Q0O

00000000

OO0
D000
O

SAND2016-6233C

22008 Sandia
al-service in the national interest National

Laboratories

D

DOC

o]

D000

0

Afiange for Gormputing at Extreme Scale

Balancing Productivity, Portability and Performance - The
Challenge for Programming Models at Exascale?

Scalable Computer Architectures
Sandia National Laboratories, NM

sdhammo@sandia.gov

&l
i"v"!&ﬁ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
atmal N loar Sac oy Ao st Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

It’s Been a Long Three Weeks...) .

Common Theme in Discussions... [@Ez.

= Worrying less about the hardware...
= Vendors are showing some great projections and ideas for the future
= |ncredible amount of innovation still left on the runway
= Yes, this needs funding and we’re working on it

= Much more worried about the software stack and applications...

= Complex balance in pushing technology, maintaining legacy and still
giving us a viable path to the forward

= No clear alignment with the analytics community who seem to like
Java, Python and scripting (this does not fly at the labs!)

= “Credible Exa* machines” aren’t credible until they solve real science

So What Are We Talking About Here?) S,

Represents ~10 applications out of Used throughout our code base and
>100 we have to run the community
Sandia
Several Sandia Engineering Mathematics /
Applications Solvers TPL
B C++

BC

® Fortran 77
B Fortran 90
B Python

B Other

O CuUDA

O Build System

~11M SLOC of Application Code ~5M SLOC of Library Code
(>50 Third Party Libraries not included) (>20 Third Party Libraries not included)

http://www.trilinos.org

So What Are We Talking About Here?) e,

Sandia

NALU Trinity Campaign Code Mathematics /
Solvers TPL

B C++

BC

® Fortran 77
B Fortran 90
B Python

B Other

O CcuDA

O Build System

~65K SLOC of Application Code ~5M SLOC of Library Code
(~5 Third Party Libraries not included) (>20 Third Party Libraries not included)

http://www.trilinos.org

And there’s more ...

= The complexity of this code is extremely high

= Written by a team of specialists who are very
often the leading computational experts in an
engineering or physics field

= We don’t want to document all of our
algorithms and numerical techniques in
literature (so developers often encounter
them first time at the labs)

= The code is well trusted/validated

= Qur codes are often developed to qualify
complex situations where physical testing can
be difficult

= Codes are verified and validated over a long
period costing huge amounts of time and
money

Sandia
National
Laboratories

We do very cool things too.. 1) .

Sandia’s self-guided bullet prototype can hit target a mile

away
EEMEIE 402

ALBUQUERQUE, N.M — Take two Sandia National Laboratories engineers who are hunters, get
them talking about the sport and it shouldn’t be surprising when the conversation leads to a \
patented design for a self-guided bullet that could help war fighters. (Click here for a video
showing the prototype’s flight.)

Sandia researchers Red Jones and Brian Kast and their colleagues have invented a dart-like,
self-guided bullet for small-caliber, smooth-bore firearms that could hit laser-designated \
targets at distances of more than a mile (about 2,000 meters). ‘

“We have a very promising technology to
guide small projectiles that could be fully
developed inexpensively and rapidly,”
Jones said.

mmm——— Sandia is seeking a private company
- partner to complete testing of the

We do very cool things too... 1) .

Sandia
|I'| National
Laboratories

“Wow, you guys are screwed..”

= Personal opinion is no, we are making huge progress but it is hard (and
quite slow)

= Major worry is that we will have Exascale hardware without a good
software/science story

MR'HAPPY mamm .
8 Pogr Hargreauee @

KEEP
CALM

AND

BANG YOUR HEAD
AGAINST THE WALL

It is this community that can change these problems

Sandia
l"| National
Laboratories

So WHAT ARE WE DOING...?

Architecture Test Beds

= Intel:
= Sandy Bridge, Ivy Bridge and Haswell
= Knights Corner & Knights Landing

= AMD:
= Llano and Kaveri APUs

= |BM:
= POWER7+and POWERS
= NVIDIA:
= K20, K40M and K80
= ARM:
= APM X-Gene 1 and Cavium
= Cray:

= Aries/lvy Bridge

= Typically 30 — 50 node with Infiniband
= Few other one/two node test blades

Sandia
|I'| National
Laboratories

intel)

3

S

NVIDIA.

q'll

Power

AMD 1T

¢ applied
ARM B

CRANY

THE SUPERCOMPUTER COMPANY

Mantevo Mini-Apps) .

