

The replacement of calcite (CaCO_3) by cerussite (PbCO_3)

Ke Yuan^{1*}, Sang Soo Lee¹, Vincent De Andrade², Neil C. Sturchio³, Paul Fenter¹

1. Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439;

2. Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439;

3. Department of Geological Sciences, University of Delaware, Newark, DE 19716.

10 *Corresponding author. Tel: +1 630-252-1787; Fax: +1 630-252-9570; Email: kyuan@anl.gov

Abstract (≤ 200 words)

13 The mobility of toxic elements, such as lead (Pb) can be attenuated by adsorption,
14 incorporation, and precipitation on carbonate minerals in subsurface environments. Here, we
15 report a study of the bulk transformation of single-crystal calcite (CaCO_3) into polycrystalline
16 cerussite (PbCO_3) through reaction with acidic Pb-bearing solutions. This reaction began with
17 the growth of a cerussite shell on top of calcite surfaces followed by the replacement of the
18 remaining calcite core. The external shape of the original calcite was preserved by a balance
19 between calcite dissolution and cerussite growth controlled by adjusting the Pb^{2+} concentration
20 and pH. The relation between the rounded calcite core and the surrounding lath-shaped cerussite
21 aggregates was imaged by transmission X-ray microscopy, which revealed preferentially
22 elongated cerussite crystals parallel to the surface and edge directions of calcite. The replacement
23 reaction involved concurrent development ~ 100 nm wide pores parallel to calcite *c*-glide or
24 ($1\bar{2}0$) planes, which may have provided permeability for chemical exchange during the reaction.
25 X-ray reflectivity measurements showed no clear epitaxial relation of cerussite to the calcite
26 (104) surface. These results demonstrate Pb sequestration through mineral replacement reactions
27 and the critical role of nanoporosity (3% by volume) on the solid phase transformation through a
28 dissolution-recrystallization mechanism.

30 **Introduction**

31 Lead (Pb) contamination in groundwater aquifers and soils poses a significant threat to the
32 safety of drinking water^{1, 2}. Carbonate minerals are ubiquitous on Earth. Lead sequestration by
33 carbonate minerals, particularly calcite, has been observed by mechanisms of adsorption,
34 incorporation and precipitation³⁻⁹. Most studies of the interaction of Pb²⁺ with calcite have
35 focused on phenomena occurring at mineral surfaces. However, relatively few studies have been
36 done to examine heavy metal sequestration into bulk solid phases through coupled
37 dissolution/crystallization reactions (i.e., mineral replacement reactions). Although bulk
38 reactions can be slow, they can be much more effective than surface reactions in terms of the net
39 sequestration of heavy metal contaminants per unit volume of solid.

40 The characteristic feature of a mineral replacement reaction is the transformation of a reactant
41 mineral phase into a secondary product phase having a distinct structure and composition while
42 preserving the original dimensions of the reactant phase (i.e., a pseudomorph)^{10, 11}. The shape
43 preservation indicates that the reaction front proceeds inward from the original solid-liquid
44 interface. Such conversion of both mineral structure and composition are well known to occur
45 under hydrothermal and metamorphic conditions at high temperature and pressure¹²⁻¹⁷. At low
46 temperature, such replacement reactions can play an important role in controlling the
47 compositions of both solid and fluid phases, which can influence the mobility of toxic elements
48 and radionuclides in groundwater aquifers. For example, the replacement of calcite by solid
49 phases sharing the same cation (Ca²⁺) but different anions (CaF₂^{18, 19}, CaSO₄²⁰, and CaC₂O₄²¹)
50 has been reported. Two critical factors that determine the equilibrium shape of a replaced crystal
51 are the relative solubilities and reaction rates of both dissolution and growth of the reactant and
52 product phases^{11, 22}. In addition, the development of porosity is essential for promoting the
53 advancement of a reaction front from the solid-liquid interface to the interior of a crystal^{10, 11}.

54 In this study, we explored the replacement of single crystals of calcite (CaCO₃) by
55 polycrystalline cerussite (PbCO₃). The objectives of this study were to investigate the spatial
56 coupling between the dissolving calcite crystal and the growing cerussite crystals both
57 temporally and spatially, and to resolve the size and spatial distribution of the pores that enable
58 mass transport to the reacting interface. Multiple *ex situ* and *in situ* techniques were used to
59 observe and understand the mineral replacement process. Optical microscopy was used to record

60 the replacement reaction *in situ*, with complementary *ex situ* scanning electron microscopy
61 (SEM) images to further characterize the associated morphological changes. Full-field
62 transmission X-ray microscopy (TXM) was used to resolve the three-dimensional spatial
63 distributions of calcite, cerussite, and the pore space distribution within a partially reacted calcite
64 crystal. X-ray powder diffraction (XRD) was used to record the amount of PbCO_3 (cerussite) as a
65 function of time, and X-ray reflectivity (XR) was used to analyze the interfacial structure during
66 the initial growth of cerussite on the calcite (104) surface. The results of this investigation yield
67 new insights into the detailed nature of the mineral replacement reaction, the structural relation
68 between the calcite and the cerussite, and the role of nanoscale porosity.

