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1.0 Executive Summary 
This document reports on progress and methods for the calibration and uncertainty quantification 
of the Independence model developed at UT Austin. The Independence model is an advanced 
thermodynamic and process model framework for piperazine solutions as a high-performance 
CO2 capture solvent. Progress is presented in the framework of the CCSI standard basic data 
model inference framework. Recent work has largely focused on the thermodynamic submodels 
of Independence.1 

                                                

1 This uncertainty quantification work constitutes of portion of a PhD. thesis currently in preparation. See 1. Holland, 
T. M. A Comprehensive Coal Conversion Model Extended to Oxy-coal Conditions. Brigham Young University, 
Provo, UT, 2017. 



M1.17.2.3 Report               Rev. 01, 05/30/2017 

Page | 2-1  

2.0 Milestone Summary and Completion 

Milestone M1.17.2.3 objective: Update the Independence vapor-liquid equilibrium (VLE) 
thermodynamic basic data models. The Independence model is an advanced thermodynamic and 
process model framework for piperazine solutions as a high-performance CO2 capture solvent.  
The submodels in the original Independence model were sequentially regressed set of parameters 
from numerous data sets in the Aspen Plus modeling framework. The data sets for preliminary 
uncertainty quantification and propagation are: 

• Low temperature water/amine heat capacity data (Hilliard, 20082) 
• High temperature water/amine heat capacity data (Nguyen, 20123) 
• Water/amine volatility data (Hilliard, 20082 and Nguyen, 20123) 
• Low temperature CO2 solubility data (Dugas, 20094, and Fulks, 20115) 
• High temperature CO2 solubility data (Xu, 20116) 
• Loaded CO2 heat capacity (Freeman, 20107) 

From the above data the Henry’s constant (Hi,H2O), unloaded PZ/water asymmetric activity 
coefficient (γpz*), and solution heat capacity were regressed using a Gaussian process (GP) based 
emulation and calibration.  
 

Scope 

• Receive model and data 

• Dissect model to establish theoretical motivations and parameters to be calibrated 

• Determine physically feasible ranges and prior distributions on model parameters 

• Determine observational error in the data to the extent possible 

• Calibrate the model to available data  

• Quantify uncertainty 

• Suggest model updates based on calibrated model/data discrepancy  

 

The CCSI UQ methodology was demonstrated for monoethanolamine (MEA) in a recent 
publication.8 This methodology is consistently applied throughout CCSI, as evidenced by the 
piperazine work in the Independence frame-work reported here. Figure 1 below outlines the 
method employed in the recent publication and the direct parallels the current methodology 
applied at LANL. In this case, both systems are chemical solvent process models, and the details 
of the methodology are very highly analogous to each other in both the MEA and piperazine (PZ) 
systems. However, the same methodology can readily be adapted to numerous scenarios in 
virtually all disciplines. Note that the process model is initially developed from industry best-
practices prior to any UQ or calibration. Subsequently, the next three steps break the process 
model down into submodels and identify model parameters. Where possible, subsets of data are 
used to calibrate individual submodels for a clean, simple calibration. The resulting posterior 
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distributions and model discrepancy may then be propagated forward into more complex or 
physically intertwined submodels. In the case of CO2 capture solvents, it is difficult to isolate 
chemical kinetic parameters, hydraulic parameters, and mass transfer parameters from each 
other, so several submodels may be jointly calibrated to relevant data sets in an effort to find self-
consistent parameter posteriors. Finally, the parameter posteriors and their discrepancy are 
propagated into the original process model and any additional process model parameters are 
calibrated (such as a packing efficiency coefficient). Ultimately, a statistical emulator or 
calibrated model will produce process model predictions. These predictions will differ from 
measured data, and the discrepancy function will offer insight at every level of the calibration 
into where and how physical models should be extended to more closely match reality. Critical 
data gaps may also be identified. In either case, it will often be useful to iterate on the UQ and 
calibration process as calibration results inspire updated models and additional data collection. 
 

 

Figure 1 – A logic flow diagram for the CCSI UQ and calibration methodology. The methodology   
outlined here is suitable for any chemical process model, and can easily be generalized to a vast 
array of physical modelling scenarios.
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3.0 Uncertainty Quantification and Calibration 

Bayesian Calibration 

Bayes’ Law itself is an almost trivial statement of probability law, as seen in Equations 3-1 
through 3-4. This derivation utilizes only the commutative property of probabilities and a 
definition of conditional probability. The result (Equation 3-4) is known as Bayes’ Law, and the 
terms P(A|B), P(B|A), P(A), and P(B) are known respectively as the posterior, the likelihood, the 
prior of A and the prior of B. In discussions of model calibration, Bayes’ Law is better couched 
in terms y (model output), x (model input), and θ (model parameters for both the physical model 
and the statistically machinery) as in Equation 3-5, where θ is the vector containing all model 
parameters (both for the physical model and the internal, statistical parameters). 