= Mini-applications are condensed (but representative) versions of our
application codes

= Typically O(10,000) lines of code
= Minimize third party libraries (easy to build)
= Hopefully simplified build systems

= Incredibly popular with vendors and academia
= Get representative kernels which focuses research and impact

= Available from ASCR Codesign Centers, ASC Codesign and Mantevo

= http://www.mantevo.org

Sandia
ll'| National
Laboratories

PERFORMANCE, PORTABILITY AND
PRODUCTIVITY...

Programming Models and our Code Future...

Let’s Start at the Beginning...)i

= Today almost all of our code is MPI everywhere
= No threading
= Very little vectorization work
= Not well optimized

What’s Next...) i,

const Scalar* xcoefs = &x.coefs[0];
const Scalar* ycoefs = &y.coefs[0];
MINIFE_SCALAR result = 0;

#pragma omp target teams map(xcoefs[0:n], ycoefs[0:n]) \

map(tofrom: result) reduction(+:result)

{
#pragma omp distribute parallel for schedule(static,1) reduction(+:result)
for(int i=0; i<n; ++i) {

result += xcoefs[i] * ycoefs]i];

}

}

= Perhaps the most obvious choice is adding OpenMP
= Turns out this is a lot of work
= |sn’t always performant
= Still not widely supported (certainly not everything in the standard)

This is just intended to be representative of the problems in real codes

Anything Better? s

= Sandia has started to develop the Kokkos Programming Model

= Why?
= Abstraction seems to be a good idea today
= Still not sure what the future will bring?

= Where:
= http://www.github.com/kokkos

http://www.github.com/kokkos

Sandia

Kokkos Programming Model) feaen,

Application Data

Parallel

Execution/Dispatch

¢ § N ¢ |

What How Where What How Where
(For, Reduce, Scan) (Iterator) (Which Device) (Application Data) (Indexing/Atomics (Which Memory)
Streaming/Random)

Management

Separation and Abstraction of Concerns
Abstract Application Data and Computation

Kokkos Programming Model (Compute)) i,

Parallel

Execution/Dispatch

¢ § N

What How Where
’ (For, Reduce, Scan) (Iterator) (Which Device) '
Parallel-For + How are iterations + Run on ..
Execution Pattern GPU? CPU? PIM?
decomposed?

Sensible defaults for many execution spaces to reduce programmer overhead
Let Sandia research and Kokkos developers handle the heavy work

Kokkos Programming Model (Data)

What How Where
(Application Data) (Indexing/Atomics (Which Memory)

¢

Index Mapping,
Containers

+

Application Data

Management

¢ § N

Streaming/Random)

$

)

Sandia
National
Laboratories

How should data be accessed?
Atomically? Streaming Stores?
Uncached loads?

Stored in..

HBM? DDR? NVM?

Sensible defaults for many memory spaces to reduce programmer overhead
Let Sandia research and Kokkos developers handle the heavy work

What Does Kokkos Run on Today?

Kokkos is running on every advanced
architecture test bed, prototype option on AMD systems

Sandia
National _
Laboratories

ASC Trinity Phase | — ATS1

ASC TLCC-2

@ Intel Xeon Haswell (Intel, GNU, LLVM)

ASC Trinity Phase Il — ATS1

@ Intel Xeon Phi Knights Landing Emulator

ASC Sierra - ATS2

@ POWERS (XL, GNU, PGI)

@ NVIDIA GPU (K20, K40, K80, NSDK-7.5/8.0)

Intel Xeon Sandy Bridge (Intel, GNU,
LLVM, Cray)

Intel Xeon Broadwell (Intel, GNU,
LLVM, Cray)

ASC Advanced Arch. Test Beds

@ AMD Kaveri APU (GNU-HSA)
@ ARMG4 (GNU, LLVM)

@ Intel Xeon Phi Knights Corner (Intel)

@ = Kokkos Build Type in Release @ = Prototype/Research

Sandia
l"| National
Laboratories

CASE STUDY — PORTING LULESH

Sandia
II'] National
Laboratories

Examining Porting Strategies for Code Teams

= Very large proportion of ASC code at Sandia is MPI only
= |mplies a serial on-node model with limited thread safety applied

