
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Balancing Productivity, Portability and Performance - The
Challenge for Programming Models at Exascale?

Scalable Computer Architectures

Sandia National Laboratories, NM

sdhammo@sandia.gov

SAND2016-6233C

It’s Been a Long Three Weeks…

Common Theme in Discussions…

 Worrying less about the hardware…

 Vendors are showing some great projections and ideas for the future

 Incredible amount of innovation still left on the runway

 Yes, this needs funding and we’re working on it

 Much more worried about the software stack and applications…

 Complex balance in pushing technology, maintaining legacy and still
giving us a viable path to the forward

 No clear alignment with the analytics community who seem to like
Java, Python and scripting (this does not fly at the labs!)

 “Credible Exa* machines” aren’t credible until they solve real science

So What Are We Talking About Here?

Represents ~10 applications out of
>100 we have to run

Used throughout our code base and
the community

~11M SLOC of Application Code
(>50 Third Party Libraries not included)

~5M SLOC of Library Code
(>20 Third Party Libraries not included)

http://www.trilinos.org

So What Are We Talking About Here?

~65K SLOC of Application Code
(~5 Third Party Libraries not included)

~5M SLOC of Library Code
(>20 Third Party Libraries not included)

http://www.trilinos.org

And there’s more …

 The complexity of this code is extremely high

 Written by a team of specialists who are very
often the leading computational experts in an
engineering or physics field

 We don’t want to document all of our
algorithms and numerical techniques in
literature (so developers often encounter
them first time at the labs)

 The code is well trusted/validated

 Our codes are often developed to qualify
complex situations where physical testing can
be difficult

 Codes are verified and validated over a long
period costing huge amounts of time and
money

We do very cool things too..

We do very cool things too…

“Wow, you guys are screwed..”

 Personal opinion is no, we are making huge progress but it is hard (and
quite slow)

 Major worry is that we will have Exascale hardware without a good
software/science story

It is this community that can change these problems

SO WHAT ARE WE DOING…?

 Intel:

 Sandy Bridge, Ivy Bridge and Haswell

 Knights Corner & Knights Landing

 AMD:

 Llano and Kaveri APUs

 IBM:

 POWER7+ and POWER8

 NVIDIA:

 K20, K40M and K80

 ARM:

 APM X-Gene 1 and Cavium

 Cray:

 Aries/Ivy Bridge

 Typically 30 – 50 node with Infiniband

 Few other one/two node test blades

Architecture Test Beds

Mantevo Mini-Apps

 Mini-applications are condensed (but representative) versions of our
application codes

 Typically O(10,000) lines of code

 Minimize third party libraries (easy to build)

 Hopefully simplified build systems

 Incredibly popular with vendors and academia

 Get representative kernels which focuses research and impact

 Available from ASCR Codesign Centers, ASC Codesign and Mantevo

 http://www.mantevo.org

PERFORMANCE, PORTABILITY AND

PRODUCTIVITY…

Programming Models and our Code Future…

Let’s Start at the Beginning…

 Today almost all of our code is MPI everywhere

 No threading

 Very little vectorization work

 Not well optimized

What’s Next…

 Perhaps the most obvious choice is adding OpenMP

 Turns out this is a lot of work

 Isn’t always performant

 Still not widely supported (certainly not everything in the standard)

const Scalar* xcoefs = &x.coefs[0];
const Scalar* ycoefs = &y.coefs[0];
MINIFE_SCALAR result = 0;

#pragma omp target teams map(xcoefs[0:n], ycoefs[0:n]) \
map(tofrom: result) reduction(+:result)

{
#pragma omp distribute parallel for schedule(static,1) reduction(+:result)
for(int i=0; i<n; ++i) {

result += xcoefs[i] * ycoefs[i];
}

}

This is just intended to be representative of the problems in real codes

Anything Better?

 Sandia has started to develop the Kokkos Programming Model

 Why?

 Abstraction seems to be a good idea today

 Still not sure what the future will bring?

 Where:

 http://www.github.com/kokkos

http://www.github.com/kokkos

Kokkos Programming Model

Kokkos

Parallel
Execution/Dispatch

Application Data
Management

Patterns Policies Spaces AccessViews Spaces

What
(For, Reduce, Scan)

How
(Iterator)

Where
(Which Device)

Where
(Which Memory)

How
(Indexing/Atomics

Streaming/Random)

What
(Application Data)

Separation and Abstraction of Concerns
Abstract Application Data and Computation

Kokkos Programming Model (Compute)

Parallel
Execution/Dispatch

Patterns Policies Spaces

What
(For, Reduce, Scan)

How
(Iterator)

Where
(Which Device)

Parallel-For
Execution Pattern

How are iterations
decomposed?