69 **Materials and Methods**

70 **Optical microscopy and scanning electron microscopy**

71 The morphological changes of calcite replaced by cerussite were observed *in situ* by using an
72 optical microscope with a magnification of 448 \times (Nikon Optiphot) equipped with a digital
73 camera and an image recording system. The calcite crystals were grown on 18 mm \times 18 mm \times
74 0.25 mm borosilicate glass plates using the ammonium diffusion method^{23, 24}. An in-house
75 constructed fluid cell having an internal volume of 4.2 mL was made by sealing two pieces of
76 transparent glass onto a PEEK cell. The cell was filled with a $\text{Pb}(\text{NO}_3)_2$ reaction solution (either
77 1 mM or 5 mM prepared in equilibrium with atmospheric CO_2) (Sigma Aldrich) at pH ranging
78 from 2.8 to 5.2 (Accumet Basic AB15 pH meter). Acidic pH promotes the dissolution of calcite.
79 Following the reactions, the samples were rinsed gently with deionized (DI) water, dried under
80 flowing N_2 , and coated with Au for imaging by using the Hitachi S4700 SEM.

81 **X-ray diffraction**

82 XRD patterns were measured using a Bruker D8 Advance diffractometer. The step size was
83 0.005° with a measurement time of 1 s per step using $\text{Cu K}\alpha$ radiation ($\lambda = 0.15418$ nm). A series
84 of 0.03 g calcite samples (Chihuahua, Mexico) with size between 90 and 106 μm (similar to the
85 size of the crystals observed under the optical microscope) were selected by sieving, and placed
86 in Teflon bottles filled with 100 ml of 5 mM $\text{Pb}(\text{NO}_3)_2$ solution of pH = 2.8 in air. These powder
87 samples were reacted for 0.5 to 23 h and the solids were separated by filtration. The samples
88 were gently washed with DI water, dried and further ground using pestle and mortar for powder

89 XRD measurements. Each sample weighed about 20 mg, and was back loaded into the sample
90 holder to minimize preferred orientation effects. Semi-quantitative phase analysis was
91 accomplished using the reference intensity ratio (RIR) method (see supporting information). The
92 RIR values for calcite and cerussite are 2.0 and 6.7 based on PDF 05-0586 and PDF 47-1734,
93 respectively.

94 **Transmission X-ray microscopy**

95 Transmission X-ray microscopy measurements were performed at beamline 32-ID-C of the
96 Advanced Photon Source (APS) at Argonne National Laboratory. The X-ray energy was 8 keV
97 with a field of view of $51 \mu\text{m} \times 51 \mu\text{m}$. The sample (See SI for sample preparation) was imaged
98 in 721 projection directions spanning over 180° of rotation angle with an exposure time of 1s per
99 image and a spatial resolution of 60 nm^{25} . Data reconstruction was processed by using
100 Tomopy²⁶. The acquired images were segmented using Drishti 2.6²⁷, and further analyzed and
101 visualized in Fiji ImageJ²⁸⁻³⁰.

102 **X-ray reflectivity**

103 The specular XR measurements were performed at beamline 33-ID-D of APS using incident
104 photon energy of 18.0 keV. The reflectivity signal with the associated background was measured
105 by using an area detector (Pilatus) as a function of vertical momentum transfer, $q (\text{\AA}^{-1})$. A calcite
106 crystal (Chihuahua, Mexico) about $10 \text{ mm} \times 8 \text{ mm} \times 2 \text{ mm}$ in size was cleaved along the (104)
107 plane and immediately placed within seconds in a thin-film cell sealed with a Kapton window.
108 The calcite was reacted with $\sim 2 \text{ mL}$ of $5\text{mM} \text{ Pb}^{2+}$ solution of $\text{pH} = 2.8$ for 20 min, and then the
109 solution was drained leaving a few μm thick liquid layer between the calcite surface and the
110 Kapton film held by capillary force. The d_{104} spacing of the calcite unit cell is 3.035 \AA with a
111 surface unit cell area of $A_{uc} = 20.198 \text{ \AA}^2$. Details regarding these experimental methods can be
112 found elsewhere^{9, 31, 32}.

113 **Results**

114 **Observing the replacement of calcite by cerussite using optical microscopy and SEM**

115 Morphological changes of the calcite crystals were observed *in situ* by using optical
116 microscopy and structural details were further investigated by using SEM. Two different Pb^{2+}

117 replacement solutions of 1 mM and 5 mM of initial pH = 2.8 were used as reactants with calcite.
118 The calcite crystals, grown on a glass substrate, are observed to have multiple growth planes, and
119 therefore various crystallographic orientations with respect to the substrate surface³³. The calcite
120 crystals chosen for this optical microscopic study exhibited rhombohedral shapes with exposed
121 (104) surfaces orientated perpendicular to the viewing direction (Figure 1a). The *c*-glide plane
122 can be identified from the diagonal passing through the two obtuse corners (dashed lines in
123 Figure 1a).

124 During the earliest stage of the reaction (1 to 2 h), the top (104) surface roughened and
125 precipitation occurred primarily on the four side surfaces (Figure 1a and 1b). The growth of a
126 new phase was indicated by the expansion of the darker regions in the optical image (Figure 1a).
127 SEM images show that this new phase formed aggregates on the side surfaces of the calcite, and
128 the crystals within these aggregates on a given surface appeared to be aligned (Figure 1b, 0.5 h
129 image). XRD analysis revealed that the secondary phase was cerussite (PbCO_3 , Figure 2).
130 Thermodynamic calculations using Geochemist's Workbench 9.0 also predicted the presence of
131 a single solid phase as cerussite (Table S1).