= Starting point for this study is the serial version of LULESH

= Taken from the OpenMP version but with all OpenMP pragmas,
reductions and specializations removed (“proxy” for “real” code)

= Provide several implementations to evaluate metrics:
= Kokkos: Minimal CPU, Minimal CPU with ref lambdas, Minimal GPU,
Optimized-V1, Optimized-V2, Optimized-V3
= OpenMP: Original OpenMP from LLNL, Optimized OpenMP from SNL
= RAJA: RAJA-Basic and RAJA-Index-Set

LULESH Benchmark) e,

= Unstructured hydrodynamics
benchmark from Lawrence Livermore

= Somewhat simplified but has nice
programming structures relevant to
larger codes

= Well studied by vendors and academia

= C/C++

https://codesign.linl.gov/lulesh.php

= |mplementations in many
programming models

Sandia

Non Kokkos-Variants h) e,

= RAJA-Basic: code provided by Jeff Keasler and Rich Hornung from LLNL, uses
RAJA abstractions for parallel dispatch

= RAJA-IndexSet: code provided by Jeff Keasler and Rich Hornung from LLNL,
uses RAJA abstractions for data iteration

= OpenMP Original: NO-RAJA variant from LLNL

= OpenMP Minimal: a stripped down version using basic parallel-for schemes
and atomic operations developed from serial using Intel AdvisorXE and
InspectorXE (akin to developer using tools)

= OpenMP Optimized: Sandia optimized version which improves vectorization
and reduction performance

Optimized Kokkos Variants) .

= Kokkos-Minimal-CPU: developed by a physicist with limited experience
writing threaded code (our experiment for code we would get from many
code groups)

= Kokkos-Minimal-CPU-RL: basic port to Kokkos which utilizes capture-by-
reference lambdas to significantly decrease programmer burden

= Kokkos-Minimal-GPU: extension of Kokkos-Minimal-CPU to work on the GPU
(mainly data structure const changes)

= Kokkos-Optimized-v1: eliminate buffer realloc; reduce register pressure

= Kokkos-Optimized-v2: use Kokkos Views with Layout and Traits, Hierarchical
Parallelism

= Kokkos-Optimized-v3: kernel fusion

Swim Lanes for Code Teams) 5,

Trinity Trinity Sierra Crossroads
Phase | Phase Il

SaAoalIg

If Serial

uonoensqy ++9

2015 2016 2017 2018 2019 2020 2021

CUDA

C++20 Language
Specification

This is not an official Sandia position

Swim Lanes for Code Teams) 5,

Trinity Trinity
Phase | Phase Il

Sierra Crossroads

SaAoalIg

uonoensqy ++9

2015 2016

2017 2019 2021
_m Initial Initial Optimized ATDM/
; Ports Portable Portable Language
:CUBA | “Day One” Versions Versions Standards?
C++20 Language : :
Specification

This is not an official Sandia position

National

Swim Lanes for Code Teams) 5,

Trinity Trinity Sierra Crossroads
Phase | Phase Il ,

@

© Serial =
; (9%
> g
X <
' - ®
§ : (72}
; S
@)
+
+
. >
y O
] 2
RAJA 2
: = SIN EEEEESSa R e 24
| ; =
: TV &I T e -}
2015 2016 2017 2018 A 2019 2021
: Initial Initial Optimized ATDM/
OpenmiP|
; Ports Portable Portable Language
:CUDA| "] “Day One” Versions Versions Standards?
et Initial Parallel Optimized Many Task?
Parallel Dispatch + Dispatch + Data
Dispatch Initial Data Structures Structures

This is not an offic-ial Sandia position

What are We Presenting?).

= |nan ideal world we would have all code ported with minimal changes

= Very unlikely to happen for ASC codes, complicated, legacy algorithms,
years of engineering

= So what can we hope for?
= Progression of modifications to the code to get them ready for NGP
= |nitial ports require less modification to get code up and running but don’t
give top performance
= Slowly evolve code/data-structures to give better cross-platform
performance

= Sandia ASC L2 results show what we might be able to expect in a small case
study using LULESH

= We think there is a similar story for Kokkos and RAJA

Sandia
ll'| National
Laboratories

PERFORMANCE PORTABILITY OF LULESH
VERSIONS

Evaluating Performance Across Architectures

ASC Arch. Test Bed Systems Used For Testing) ..

