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Integrate renewable generators in the system
Propose efficient methods to treat uncertainties for Stochastic
Economic Dispatch algorithms
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Efficient Operation

Unit Commitment/Economic Dispatch (UC/ED): schedule
thermal generating units to minimize overall production costs

satisfy forecasted demand for electricity; employ reserve margins to
ensure that sufficient capacity is available in case demand is higher

respect constraints on both transmission (e.g., thermal limits) and
generator infrastructure

Stochastic UC/ED model: typically minimize the expected cost
across load scenarios, thus ensuring sufficient flexibility to meet a
range of potential load realizations during operations.

reliance on reserve margins is reduced, yielding less costly
solutions than deterministic UC/ED

computationally difficult due to the large number of samples needed
to achieve “converged” solutions
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Stochastic Economic Dispatch
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Stochastic Unit Commitment

min
x

cu(x) + cd(x) + Q(x)

s.t. x ∈ X ,
x ∈ {0, 1}|G|×|T|

G and T: index sets of generating
units and time periods

X and x: set of unit commitment
constraints and vector of unit
commitment decisions

cu(x) and cd(x): generating unit
start-up and shut-down costs

Q(x): the expected generation cost

Classical approach, compute

Q(x) = 〈Q(x, ξ)〉 ≈ 1
|S|

|S|∑
s=1

Q(x, ξs)

using a finite number of renewable generation and load realizations
(i.e., scenarios) s ∈ S
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Random Fields (RFs)

A random field W(x, ω) is a function on a product space D× Ω

– a random variable (RV) at any x ∈ D
– an infinite dimensional object

In many physical systems, uncertain field quantities, described by
RFs, have an underlying smoothness due to correlations

Can be represented with a small number of stochastic degrees of
freedom

`2-Optimal representation – second-order statistics
– Karhunen-Loève expansion (KLE)
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Random Fields Representation – KLE

KLE for a RF with a continuous covariance function

W(x, ω) = µ(x) +

∞∑
k=1

√
λkfk(x)ξk(ω)

µ(x) is the mean of W(x, ω) at x

λk and fk(x) are the eigenvalues and eigenfunctions of the
covariance

Σ(x1, x2) = 〈[W(x1, ω)− µ(x1)][W(x2, ω)− µ(x2)]〉

The ξk are uncorrelated zero-mean unit-variance RVs

ξk(ω) =
1√
λk

∫
D

W(x, ω)fk(x)dx
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Uncertainties in Wind Power Generation

Typical daily wind profiles

site #15414 (NREL
Western Wind Dataset)

Jan 2004-2006 (93 days)

4 8 12 16 20 24
t [h]

0

5

10

15

20

25

W
[m
/s

]

0 10 20 30
W [m/s]

0

5

10

15

20

25

30

P
[M
W

]

Rated power output at the
same site

C. Safta (csafta@sandia.gov) SIAM UQ 2016 June 30, 2016 11 / 22



Low-dimensional Representation of Uncertainties in
Wind Power via Karhunen-Loeve Expansion (KLE)

WL(t, ω) = log(W) = 〈WL(t, ω)〉+

∞∑
k=1

√
λkfk(t)ξk(ω)

KLE RVs are approx.
normally distributed
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Wind sites that are geographically close can employ the same
stochastic coefficients for the main modes
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Propose RF Model for Wind Predictions

We examined the opportunity of using KLE to represent 24-h wind
samples

random variables are quasi-normal
reduced dimensionality: approx. 6 modes are sufficient to represent
95% of variance

Magnitude of variance in generated samples is consistent with
historical data rather than with day-ahead weather forecasts

Proposed Model
Fit normalized covariance models through wind data at each site
Generate day-ahead wind forecasts and estimate associated
uncertainties
Scale covariance model with uncertainties in day-ahead forecasts
and generate RF samples using KLE.
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Extract Covariance Structure from Daily Wind Profiles

Propose a Matérn covariance model:

ΣW(∆t) = 21−ν

Γ(ν)

(√
2ν∆t
lt

)
Kν
(√

2ν∆t
lt

)
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Estimate parameters
via regression

Wind Site lt ν

15414 11.40 0.56
16238 11.15 0.57
3560 9.79 0.78

The covariance matrix parameters are similar for sites that are
geographically close.
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Generate Wind Power Realizations Consistent with
Historical Data

Weather Forecast:
day-ahead wind

speed profile

Covariance
matrix Σ

W (t, ξ)
→ P (W )

ptr(ξ)

lt, ν ξ

〈W (t)〉, σW (t) KL
modes

We employed data available for download from the Belgium
Electricity Grid Operator ELIA
Typical errors between predicted day-ahead wind power profiles
and actual values are about σP = 35%.

errors are independent of the time of the day.
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Stochastic Economic Dispatch

Q(x, ξ) = min
f ,p≥0,q≥0,θ

∑
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. . .

Need to compute 〈Q(x, ξ)〉 (and other higher moments) more
efficiently and more accurately than MC aproaches.
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Dependence of Q on ξ

ξ1 − ξ2
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Weather forecast: 〈W〉, σW → pr(ξ)→ pg(ξ)→ Q(ξ)

Tests show a smooth dependence ξ − Q for the range of
uncertainties explored in this study

will pursue a Polynomial Chaos approximation for Q.
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Accurate Representation of Q(x, ξ) using Polynomial
Chaos Expansions (PCE)

Q(x, ξ) ≈∑P
k=0 ck(x)Ψk(ξ)

PCE coefficients are evaluated via
Galerkin projection:

ck(x) =
〈QΨk〉
〈Ψ2

k〉

=
1
〈Ψ2

k〉

∫
Rn

Q(x, ξ)Ψk(ξ)p(ξ) dξ.

Given the PCE representation, the
expected cost is:

〈Q(x, ξ)〉 = c0

Compute PCE coefficients
via sparse quadrature
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Validate PCE Approximation
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IEEE 118-bus test system augmented with the three wind
generators
16-dimensional PCE
Tested 1st through 4th order approximations (shown with
blue,red,green,black).
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Expected Cost: PCE vs MC

EPC,i = |c0,i − c0,i+1|
/

c0,i+1

Ej
MC,i = |Qj

i − Qi+1|
/

Qi+1

Relative error E∗ is estimated with respect to the adjacent higher
accuracy value of the same type.

The PCE approach shows superior accuracy compared to MC for
the same number of samples.
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Summary

We present methods for efficient representation of uncertainty in power grids,
with emphasis on the Stochastic Economic Dispatch (SED) problem.

We model wind uncertainty via Karhunen-Loeve (KL) expansions.

Dimensionality of the stochastic space can be further reduced for
wind sites that are geographically close.

We represent the dependency of the SED solution on the uncertainty in
renewables via Polynomial Chaos expansion (PCE) models.

For the examples considered here, if superior accuracy is needed,
the PCE approach is significantly cheaper compared to MC

Future

Build PCE’s adaptively (adaptive quadrature, optimized quadrature rules)

Extend formulation to UC/SED problem
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