132 The advancement of a polygon-shaped reaction boundary on the top (104) surface of the
133 calcite crystal was observed upon further reaction in the Pb^{2+} solutions, especially for calcite in
134 the 5 mM solution (Figure 1a, 5 mM Pb^{2+} ; SI, Video S1). The progression of the darker areas is
135 attributed to the precipitation of cerussite on the top calcite (104) surface and a formation of a
136 cerussite shell around the calcite. The reaction front was composed of four straight edges, and
137 advanced into the middle of the calcite crystal. Of the four reaction fronts, two were observed to
138 move faster as indicated by arrows in Figure 1a. As a result, the converging point of the four
139 edges was not centered on the (104) surface, but deviated to the lower right corner (Figure 1a, 5
140 mM Pb^{2+} 4.7 h and Figure 1b, 5 h images).

141 There are a number of differences in the reaction at the two Pb concentrations. The size of the
142 product crystal in the 5 mM Pb^{2+} was larger than that in the 1 mM Pb^{2+} solution (Figure 1a, 1mM
143 Pb^{2+} 15h image and 5 mM Pb^{2+} 4.7 h image). Although the corners of the replaced crystal
144 became rounded in the 1mM Pb^{2+} solution, the rhombohedral shape of calcite could still be
145 recognized. The time required to completely cover the top calcite (104) surface by cerussite was

146 also different: the reaction time in 5 mM Pb^{2+} solution was 5 hours which was shorter than that
147 in the 1 mM Pb^{2+} solution (15 hours) (Figure 1a).

148 The evolution of the area of the calcite (104) surface covered by cerussite (i.e., dark areas)
149 shown in Figure 1a is plotted as a function of time, which reflects the two-dimensional growth
150 rate of the cerussite shell in two different Pb solutions (Figure S1). Notably, the dark area was
151 caused by the rapid growth of a cerussite shell on the top (104) surface of calcite and the
152 complete replacement of the bulk calcite crystal was expected to take a longer time. The slopes
153 were $771 \mu\text{m}^2/\text{h}$ and $1800 \mu\text{m}^2/\text{h}$ in the 1 mM and 5 mM Pb^{2+} solution, respectively. In the 1 mM
154 Pb^{2+} solution, the calcite crystal started to decrease in size after 9.7 h, corresponding to the
155 dissolution of calcite and the precipitated cerussite.

156 The pH of the initial solution has a dramatic impact on the reaction. At initial $\text{pH} = 4.0$, the
157 calcite surface roughness increased during the first six hours of reaction, but the formation of a
158 cerussite shell and advancement of a reaction front were not observed (Figure S2a). Increase of
159 the initial solution pH resulted in the growth of different product phases (Table S2 and S3). At
160 least two types of crystal phases can be recognized (Figure S2b), including needle-shaped
161 cerussite and hexagonal crystals tentatively identified as hydrocerussite, $\text{Pb}_3(\text{CO}_3)_2(\text{OH})_2$,
162 (having a $\text{R}\bar{3}\text{c}$ symmetry) based on the shape. Mixed cerussite and hydrocerussite phases have
163 been found to precipitate on surfaces of calcite and aragonite at $\text{pH} = 5-7$ ³⁴. The needle-shaped
164 cerussite preferentially grew on the corners of calcite. Well-crystallized hydrocerussite crystals
165 were readily recognized on both the glass substrate and on the calcite surfaces (Figure S2b),
166 implying a homogeneous nucleation process.

167 **Quantifying the phase evolution by XRD**

168 A series of *ex situ* XRD patterns were measured for calcite powders reacted for up to 23 h in 5
169 mM Pb^{2+} solutions with initial $\text{pH} = 2.8$, while the evolution of the solution pH was recorded as a
170 function of time. Calcite and cerussite were identified as the two phases present during the entire
171 reaction period. Within the first 0.5 h, new reflections were found at $2\theta = 24.79^\circ$, 25.48° and
172 43.47° , corresponding to the Bragg diffraction peaks from cerussite (111), (021), and (221),
173 respectively (Figure 2). Semi-quantitative phase analysis showed that the amount of cerussite
174 increased at the rate of ~ 4 wt.% per hour in the first 7 hours (Figure S3). The amount of

175 cerussite remained constant at ~28 wt.% from 7 h to 23 h. At the same time, the solution pH
176 increased abruptly within one hour from 2.8 to 4.0, and then stabilized at pH around 4.5 after 7 h
177 (SI, Figure S3), about the time when the amount of cerussite stopped increasing.

178 **Imaging a partially replaced calcite crystal by TXM**

179 Transmission X-ray microscopy was used to probe the structural relations between the parent
180 calcite crystal and the cerussite growth layer, including the orientation of the cerussite crystals,
181 and the sizes and spatial distribution of the pores in a calcite sample reacted in a 5 mM Pb²⁺
182 solution of an initial pH = 2.8 for 15 hours. In the reconstructed TXM images (Figure 3), the
183 brightness is proportional to the local density of the material. Consequently, dark areas between
184 the grains correspond to the pores. Sharp boundaries between the cerussite (bright) and calcite
185 (grey) were observed (Figure 3). The high contrast between calcite and cerussite is caused by the
186 large difference in the X-ray attenuation length for CaCO₃ and PbCO₃. The absence of a
187 compositional transition region within each phase and the presence of pore spaces (results shown
188 later) between these two phases are consistent with the replacement of calcite by cerussite via an
189 interface coupled dissolution/precipitation process rather than a solid state diffusion reaction^{35,36}.