Run on ..
GPU? CPU? PIM?

+ +

Sensible defaults for many execution spaces to reduce programmer overhead
Let Sandia research and Kokkos developers handle the heavy work

Kokkos Programming Model (Data)

Application Data
Management

AccessViews Spaces

Where
(Which Memory)

How
(Indexing/Atomics

Streaming/Random)

What
(Application Data)

Index Mapping,
Containers

How should data be accessed?
Atomically? Streaming Stores?

Uncached loads?

Stored in..
HBM? DDR? NVM?

+ +

Sensible defaults for many memory spaces to reduce programmer overhead
Let Sandia research and Kokkos developers handle the heavy work

What Does Kokkos Run on Today?

POWER8 (XL, GNU, PGI)

NVIDIA GPU (K20, K40, K80, NSDK-7.5/8.0)

✔ Intel Xeon Haswell (Intel, GNU, LLVM) Intel Xeon Sandy Bridge (Intel, GNU,
LLVM, Cray)

Intel Xeon Phi Knights Landing Emulator

Intel Xeon Phi Knights Corner (Intel)

ASC Trinity Phase I – ATS1

ASC Trinity Phase II – ATS1

ASC Sierra – ATS2

ASC TLCC-2

ASC Advanced Arch. Test Beds

ARM64 (GNU, LLVM)

AMD Kaveri APU (GNU-HSA)

= Kokkos Build Type in Release = Prototype/Research

Kokkos is running on every advanced
architecture test bed, prototype option on AMD systems

✔

✔

✔

✔

✔

✔

✔ ✔

✔

Intel Xeon Broadwell (Intel, GNU,
LLVM, Cray)

✔

CASE STUDY – PORTING LULESH

Examining Porting Strategies for Code Teams

 Very large proportion of ASC code at Sandia is MPI only

 Implies a serial on-node model with limited thread safety applied

 Starting point for this study is the serial version of LULESH

 Taken from the OpenMP version but with all OpenMP pragmas,
reductions and specializations removed (“proxy” for “real” code)

 Provide several implementations to evaluate metrics:

 Kokkos: Minimal CPU, Minimal CPU with ref lambdas, Minimal GPU,
Optimized-V1, Optimized-V2, Optimized-V3

 OpenMP: Original OpenMP from LLNL, Optimized OpenMP from SNL

 RAJA: RAJA-Basic and RAJA-Index-Set

LULESH Benchmark

 Unstructured hydrodynamics
benchmark from Lawrence Livermore

 Somewhat simplified but has nice
programming structures relevant to
larger codes

 Well studied by vendors and academia

 C/C++

 Implementations in many
programming models

https://codesign.llnl.gov/lulesh.php

Non Kokkos-Variants

 RAJA-Basic: code provided by Jeff Keasler and Rich Hornung from LLNL, uses

RAJA abstractions for parallel dispatch

 RAJA-IndexSet: code provided by Jeff Keasler and Rich Hornung from LLNL,

uses RAJA abstractions for data iteration

 OpenMP Original: NO-RAJA variant from LLNL

 OpenMP Minimal: a stripped down version using basic parallel-for schemes

and atomic operations developed from serial using Intel AdvisorXE and

InspectorXE (akin to developer using tools)

 OpenMP Optimized: Sandia optimized version which improves vectorization

and reduction performance

Optimized Kokkos Variants

 Kokkos-Minimal-CPU: developed by a physicist with limited experience
writing threaded code (our experiment for code we would get from many
code groups)

 Kokkos-Minimal-CPU-RL: basic port to Kokkos which utilizes capture-by-
reference lambdas to significantly decrease programmer burden

 Kokkos-Minimal-GPU: extension of Kokkos-Minimal-CPU to work on the GPU
(mainly data structure const changes)

 Kokkos-Optimized-v1: eliminate buffer realloc; reduce register pressure

 Kokkos-Optimized-v2: use Kokkos Views with Layout and Traits, Hierarchical
Parallelism