= Shepard Intel Haswell

Dual-socket, 16-cores/socket, 2 x 256-bit FP-FMA SIMD/core, SMT-2
128GB RAM/socket
Intel 15.2.164 Compiler with OpenMPI| 1.8.X

= Compton Intel Sandy Bridge and Knights Corner

Dual-socket 8-cores/socket, 2x256-bit FP SIMD/core, SMT-2
32GB RAM/socket

Intel 15.2.164 Compiler with OpenMPI 1.8.X (Sandy Bridge)
57-core KNC-CO, 1.1GHz, 6GB/RAM

Intel 15.2.164 Compiler with Intel MPI 4.1.036 (KNC)

ASC Arch. Test Bed Systems Used For Testing

= White POWERS
= Dual-socket, Dual-NUMA/socket POWERS, 3.4GHz
= 5-cores/NUMA = 10 cores/socket = 20 cores/node, SMT-8/core
= 128GB RAM/NUMA =512GB/node
= GNU 4.9.2 with OpenMPI 1.8.X
= |BM XL 13.1.2 with OpenMPI 1.8.X

= Hammer APM ARM-64/v8
= Single socket/node, 8-cores/node, 2.4GHz
= 32GB RAM/socket
= GNU 4.9.2 with OpenMPI 1.8.X

Sandia
National
Laboratories

ASC Arch. Test Bed Systems Used For Testing) ..

= Shannon Intel Sandy Bridge + NVIDIA Kepler K40/80

Dual-socket, 8-cores/socket Sandy Bridge = 16 cores/node
32GB RAM/socket

NVIDIA Kepler K40 per socket

NVIDIA CUDA 7.5 SDK

GNU 4.7.2 with OpenMPI 1.8.X (compiled with CUDA support)

Optimization Notice h) i,

Where possible we have selected architecture appropriate optimization flags
to improve performance
= Kokkos — baked into the Kokkos Makefile system

= RAJA - baked into RAJA Makefile system and RAJA header files for alignment,
vectorization width etc (header additions are annoying)

Results are the harmonic mean of LLNL-coded “Figure of Merit” (FOM) from a
minimum 10 runs, max, min etc are all recorded

= Error bars are typically very small (1-3%) so are not included in plots for brevity

All configurations used optimized (per platform) MPI process pinning, thread
affinities and job configurations

= Lots of research at Sandia using Mantevo over last four years to understand these issues

= An on-going process but can give >2X performance difference

Performance Portability Metrics) e,

LULESH Figure of Merit Results (Problem 45)
higer M HSW1x16 O HSW 1x32 @ P38 1x40 XL BKNC1x224 OARM64 1x8 BNV K40

is
Better 10000

8000

6000 (

i Il Iﬂ Iﬂ :

) Q > & [O N Q Q Q
& & \?fb N & & & E P

Performance Portability Metrics) e,

LULESH Figure of Merit Results (Problem 60)

mHSW 1x16 BHSW 1x32 @P8 1x40 XL
mKNC 1x224 0 ARM64 1x8 BNV K40

Higher

Better 1 4000

12000

Performance Portability Metrics) e,

LULESH Figure of Merit Results (Problem 60)

mHSW 1x16 BHSW 1x32 @P8 1x40 XL
mKNC 1x224 0 ARM64 1x8 BNV K40

Higher

Better 1 4000

12000 - Initial ports of code will give similar results to
10000 OpenMP, +/- 10-15%. Seems to be down to differgnt
m | | optimization strategies in the compiler.

Performance Portability Metrics) e,

LULESH Figure of Merit Results (Problem 60)
BHSW 1x16 BHSW 1x32 P8 1x40 XL

Higher

e 14000 BKNC 1x224 0 ARM64 1x8 BNV K40
12000 R e e et er | I ~\
performance across all architectures :
. 10000 : :
@ 8000 : M :
= 6000 4l ! .
O I _ I
. 4000 { ! |
2000 Iﬂu I | I i
O 7 j] T T T I‘ I ﬂ | 'I

Performance Portability Metrics) e,

LULESH Figure of Merit Results (Problem 60)
higer M HSW1x16 O HSW 1x32 @ P38 1x40 XL BKNC1x224 OARM64 1x8 BNV K40

is
Better

14000

12000 - | SMT on Haswell doesn't seem to improve
performance, generally good on POWER and KNC