190 The shape of the cerussite crystals resembles the lath-shaped cerussite observed under SEM.
191 A primary calcite core was observed, which is surrounded by small, isolated calcite remnants
192 within the cerussite replacement rim (Figure 3; Figure 4, CaCO₃). The triangular shaped bottom
193 plane is the calcite surface that was initially in contact with the glass substrate (Figure 4, PbCO₃
194 bottom view and Figure S4a; see SI, Figure S5 and S6 for the determination of crystallographic
195 orientation of the calcite). There should be seven corners (in addition to the one truncated by the
196 glass substrate) and six surfaces left on the replaced calcite. Other than the three surfaces
197 associated with the triangular growth plane truncated by the glass substrate, most surfaces were
198 modified due to the growth of cerussite, but the original boundaries of the calcite can be
199 identified by edges and corners. Cross-sectional views of three surfaces associated with one
200 vertex (Figure S4b, the converging point of the three red lines) indicate preferred orientation of
201 cerussite crystals. The crystals form aggregates of parallel laths on the two side surfaces (Figure
202 S4b, b-1 & b-2). On the top surface, however, the crystals tend to elongate along the four edge
203 directions (Figure S4b-3). The angle between two cerussite crystals found on the edges is 104°,
204 close to the obtuse step angle (101.6°) on the calcite (104) surface.

205 An additional structural feature observed was pore space between the calcite core and the
206 growing cerussite. This appears to have provided space for fluid to allow the dissolution of
207 calcite and diffusion of CO_3^{2-} to the growing cerussite (Figure 3). The thickness of the pores
208 primarily ranged from 92 to 112 nm (Figure 5a). Analysis of the distribution of diameters of the
209 pores showed that the mean Feret diameter of the pores was 230 nm, but a few disk-shaped pores
210 had a diameter larger than 6 μm (Figure 5b), which corresponded to the gap spaces distributed
211 continuously on one side of the calcite core (Figure 4, Pore; Figure S7, pore indicated by the
212 arrow). Pores were parallel to the $(1\bar{2}0)$ or the *c*-glide plane of calcite, which cut through the
213 diagonal edges connecting the two obtuse corners (Figure 4, Model). The alignment of cerussite
214 crystals along the diagonal direction was also observed in SEM images of the calcite surfaces
215 (Figure 1b, 2 h image). The total volume of PbCO_3 after reaction was about 50% larger than that
216 of CaCO_3 , where 98% of the CaCO_3 volume was in the residual unreacted core. The observed
217 pore space corresponded to 3% of the total volume of the replaced crystal (Table S4). Pores were
218 apparently isolated (Figure S7) although they may have been interconnected by grain boundary
219 porosity that was smaller than 60 nm resolution (associated with the instrumental limit).

220 **Structural controls of calcite on cerussite: X-ray reflectivity**

221 We investigated the potential ordering of the PbCO_3 precipitates and sorbed Pb^{2+} ions at the
222 calcite surface during the initial growth of cerussite by using specular X-ray reflectivity of a
223 calcite (104) surface in a 5mM Pb^{2+} solution at initial $\text{pH} = 2.8$, reacted for 20 min. Previous
224 study has shown that Pb can be incorporated into calcite in the presence of EDTA⁹. Our X-ray
225 reflectivity (XR) data show no indication of the ordering of Pb^{2+} or cerussite precipitates at the
226 calcite (104) surface. The electron density profile obtained through fitting the reflectivity data is
227 in agreement with our earlier results for the pristine calcite/water interface³² (Figure S8 and
228 Table S5).

229 The only evidence from XR for the growth of the cerussite phase was found in the
230 background signals (See SI, Figure S9 for background integration method). The two-dimensional
231 detector images revealed several “powder rings” in the background region at momentum
232 transfers of $q = 1.45, 1.74, 2.53$, and 2.86 \AA^{-1} (Figure S10). These positions matched the most
233 intense Bragg peaks in the XRD pattern of cerussite (Table S6). The observation of the cerussite
234 diffraction pattern as powder rings instead of localized spots on the detector, along with the lack

235 of any cerussite signals in the XR signal, indicates that the cerussite crystals had no structural
236 relationship with the calcite (104) surface. X-ray reflectivity results are therefore consistent with
237 cerussite formation through a dissolution-recrystallization mechanism, rather than direct epitaxial
238 growth on the calcite (104) surface. Our XR data did not provide insight into the formation of
239 any metastable amorphous PbCO_3 phase on the calcite surface. Further investigations are needed
240 to study the possible phase transformation from an amorphous lead carbonate to crystalline
241 cerussite under the current experimental conditions.