 Kokkos-Optimized-v3: kernel fusion

2015 2016 2017 2018 2019 2020 2021

Trinity
Phase I

Trinity
Phase II

Sierra Crossroads

Serial OpenMP Optimized OpenMP

Kokkos Min. CPU X Kokkos Min. CPU

Kokkos Min. GPU K-Opt 1 K-Opt 2 K-Opt 3

RAJA RAJA Optimized CPU RAJA GPU/Optimized GPU

OpenMP

CUDA

C++20 Language
Specification

D
ire

ctive
s

C
+

+
A

b
stra

ctio
n

Swim Lanes for Code Teams

This is not an official Sandia position

2015 2016 2017 2018 2019 2020 2021

Trinity
Phase I

Trinity
Phase II

Sierra Crossroads

Serial OpenMP Optimized OpenMP

Kokkos Min. CPU X Kokkos Min. CPU

Kokkos Min. GPU K-Opt 1 K-Opt 2 K-Opt 3

RAJA RAJA Optimized CPU RAJA GPU/Optimized GPU

OpenMP

CUDA

C++20 Language
Specification

D
ire

ctive
s

C
+

+
A

b
stra

ctio
n

Swim Lanes for Code Teams

Initial
Ports

“Day One”

Initial
Portable
Versions

Optimized
Portable
Versions

ATDM/
Language

Standards?

This is not an official Sandia position

2015 2016 2017 2018 2019 2020 2021

Trinity
Phase I

Trinity
Phase II

Sierra Crossroads

Serial OpenMP Optimized OpenMP

Kokkos Min. CPU X Kokkos Min. CPU

Kokkos Min. GPU K-Opt 1 K-Opt 2 K-Opt 3

RAJA RAJA Optimized CPU RAJA GPU/Optimized GPU

OpenMP

CUDA

C++20 Language
Specification

D
ire

ctive
s

C
+

+
A

b
stra

ctio
n

Swim Lanes for Code Teams

Initial
Ports

“Day One”

Initial
Portable
Versions

Optimized
Portable
Versions

ATDM/
Language

Standards?

Initial
Parallel
Dispatch

Parallel
Dispatch +

Initial Data Structures

Many Task?

This is not an official Sandia position

Optimized
Dispatch + Data

Structures

What are We Presenting?

 In an ideal world we would have all code ported with minimal changes

 Very unlikely to happen for ASC codes, complicated, legacy algorithms,
years of engineering

 So what can we hope for?

 Progression of modifications to the code to get them ready for NGP

 Initial ports require less modification to get code up and running but don’t
give top performance

 Slowly evolve code/data-structures to give better cross-platform
performance

 Sandia ASC L2 results show what we might be able to expect in a small case
study using LULESH

 We think there is a similar story for Kokkos and RAJA

PERFORMANCE PORTABILITY OF LULESH
VERSIONS
Evaluating Performance Across Architectures

ASC Arch. Test Bed Systems Used For Testing

 Shepard Intel Haswell

 Dual-socket, 16-cores/socket, 2 x 256-bit FP-FMA SIMD/core, SMT-2

 128GB RAM/socket

 Intel 15.2.164 Compiler with OpenMPI 1.8.X

 Compton Intel Sandy Bridge and Knights Corner

 Dual-socket 8-cores/socket, 2x256-bit FP SIMD/core, SMT-2

 32GB RAM/socket

 Intel 15.2.164 Compiler with OpenMPI 1.8.X (Sandy Bridge)

 57-core KNC-C0, 1.1GHz, 6GB/RAM

 Intel 15.2.164 Compiler with Intel MPI 4.1.036 (KNC)

ASC Arch. Test Bed Systems Used For Testing

 White POWER8

 Dual-socket, Dual-NUMA/socket POWER8, 3.4GHz

 5-cores/NUMA = 10 cores/socket = 20 cores/node, SMT-8/core

 128GB RAM/NUMA = 512GB/node

 GNU 4.9.2 with OpenMPI 1.8.X

 IBM XL 13.1.2 with OpenMPI 1.8.X

 Hammer APM ARM-64/v8
 Single socket/node, 8-cores/node, 2.4GHz

 32GB RAM/socket

 GNU 4.9.2 with OpenMPI 1.8.X

ASC Arch. Test Bed Systems Used For Testing

 Shannon Intel Sandy Bridge + NVIDIA Kepler K40/80

 Dual-socket, 8-cores/socket Sandy Bridge = 16 cores/node

 32GB RAM/socket

 NVIDIA Kepler K40 per socket

 NVIDIA CUDA 7.5 SDK

 GNU 4.7.2 with OpenMPI 1.8.X (compiled with CUDA support)

Optimization Notice

 Where possible we have selected architecture appropriate optimization flags
to improve performance

 Kokkos – baked into the Kokkos Makefile system

 RAJA – baked into RAJA Makefile system and RAJA header files for alignment,
vectorization width etc (header additions are annoying)

 Results are the harmonic mean of LLNL-coded “Figure of Merit” (FOM) from a
minimum 10 runs, max, min etc are all recorded

 Error bars are typically very small (1-3%) so are not included in plots for brevity