10000 -

8000
6000
4000
2000

FOM (Z/s)

Thoughts and Experiences

Sandia
National
Laboratories

These problem sizes are small relative to some of the systems
= 0O(100) — O(200) MB in problem size
= POWERS8 — very large memory, large caches (particularly L4)
= GPU - needs more parallelism

We are trying to capture performance effects based on feedback from
LULESH developers

= But larger problems help our optimizations even more

Not necessarily demonstrating the best potential FOM performance
= Can get up to 2X these FOM figures from our implementations

Sandia
l'I'! National
Laboratories

PROGRAMMER PRODUCTIVITY OF
LULESH VERSIONS

Evaluating Effort to Develop Versions using
Performance Portable C++ Abstraction Layers

e -
How do we calculate “productivity”? LUf

= With great difficulty — lots of discussion in the community about what this
really means

= Qur approach:
1. Remove all comments from the code
2. Utilize the clang-format LLVM tool with “Google” code option
3. Compare the number of sites using Apple’s FileMerge tool
4. Compare the lines added/removed using diff —b —w <paths>

= Not perfect and we have hand modified code of all versions to bring the
counts more into line (and to be fair wherever possible)

= Point is to show approximate level of programmer effort not be precisely
guantitative because coding style largely down to individual

http://clang.llvm.org/docs/ClangFormat.html
- _________

Count of Sites at Which Changes are
Made

Sites at Which Changes are Made vs. MPI-Only
Cower LULESH

Better 350 B Main Code mEHeader OTotal
300 -~

Q
2250 N L

e
) 200 B
'© 150 i

7))
2100 u
50 - —

Sandia
rl'l National

Laboratories

S

Count of Sites at Which Changes are
Made

Sites at Which Changes are Made vs. MPI-Only LULESH

Lower O Main Code O Header B Total
is

Better 350

Sandia
i National
Laboratories

w
o
o

N N
o Ul
© O
|
[
|
|

-
U1
o

|

|

|

Sites of Change
o
o

50

Count of Sites at Which Changes are
Made

Sites at Which Changes are Made vs. MPI-Only LULESH

Lower 0 Main Code O Header B Total

is

Sandia
National
Laboratories

Better 350 ‘

Kokkos and RAJA variants are similar

w
o
o

N
U1
o

Sites of Change
S
o

Source Code Line Changes

Source Code Lines Added/Removed and Total vs. MPI-Only

B Main Code Added
B Main Code Delta
O Header Removed

B Main Code Removed
OHeader Added
O Header Delta

Sandia
National
Laboratories

Source Code Line Changes).

Source Code Lines Added/Removed and Total vs. MPI-Only

O Main Code Added O Main Code Removed
Lower B Main Code Delta O Header Added
Botter 300 O Header Removed O Header Delta
/00 . : =
C++ Abstraction Layers have approximately _
600 | similar numbers of lines changed to the 11 =
% 500 | original OpenMP code from LLNL B .
S .
o 400 - - B
o _ _
Q 300 -
5 200 -
100
O | = [} I |
-100 \@ “q \“Q fo‘."\o N > é’\} bo S > '\2&\) 5 ¥
N Q 0 % vv \) A} O O O
o ¢ © v S 3 S
S S &

Source Code Line Changes).

Source Code Lines Added/Removed and Total vs. MPI-Only

O Main Code Added O Main Code Removed
Lower B Main Code Delta O Header Added
Ber 300 O Header Removed O Header Delta
etter
700 , ' _
C++ Abstraction Layers have approximately -

600 | similar numbers of lines changed to the =
% 500 - original OpenMP code from LLNL L
u —
« 400 B _
2 300] |
g ° (-
5 200 -

I I

0] - 08, ol -
100 & &K H & R e
) QO QO %) ?\., } NI] @)))
o™ & N \s N J S ¢ NL NK
& PN A ¥ N /40 I R S
S \0\6\ -6'\(\'
R \¥ Q’° Naive port to Kokkos uses slightly more changes than
@)
Is needed by capture-by-reference lambdas

: s
Programmer Development Time) foes,

Initial Kokkos-CPU port by a competant physicist took a few months
* No threading/OpenMP/Kokkos experience for code development
= Lots of correctness and performance issues came up
= |nitial experience with programmer tools and profilers