242 **Discussion**

243 **Effects of the molecular-scale reactivity of calcite (104) surface**

244 A mineral replacement reaction occurs via dissolution of the surface layers of a mineral which
245 leads to an interfacial fluid layer that is supersaturated with respect to a replacing solid phase¹¹.
246 Therefore, the stability of surface sites (e.g., step vs. terrace) is a crucial factor in controlling the
247 reaction process. Here, we observed asymmetrical movements of reaction fronts (i.e., fast vs.
248 slow moving edges) during the initial formation of the cerussite shell on the top (104) surface of
249 calcite, which likely were controlled by the anisotropic dissolution process that has been found
250 previously on the calcite surface. It is known that the dissolution of calcite occurs through step
251 retreat along the $[48\bar{1}]$ and $[\bar{4}41]$ directions of the rhombohedral etch pits³⁷⁻⁴¹. Because of the
252 symmetry of the *c*-glide plane, steps associated with the four edges of the rhombic etch pits can
253 be grouped into obtuse ($[48\bar{1}]_+$, $[\bar{4}41]_+$) and acute ($[48\bar{1}]_-$, $[\bar{4}41]_-$) steps⁴². Previous AFM studies
254 showed that the dissolution of calcite results in rounding at one corner, which is caused by the
255 retreating of the structurally open $[48\bar{1}]_+$ and $[\bar{4}41]_+$ steps, while the opposing acute $[48\bar{1}]_-$ and
256 $[\bar{4}41]_-$ steps remain sharp^{43, 44}. It is likely that the fast dissolving steps of the etch pit were
257 oriented as shown in the 0.5 h sample (Figure 1b), corresponding to the two fast moving reaction
258 fronts where the fast growth of cerussite appears to be facilitated by preferential dissolution
259 along the two obtuse $[48\bar{1}]_+$ and $[\bar{4}41]_+$ steps.

260 **Size change of the replaced crystal reflects spatial coupling**

261 The coupling between the dissolution and precipitation can be inferred from changes in size of
262 the product crystal. The area (calculated from two-dimensional optical images in Figure 1a) of
263 the top calcite (104) surface reacted in 1 mM Pb^{2+} solution for 15 h was 17% smaller than that of

264 the original calcite (Figure 1a). The size decrease indicated that the precipitation of cerussite was
265 the rate-limiting step and the dissolution rate of calcite should have been faster than the
266 precipitation of cerussite. In contrast, the size of the product crystal reacted in 5 mM Pb²⁺
267 solution was similar to that of the original calcite crystal (Figure 1a, 5mM Pb²⁺). Here, the
268 calcite dissolution was likely the rate-limiting step, or the dissolution rate of calcite and
269 precipitation rate of cerussite could have been similar. In addition, the calculated equilibrium pH
270 in 5 mM Pb²⁺ solution increased to around 4.6 as a result of the buffering effects of the dissolved
271 inorganic carbon species (Table S1). This indicates that the replacement reaction was self-limited
272 because of the declining dissolution rate of calcite at higher pH as shown in the XRD phase
273 quantification results (Figure 2 and Figure S3).

274 **Pore development**

275 Generation of pores during the mineral replacement reaction is influenced by the differences in
276 both solubility and molar volume between the host and secondary phases⁴⁵. Calcite is more
277 soluble than cerussite ($K_{sp(CaCO_3)} = 10^{-8.48}$ vs. $K_{sp(PbCO_3)} = 10^{-13.23}$)^{34,46}, and dissolution of calcite
278 will result in a higher amount of CaCO₃ dissolving than PbCO₃ precipitating at close to
279 equilibrium conditions. However, with the relatively high concentration Pb²⁺ solutions (1~5 mM)
280 used in this work, the dissolution of trace amounts of CO₃²⁻ leads to supersaturation with respect
281 to cerussite, which favors the nucleation and growth of cerussite. The molar volume of cerussite
282 (40.63 cm³/mol) is slightly larger than that of calcite (36.93 cm³/mol), thus cerussite may occupy
283 the space left by the dissolving calcite and inhibit the development of porosity^{10, 11}. However,
284 cerussite has the aragonite structure and tends to crystallize into tabular shapes, which are
285 different from the rhombohedral calcite shapes. In our TXM image, the unreacted calcite was
286 composed of a central calcite core and remaining small calcite crystals trapped between cerussite
287 grains (Figure 4), indicating that cerussite may have caused fractures in calcite during the
288 replacement. This suggests that the differences in crystal structure and crystallization habit
289 between cerussite and calcite may be the primary factors that allowed the development of
290 porosity (Figure 3 and Figure 4). Although pores sizes less than 60 nm cannot be resolved in
291 these images due to the finite instrumental spatial resolution, interconnected nm-scale pores
292 likely connect the apparently distinct pores found here. The similar orientations of pores and
293 cerussite crystals along the (1 $\bar{2}$ 0) plane indicate that the pores were distributed mainly on the

294 boundaries between cerussite crystals, and between cerussite and remaining calcite grains. The
295 pore volume comprised only about 3% volume of the sample, but it appears to have been
296 essential for the progress of the reaction, by providing permeability for chemical mass transport
297 during the replacement.