 All configurations used optimized (per platform) MPI process pinning, thread
affinities and job configurations
 Lots of research at Sandia using Mantevo over last four years to understand these issues

 An on-going process but can give >2X performance difference

0

2000

4000

6000

8000

10000

FO
M

 (
Z

/s
)

LULESH Figure of Merit Results (Problem 45)

HSW 1x16 HSW 1x32 P8 1x40 XL KNC 1x224 ARM64 1x8 NV K40

Performance Portability Metrics

Higher
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

0

2000

4000

6000

8000

10000

12000

14000

F
O

M
 (

Z
/s

)

LULESH Figure of Merit Results (Problem 60)

HSW 1x16 HSW 1x32 P8 1x40 XL

KNC 1x224 ARM64 1x8 NV K40

Performance Portability Metrics

Higher
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

0

2000

4000

6000

8000

10000

12000

14000

F
O

M
 (

Z
/s

)

LULESH Figure of Merit Results (Problem 60)

HSW 1x16 HSW 1x32 P8 1x40 XL

KNC 1x224 ARM64 1x8 NV K40

Performance Portability Metrics

Initial ports of code will give similar results to
OpenMP, +/- 10-15%. Seems to be down to different
optimization strategies in the compiler.

Higher
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

0

2000

4000

6000

8000

10000

12000

14000

F
O

M
 (

Z
/s

)

LULESH Figure of Merit Results (Problem 60)

HSW 1x16 HSW 1x32 P8 1x40 XL

KNC 1x224 ARM64 1x8 NV K40

Performance Portability Metrics

Kokkos implementations deliver consistent
performance across all architectures

Higher
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

0

2000

4000

6000

8000

10000

12000

14000

FO
M

 (
Z

/s
)

LULESH Figure of Merit Results (Problem 60)

HSW 1x16 HSW 1x32 P8 1x40 XL KNC 1x224 ARM64 1x8 NV K40

Performance Portability Metrics

SMT on Haswell doesn’t seem to improve
performance, generally good on POWER and KNC

Higher
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

 These problem sizes are small relative to some of the systems

 O(100) – O(200) MB in problem size

 POWER8 – very large memory, large caches (particularly L4)

 GPU – needs more parallelism

 We are trying to capture performance effects based on feedback from
LULESH developers

 But larger problems help our optimizations even more

 Not necessarily demonstrating the best potential FOM performance

 Can get up to 2X these FOM figures from our implementations

Thoughts and Experiences

PROGRAMMER PRODUCTIVITY OF

LULESH VERSIONS
Evaluating Effort to Develop Versions using
Performance Portable C++ Abstraction Layers

How do we calculate “productivity”?

 With great difficulty – lots of discussion in the community about what this
really means

 Our approach:

1. Remove all comments from the code

2. Utilize the clang-format LLVM tool with “Google” code option

3. Compare the number of sites using Apple’s FileMerge tool

4. Compare the lines added/removed using diff –b –w <paths>

 Not perfect and we have hand modified code of all versions to bring the
counts more into line (and to be fair wherever possible)

 Point is to show approximate level of programmer effort not be precisely
quantitative because coding style largely down to individual

http://clang.llvm.org/docs/ClangFormat.html

Count of Sites at Which Changes are
Made

0

50

100

150

200

250

300

350

S
it

e
s

 o
f

C
h

a
n

g
e

Sites at Which Changes are Made vs. MPI-Only
LULESH

Main Code Header Total

Lower
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

Count of Sites at Which Changes are
Made

0

50

100

150

200

250

300

350

S
it

e
s

o
f

C
h

an
g

e

Sites at Which Changes are Made vs. MPI-Only LULESH

Main Code Header TotalLower
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

Count of Sites at Which Changes are
Made

0

50

100

150

200

250

300

350

S
it

e
s

o
f

C
h

an
g

e

Sites at Which Changes are Made vs. MPI-Only LULESH

Main Code Header Total

Kokkos and RAJA variants are similar

Lower
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

Source Code Line Changes

-100

0

100

200

300

400

500

600

700

800

L
in

e
s

 o
f

C
o

d
e

Source Code Lines Added/Removed and Total vs. MPI-Only

Main Code Added Main Code Removed
Main Code Delta Header Added
Header Removed Header Delta

Lower
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

Source Code Line Changes

-100

0

100

200

300

400

500

600

700

800

Li
n

e
s

o
f

C
o

d
e

Source Code Lines Added/Removed and Total vs. MPI-Only

Main Code Added Main Code Removed
Main Code Delta Header Added
Header Removed Header Delta

C++ Abstraction Layers have approximately
similar numbers of lines changed to the
original OpenMP code from LLNL