= Kokkos optimized implementations
= O(few weeks) of a Kokkos expert’s time

= OpenMP initial and optimized implementations
= O(few days - week) of a performance analysts time written on a plane

= These are not significant amounts of FTE but the code is small in comparison
to production settings (but code groups are larger and better resourced)

= Difficult (impossible?) to do a deep quantitative comparison

What can we take away? i

Sandia
National
Laboratories

= C++ abstraction layers are using similar numbers of changes in code (both
code sites and SLOC-delta) to directives

= Perhaps to be expected given implementation strategy is similar in
unoptimized variants of the code

= This is a good thing for developers — hard work is in developing the
parallel algorithm, not in how it is expressed in source code

= Looking at changing roughly 15% of the code to get initial parallel versions in

this example
= Warning: example is friendly to parallelism because of its heritage

= Do we need directives in application code at all?

Kernel Analysis for Kokkos Applications

Sandia
National
Laboratories

= Consistent profiling across architectures is hard

Vtune does not like to profile deep in OpenMP hierarchies which are
enclosed in headers

Nsight manages OK
Not clear that tools understand C++ abstraction layers

= KokkosP Profiling Layer

Recent addition to Kokkos, option to always compile in

Tools dynamically loaded, can be stacked, lightweight

Expose calling structure of kernels and devices to profiler
Better context awareness of what execution is being requested
Still very early prototype but shows some promise

KokkosP Kernel Comparison of Kokkos Opt 1

Haswell 1x16 S=45
1=1000

B CalcFBHourglassForceForEl
emsA

O CalcKinematicsForElems

B_INTERNAL_9_lulesh_cc_b
de2d54a::CalcHourglassCo
ntrolForElems(Domain&

OlntegrateStressForElemsA

DEvalEOSForElemsA

O CalcMonotonicQGradientsF
orElems

B CalcMonotonicQRegionForE
lems

B CalcFBHourglassForceForEl
emsB

BEvalEOSForElemsB

Sandia
i | Ntona
Laboratories

POWERS 1x40 S=45
1=1000

B CalcFBHourglassForceForEl
emsA

B CalcHourglassControlForEle
ms(Domain&

O CalcKinematicsForElems

O IntegrateStressForElemsA

D EvalEOSForElemsA

OEvalEOSForElemsB

B CalcMonotonicQGradientsF

orElems

B CalcMonotonicQRegionForE
lems

B EvalEOSForElemsC

B EvalEOSForElemsD

B CalcPressureForElemsB

See similar breakdown across architectures but we can profile them all using one tool

SOME THOUGHTS AND DISCUSSION

On the Long Road Ahead...

The Long Road Ahead

= Many of our codes represent 20+ years of
development and continuous refinement

= We have invested SBn’s into each one because
they add real value to our scientific delivery

= They are complicated and can’t be easily
replaced

= Tempting to think that new algorithms, new
programming models etc mean we need to burn
down the houses and start over

= Perhaps a good reason to do it

= But, doing so will take a long time and cost a lot
of money

= The only really practical path is something which
allows a gradual migration of codes and libraries

Sandia
National
Laboratories

The Long Road Ahead...) .

Some see this as a pessimistic view but | see the
opportunities

= Develop abstractions that are “forward-flexible”

= Don’t commit us to specific hardware or software ©
in the future

Immense performance opportunities as we do go
through modifying our kernels

= Seeing huge performance improvements today in |
our rewrites

In the end the hardware and the power/energy are :
very cheap in comparison to programmer’s time and
the value of the science they produce

= |s 20MS = 20MW such a great goal versus >SBn of
programmer time per application?

But here’s an opinion... .

= The programming models of the future are probably...
= The ones which work relatively well with existing languages
= Are productive
= Straight forward concepts without all the “bells and whistles”

= The programming models which win developer’s hearts are easy to
profile, easy to debug, concise

= Workshops like this can have a huge impact on where we go because
they allow us to explore potential

= Exciting time to be in the programming models community

= Perhaps the most exciting time for two decades?

[e]e]

Q0

0000

00000# 0000
0000000
00000000800
CO000000000

Sandia
National
Laboratories

Exceptional service in the national interest

sdhammo@sandia.gov