298 **Environmental Implications**

299 The spontaneous replacement of calcite by cerussite under acidic conditions reveals insights
300 into the spatial coupling between dissolution kinetics, crystal growth, and porosity development
301 within a confined space. The advancement of the rhombohedral-shaped reaction front during the
302 initial growth of the cerussite shell reflects the influence of dissolution at molecular scale on the
303 kinetics of the macroscopic crystallization process. In natural environments of circumneutral pH
304 conditions, adsorption and precipitation of Pb on calcite surfaces are expected. However, high Pb
305 concentration (~100 mg/kg) soils and sediments have been found in abandoned lead and zinc
306 mines, where Pb leaches from mine tailings caused by acid mine drainage⁴⁷. Because the
307 replacement reaction observed here is relatively fast at even ambient conditions, calcite minerals
308 present in the tailings are a potential sink for Pb by conversion to cerussite in the presence of
309 acidic Pb-bearing fluid. Ultimately, the presence of phosphate in solutions could alter the final
310 Pb phase from lead carbonate into less-soluble Pb-phosphate phases such as pyromorphite⁴⁸,
311 depending on phosphate concentration. Understanding the entire sequence of potential
312 replacement mechanisms may benefit the development of alternative approaches for sequestering
313 lead and other toxic heavy metal elements in specific environmental conditions.

314 **Acknowledgement**

315 The authors thank Dr. Magali S. Ferrandon for help with XRD measurements, and Rachel E.
316 Koritala and Jie Wang for help with SEM. This work is supported by the Geosciences Research
317 Program, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) under Contract
318 No. DE-AC02-06CH11357. This research used resources of the Advanced Photon Source, a U.S.
319 Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of
320 Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the
321 Center for Nanoscale Materials, an Office of Science user facility, was supported by the U. S.

322 Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No.
323 DE-AC02-06CH11357.

324 **Supporting Information**

325 Growth rate of the cerussite shell on the calcite (104) surface (Figure S1), thermodynamic
326 simulations of the equilibrium pH and solid phases (Table S1, Table S2 and Table S3), optical
327 images of replacement experiments performed at pH 4.0 and 5.2 (Figure S2), XRD phase
328 quantification methods and results (Figure S3), determination of the orientation of the cerussite
329 partially-replaced calcite (Figure S4, Figure S5, and Figure S6), pore distribution (Figure S7),
330 volume of the cerussite, calcite and pores (Table S4), Electron density profile obtained by fitting
331 the X-ray reflectivity data (Figure S8 and Table S5), X-ray reflectivity background integration
332 method and results (Figure S9, Figure S10 and Table S6).

333 **References**

- 334 1. Akers, D. B.; MacCarthy, M. F.; Cunningham, J. A.; Annis, J.; Mihelcic, J. R., Lead (Pb)
335 contamination of self-supply groundwater systems in coastal Madagascar and predictions of blood lead
336 levels in exposed children. *Environ. Sci. Technol.* **2015**, *49*, (5), 2685-2693.
- 337 2. Li, H.; Yu, S.; Li, G.; Deng, H.; Luo, X., Contamination and source differentiation of Pb in park soils
338 along an urban-rural gradient in Shanghai. *Environ. Pollut.* **2011**, *159*, (12), 3536-3544.
- 339 3. Rouff, A. A.; Elzinga, E. J.; Reeder, R. J.; Fisher, N. S., The influence of pH on the kinetics,
340 reversibility and mechanisms of Pb(II) sorption at the calcite-water interface. *Geochim. Cosmochim. Acta*
341 **2005**, *69*, (22), 5173-5186.
- 342 4. Sturchio, N. C.; Chiarello, R. P.; Cheng, L. W.; Lyman, P. F.; Bedzyk, M. J.; Qian, Y. L.; You, H. D.;
343 Yee, D.; Geissbuhler, P.; Sorensen, L. B.; Liang, Y.; Baer, D. R., Lead adsorption at the calcite-water
344 interface: Synchrotron X-ray standing wave and X-ray reflectivity studies. *Geochim. Cosmochim. Acta*
345 **1997**, *61*, (2), 251-263.
- 346 5. Rouff, A. A.; Elzinga, E. J.; Reeder, R. J., The effect of aging and pH on Pb(II) sorption processes at
347 the calcite -water interface. *Environ. Sci. Technol.* **2006**, *40*, (6), 1792-1798.
- 348 6. Elzinga, E. J.; Rouff, A. A.; Reeder, R. J., The long-term fate of Cu²⁺, Zn²⁺, and Pb²⁺ adsorption
349 complexes at the calcite surface: An X-ray absorption spectroscopy study. *Geochim. Cosmochim. Acta*
350 **2006**, *70*, (11), 2715-2725.
- 351 7. Rouff, A. A.; Reeder, R. J.; Fisher, N. S., Pb (II) sorption with calcite: A radiotracer study. *Aquat.*
352 *Geochem.* **2002**, *8*, (4), 203-228.
- 353 8. Rouff, A. A.; Elzinga, E. J.; Reeder, R. J.; Fisher, N. S., X-ray absorption spectroscopic evidence for
354 the formation of Pb(II) inner-sphere adsorption complexes and precipitates at the calcite-water
355 interface. *Environ. Sci. Technol.* **2004**, *38*, (6), 1700-1707.
- 356 9. Callagon, E.; Fenter, P.; Nagy, K. L.; Sturchio, N. C., Incorporation of Pb at the calcite (104)-water
357 interface. *Environ. Sci. Technol.* **2014**, *48*, (16), 9263-9269.
- 358 10. Putnis, A., Mineral replacement reactions: From macroscopic observations to microscopic
359 mechanisms. *Mineral. Mag.* **2002**, *66*, (5), 689-708.