Lower
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

Source Code Line Changes

-100

0

100

200

300

400

500

600

700

800

Li
n

e
s

o
f

C
o

d
e

Source Code Lines Added/Removed and Total vs. MPI-Only

Main Code Added Main Code Removed
Main Code Delta Header Added
Header Removed Header Delta

C++ Abstraction Layers have approximately
similar numbers of lines changed to the
original OpenMP code from LLNL

Naïve port to Kokkos uses slightly more changes than
Is needed by capture-by-reference lambdas

Lower
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

Programmer Development Time

 Initial Kokkos-CPU port by a competant physicist took a few months

 No threading/OpenMP/Kokkos experience for code development

 Lots of correctness and performance issues came up

 Initial experience with programmer tools and profilers

 Kokkos optimized implementations

 O(few weeks) of a Kokkos expert’s time

 OpenMP initial and optimized implementations

 O(few days - week) of a performance analysts time written on a plane

 These are not significant amounts of FTE but the code is small in comparison
to production settings (but code groups are larger and better resourced)

 Difficult (impossible?) to do a deep quantitative comparison

 C++ abstraction layers are using similar numbers of changes in code (both
code sites and SLOC-delta) to directives

 Perhaps to be expected given implementation strategy is similar in
unoptimized variants of the code

 This is a good thing for developers – hard work is in developing the
parallel algorithm, not in how it is expressed in source code

 Looking at changing roughly 15% of the code to get initial parallel versions in
this example

 Warning: example is friendly to parallelism because of its heritage

 Do we need directives in application code at all?

What can we take away?

Kernel Analysis for Kokkos Applications

 Consistent profiling across architectures is hard

 Vtune does not like to profile deep in OpenMP hierarchies which are
enclosed in headers

 Nsight manages OK

 Not clear that tools understand C++ abstraction layers

 KokkosP Profiling Layer

 Recent addition to Kokkos, option to always compile in

 Tools dynamically loaded, can be stacked, lightweight

 Expose calling structure of kernels and devices to profiler

 Better context awareness of what execution is being requested

 Still very early prototype but shows some promise

KokkosP Kernel Comparison of Kokkos Opt 1

Haswell 1x16 S=45
I=1000

CalcFBHourglassForceForEl
emsA

CalcKinematicsForElems

_INTERNAL_9_lulesh_cc_b
de2d54a::CalcHourglassCo
ntrolForElems(Domain&

IntegrateStressForElemsA

EvalEOSForElemsA

CalcMonotonicQGradientsF
orElems

CalcMonotonicQRegionForE
lems

CalcFBHourglassForceForEl
emsB

EvalEOSForElemsB

POWER8 1x40 S=45
I=1000

CalcFBHourglassForceForEl
emsA

CalcHourglassControlForEle
ms(Domain&

CalcKinematicsForElems

IntegrateStressForElemsA

EvalEOSForElemsA

EvalEOSForElemsB

CalcMonotonicQGradientsF
orElems

CalcMonotonicQRegionForE
lems

EvalEOSForElemsC

EvalEOSForElemsD

CalcPressureForElemsB

See similar breakdown across architectures but we can profile them all using one tool

SOME THOUGHTS AND DISCUSSION
On the Long Road Ahead…

The Long Road Ahead

 Many of our codes represent 20+ years of
development and continuous refinement

 We have invested $Bn’s into each one because
they add real value to our scientific delivery

 They are complicated and can’t be easily
replaced

 Tempting to think that new algorithms, new
programming models etc mean we need to burn
down the houses and start over

 Perhaps a good reason to do it

 But, doing so will take a long time and cost a lot
of money

 The only really practical path is something which
allows a gradual migration of codes and libraries

The Long Road Ahead…

 Some see this as a pessimistic view but I see the
opportunities

 Develop abstractions that are “forward-flexible”

 Don’t commit us to specific hardware or software
in the future

 Immense performance opportunities as we do go
through modifying our kernels

 Seeing huge performance improvements today in
our rewrites

 In the end the hardware and the power/energy are
very cheap in comparison to programmer’s time and
the value of the science they produce

 Is 20M$ = 20MW such a great goal versus >$Bn of
programmer time per application?

But here’s an opinion…

 The programming models of the future are probably…

 The ones which work relatively well with existing languages

 Are productive

 Straight forward concepts without all the ”bells and whistles”

 The programming models which win developer’s hearts are easy to
profile, easy to debug, concise

 Workshops like this can have a huge impact on where we go because
they allow us to explore potential

 Exciting time to be in the programming models community

 Perhaps the most exciting time for two decades?

sdhammo@sandia.gov

