R
* =
LN | i : e
b ..nl ;m - k-~ Ls] Ll

2 (wn) sunpedy gynemiH sAgoeys

€0

20

Time [hrs)

Ellis et al. (2013)



Used
Fuel Fluid flow channeling
Disposition
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Fuel Geometrical Representation of Fracture
Disposition
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Local Stress

At a fracture contact:
O = pf(l = o) oL,

U§=pf

On an aperture channel surface:
dp = Ps
0y(0) =pr —

(1-m?)(=0e+2pf)+2000(M—c0520)
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Fuel Chemical potential
Disposition

Chemical potential at a fracture channel surface:
us(8) = 2 +[03(6) + 0 (0)]vs + AG(6)
Chemical potential of a dissolved species:

Hq = pg + RTInc, + pry,

Strain energy at an aperture surface:
AGs(8) = Bvg[ay (0)* + a5 (6)7]
Chemical affinity (A,) for mineral dissolution at an aperture surface:

Ay = 15(8) — o = 1l + {2 [03:(8) + a5(8)] + B[ (8)% + 0 (6)?]} v
+AGs(0) — ug — prvq — RTInc,



Used

Fuel Stress-activated mineral dissolution
Disposition
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Dissolution rate at an aperture surface:
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Used

Fuel Reaction-diffusion at a fracture contact
Disposition

Concentration of dissolved species at a fracture contact:

ud-ul +%(a?+a£)vs—pfva+AGs (contact)
Cc=¢€ RT

Mineral dissolution rate at a fracture contact :

AGH
De RT w(c.—cp)

R(contact) = 292

Water film thickness:

w= /1(023 — pf)_y
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Fuel

Shape evolution of a circular channel

Disposition

Scaled dissolution rate
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Used

Shape evolution of a circular channel

Fuel
Disposition
Material & solution \ Axial load (bars) Hole shape
In salt solution
Salt undersaturated 1 30 Flattened circle
Salt undersaturated 2 12 Flattened circle
Salt undersaturated 3 13 Flattened circle
Salt saturated 1 15 Ellipse perpendicular
Salt saturated 2 14 Ellipse perpendicular
In dilute hydrochloric acid

Solenhofen limestone 3 129 Ellipse parallel
Solenhofen limestone 4 66 Ellipse parallel
Solenhofen limestone 6 45 Ellipse perpendicular
Oak Hall limestone 1 297 Ellipse perpendicular
Oak Hall limestone 3 324 Ellipse perpendicular
Oak Hall limestone 4 170 Ellipse perpendicular
Oak Hall limestone 5 262 Ellipse perpendicular
Kasota limestone 59 Ellipse perpendicular
Marble 1 220 Flattened circle
Marble 2 187 Flattened circle
Marble 3 91 Flattened circle
Water lime 1 48 Irregular
Water lime 1 42 Irregular
Water lime 1 29 Irregular
Chalk 1, Kansas 39 Irregular
Chalk 2, Kansas 24 Irregular

Sprunt and Nur (1977)

Yu and Suo (2000)

Stable

Conclusions:

Mineral dissolution
on the free surface of vity embedded in a
stress rock depends only on the normal stress
exerted by a hydrostatic pore fluid pressure.
The tangential stress and the stress-activation
mechanism must be taken into account.

Existing model a
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Criteria for channel opening and
closure

> 1 channel opening
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Disposition

channeling

Infiltration instability and preferential

Permeability (m?)
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