360 11. Putnis, A., Mineral Replacement Reactions. In *Thermodynamics and Kinetics of Water-Rock*
361 *Interaction*, Oelkers, E. H.; Schott, J., Eds. Mineralogical Soc Amer: Chantilly, 2009; Vol. 70, pp 87-124.

362 12. Perdikouri, C.; Piazolo, S.; Kasiopitas, A.; Schmidt, B. C.; Putnis, A., Hydrothermal replacement of
363 aragonite by calcite: Interplay between replacement, fracturing and growth. *Eur. J. Mineral.* **2013**, 25,
364 (2), 123-136.

365 13. Qian, G.; Xia, F.; Brugger, J.; Skinner, W. M.; Bei, J.; Cren, G.; Pring, A., Replacement of pyrrhotite
366 by pyrite and marcasite under hydrothermal conditions up to 220 degrees C: An experimental study of
367 reaction textures and mechanisms. *Am. Mineral.* **2011**, 96, (11-12), 1878-1893.

368 14. Yanagisawa, K.; Rendon-Angeles, J. C.; Ishizawa, N.; Oishi, S., Topotaxial replacement of
369 chlorapatite by hydroxyapatite during hydrothermal ion exchange. *Am. Mineral.* **1999**, 84, (11-12), 1861-
370 1869.

371 15. Hovelmann, J.; Putnis, A.; Geisler, T.; Schmidt, B. C.; Golla-Schindler, U., The replacement of
372 plagioclase feldspars by albite: Observations from hydrothermal experiments. *Contrib. Mineral. Petr.*
373 **2010**, 159, (1), 43-59.

374 16. O'Neil, J. R.; Taylor, H. P., The oxygen isotope and cation exchange chemistry of feldspars. *Am.*
375 *Mineral.* **1967**, 52, 1414-1437.

376 17. Orville, P. M., Alkali ion exchange between vapor and feldspar phases. *Am. J. Sci.* **1963**, 261, (3),
377 201-237.

378 18. Turner, B. D.; Binning, P.; Stipp, S. L. S., Fluoride removal by calcite: Evidence for fluorite
379 precipitation and surface adsorption. *Environ. Sci. Technol.* **2005**, 39, (24), 9561-9568.

380 19. N. S. Baer; S. Z. Lewin, The replacement of calcite by fluorite: A kinetic study. *Am. Mineral.* **1970**,
381 55, 466-476.

382 20. Ruiz-Agudo, E.; Putnis, C. V.; Hoevelmann, J.; Alvarez-Lloret, P.; Ibanez-Velasco, A.; Putnis, A.,
383 Experimental study of the replacement of calcite by calcium sulphates. *Geochim. Cosmochim. Acta* **2015**,
384 156, 75-93.

385 21. Ruiz-Agudo, E.; Alvarez-Lloret, P.; Putnis, C. V.; Rodriguez-Navarro, A. B.; Putnis, A., Influence of
386 chemical and structural factors on the calcite-calcium oxalate transformation. *Crystengcomm* **2013**, 15,
387 (46), 9968-9979.

388 22. Xia, F.; Brugger, J.; Chen, G. R.; Ngothai, Y.; O'Neill, B.; Putnis, A.; Pring, A., Mechanism and
389 kinetics of pseudomorphic mineral replacement reactions: A case study of the replacement of
390 pentlandite by violarite. *Geochim. Cosmochim. Acta* **2009**, 73, (7), 1945-1969.

391 23. Lian, B.; Hu, Q.; Chen, J.; Ji, J.; Teng, H. H., Carbonate biomineralization induced by soil
392 bacterium *Bacillus megaterium*. *Geochim. Cosmochim. Acta* **2006**, 70, (22), 5522-5535.

393 24. Ihli, J.; Bots, P.; Kulak, A.; Benning, L. G.; Meldrum, F. C., Elucidating mechanisms of diffusion-
394 based calcium carbonate synthesis leads to controlled mesocrystal formation. *Adv. Funct. Mater.* **2013**,
395 23, (15), 1965-1973.

396 25. Andrade, V. D.; Deriy, A.; Wojcik, M. J.; Gürsoy, D.; Shu, D.; Fezzaa, K.; Carlo, F. D. Nanoscale 3D
397 imaging at the Advanced Photon Source. SPIE Newsroom. [Online] **2016**, May 12.
398 <http://spie.org/newsroom/6461-nanoscale-3d-imaging-at-the-advanced-photon-source> (accessed July 1,
399 2016).

400 26. Gürsoy, D.; De Carlo, F.; Xiao, X. H.; Jacobsen, C., TomoPy: a framework for the analysis of
401 synchrotron tomographic data. *Journal of Synchrotron Radiation* **2014**, 21, 1188-1193.

402 27. Limaye, A., Drishti: a volume exploration and presentation tool. In *Developments in X-Ray*
403 *Tomography VIII*, Stock, S. R., Ed. 2012; Vol. 8506.

404 28. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.;
405 Rueden, C.; Saalfeld, S.; Schmid, B.; Tinevez, J.-Y.; White, D. J.; Hartenstein, V.; Eliceiri, K.; Tomancak, P.;
406 Cardona, A., Fiji: An open-source platform for biological-image analysis. *Nature Methods* **2012**, 9, (7),
407 676-682.

408 29. Doube, M.; Klosowski, M. M.; Arganda-Carreras, I.; Cordelieres, F. P.; Dougherty, R. P.; Jackson, J. S.; Schmid, B.; Hutchinson, J. R.; Shefelbine, S. J., BoneJ Free and extensible bone image analysis in ImageJ. *Bone* **2010**, *47*, (6), 1076-1079.

410 30. Schmid, B.; Schindelin, J.; Cardona, A.; Longair, M.; Heisenberg, M., A high-level 3D visualization API for Java and ImageJ. *Bmc Bioinformatics* **2010**, *11*, 274.

411 31. Fenter, P.; Sturchio, N. C., Calcite (104)-water interface structure, revisited. *Geochim. Cosmochim. Acta* **2012**, *97*, 58-69.

412 32. Fenter, P.; Kerisit, S.; Raiteri, P.; Gale, J. D., Is the calcite-water interface understood? Direct comparisons of molecular dynamics simulations with specular X-ray reflectivity data. *J. Phys. Chem. C.* **2013**, *117*, (10), 5028-5042.

413 33. Archibald, D. D.; Qadri, S. B.; Gaber, B. P., Modified calcite deposition due to ultrathin organic films on silicon substrates. *Langmuir* **1996**, *12*, (2), 538-546.

414 34. Godelitsas, A.; Astilleros, J. M.; Hallam, K.; Harissopoulos, S.; Putnis, A., Interaction of calcium carbonates with lead in aqueous solutions. *Environ. Sci. Technol.* **2003**, *37*, (15), 3351-3360.

415 35. Hellmann, R.; Cotte, S.; Cadel, E.; Malladi, S.; Karlsson, L. S.; Lozano-Perez, S.; Cabie, M.; Seyeux, A., Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion. *Nature Materials* **2015**, *14*, (3), 307-311.

416 36. Hellmann, R.; Wirth, R.; Daval, D.; Barnes, J.-P.; Penisson, J.-M.; Tisserand, D.; Epicier, T.; Florin, B.; Hervig, R. L., Unifying natural and laboratory chemical weathering with interfacial dissolution-reprecipitation: A study based on the nanometer-scale chemistry of fluid-silicate interfaces. *Chem. Geol.* **2012**, *294*, 203-216.

417 37. Bracco, J. N.; Grantham, M. C.; Stack, A. G., Calcite growth rates as a function of aqueous calcium-to-carbonate ratio, saturation index, and inhibitor concentration: Insight into the mechanism of reaction and poisoning by strontium. *Cryst. Growth. Des.* **2012**, *12*, (7), 3540-3548.

418 38. Hillner, P. E.; Gratz, A. J.; Manne, S.; Hansma, P. K., Atomic-scale imaging of calcite growth and dissolution in real-time. *Geology* **1992**, *20*, (4), 359-362.

419 39. Perry, T. D.; Duckworth, O. W.; McNamara, C. J.; Martin, S. T.; Mitchell, R., Effects of the biologically produced polymer alginic acid on macroscopic and microscopic calcite dissolution rates. *Environ. Sci. Technol.* **2004**, *38*, (11), 3040-3046.

420 40. Smith, M. E.; Knauss, K. G.; Higgins, S. R., Effects of crystal orientation on the dissolution of calcite by chemical and microscopic analysis. *Chem. Geol.* **2013**, *360*, 10-21.

421 41. Xu, M.; Hu, X. M.; Knauss, K. G.; Higgins, S. R., Dissolution kinetics of calcite at 50-70 degrees C: An atomic force microscopic study under near-equilibrium conditions. *Geochim. Cosmochim. Acta* **2010**, *74*, (15), 4285-4297.

422 42. Teng, H. H.; Dove, P. M.; De Yoreo, J. J., Kinetics of calcite growth: Surface processes and relationships to macroscopic rate laws. *Geochim. Cosmochim. Acta* **2000**, *64*, (13), 2255-2266.

423 43. Lea, A. S.; Amonette, J. E.; Baer, D. R.; Liang, Y.; Colton, N. G., Microscopic effects of carbonate, manganese, and strontium ions on calcite dissolution. *Geochim. Cosmochim. Acta* **2001**, *65*, (3), 369-379.

424 44. Liang, Y.; Baer, D. R.; McCoy, J. M.; Amonette, J. E.; LaFemina, J. P., Dissolution kinetics at the calcite-water interface. *Geochim. Cosmochim. Acta* **1996**, *60*, (23), 4883-4887.

425 45. Pollok, K.; Putnis, C. V.; Putnis, A., Mineral replacement reactions in solid solution-aqueous solution systems: Volume changes, reactions paths and end-points using the example of model salt systems. *Am. J. Sci.* **2011**, *311*, (3), 211-236.

426 46. Mucci, A., The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. *Am. J. Sci.* **1983**, *283*, (7), 780-799.

427 47. Gutierrez, M.; Mickus, K.; Camacho, L. M., Abandoned Pb-Zn mining wastes and their mobility as proxy to toxicity: A review. *Sci. Total Environ.* **2016**, *565*, 392-400.

455 48. Stack, A. G.; Erni, R.; Browning, N. D.; Casey, W. H., Pyromorphite growth on lead-sulfide
456 surfaces. *Environ. Sci. Technol.* **2004**, *38*, (21), 5529-5534.
457 49. Smorf Crystal Models, <http://www.smorf.nl> (accessed Feb 20, 2016).

458