														P A⋂B = P B⋂A 																																																																																																																																		3-1 

														P A⋂B = P A|B P(B)																																																																																																																											3-2 

														P A|B P(B) = P B|A P(A)																																																																																																																				3-3 

														P A|B =
P B|A P(A)		

P(B)
																																																																																																																										3-4 

														f0|1 𝐲|𝛉 ∝ f5|0 𝐲|𝛉 f0 𝛉 																																																																																																																				3-5 

Equation 3-5 merits considerable explanation. First, Equation 3-5 is composed of pdfs of the 
posterior, the likelihood, and the prior of θ, and omits the prior probability distribution of y. 
Second it is a proportionality, not strictly an equation. Note that the capital letters designate a 
random variable (i.e., the map between an event (with some pdf) and a corresponding numerical 
value) while the lower case letters indicating specific realizations or outcomes (a particular 
vector of parameter values (θ) or data points (y)). The following bullets detail the terms of 
Equation 3-5: 

• The prior of y (fY(y)) is effectively a scaling factor that would constrain the left hand side 
probability distribution to integrate to unity (as required for a pdf). However, the prior of 
y physically corresponds to the pdf of the experimental data, which is not generally 
accessible. Fortunately, the calibration of a model searches for the most likely parameter 
values, given the data and prior beliefs regarding parameter values, so relative likelihood 
given any sets of parameters is retained, regardless of any scaling factor. Thus, 
knowledge of fY is not necessary for practical application. 

• The prior of θ (fΘ (θ)) physically represents prior beliefs on the joint pdf of every model 
parameter and every internal parameter. As a matter of practical convenience, the joint 
pdf is typically assumed to be uncorrelated, and each parameter effectively has its own 
pdf, which is often simply the uniform pdf over some range of physically feasible space 
as determined by a domain expert. In reality, the model form typically dictates some 



M1.17.2.3 Report               Rev. 01, 05/30/2017 

Page | 3-2  

correlation between model parameters, which should ideally be accounted for. The 
aforementioned internal parameters are those parameters that are necessary to execute the 
calibration, but not part of the mathematical model meant to capture some physical 
phenomenon. An example is given in Equation 3-6, where σi is an internal parameter; see 
the next bullet point for an explanation for Equation 3-6. 

								f5|0 𝐲|𝛉 = 𝑁(𝑦9; 𝜇9(𝑥), 𝜎9)
?

9

																																																																																																												3-6 

• The likelihood function (fY|Θ(y|θ)) (in this case, Equation 3-6) is often the most difficult 
to compute from a practical standpoint. Physically, the function quantifies the question, 
“How likely are the data, given the numerical values of the current parameter vector θ?” 
In other words, if specific values are plugged into a model, how likely are those 
parameters to explain (or fit) the data. The answer to the goodness of fit question must 
include information about the noise or observational error in the data. Equation 3-6 
quantifies the likelihood (and captures the observation error) with commonly employed 
assumptions: the data points are independent, so the probability of all observations is the 
product of the probability of each observation (the observation yi has no bearing on the 
observation yi+1), identically distributed (the observation error distribution is the same for 
all yi), and normally distributed (fully defined by the normal pdf equation with some µ 
and σ). The parameter σi is an internal parameter if it cannot be reliably estimated from 
other information, which is to say it is necessary to compute the likelihood function, but 
is not known, and must be calibrated against the data along with the other parameters in 
θ. It represents the standard deviation of the normally distributed observation error for 
observation yi, and if the errors are considered to be identically distributed, the value of σi 
is constant for all i. On the other hand, µi is typically formulated as a function of θ. When 
evaluating any vector of model parameters (a subset of vector θ), the model will predict a 
specific value given the values of vector θ and the experimental inputs associated with 
data point yi (the predicted value is then designated as µi). Since the goal is to evaluate the 
likelihood of the parameter values in θ for the specific model in question, the output of 
model under the conditions of yi with specific values of θ is a reasonable mean. If the 
probability density (N(yi;µ,σ)) of yi under conditions i with the specific values of θ is 
very low, then the experimental value of yi is several standard deviations away from the 
model prediction (the mean of the normal pdf), and the values of θ do not result in a 
model that represents the data well. Note that if σ is considered an internal parameter to 
be calibrated, it requires a prior pdf. This prior is often not based on knowledge of the 
actual observational error (which is unknown, otherwise σ would have a fixed value). 
Instead, it is typically a prior that favors small values, under the assumption that the 
experiments resulted in reasonably consistent observations with pains taken to minimize 
error. 

• Finally, the posterior pdf of the parameters given the data (fΘ|Y) is the product of the 
likelihood of the data given the parameters and the prior parameter probability. This can 
be calculated simultaneous or sequentially for multiple experiments or multiple data 
points in the same experiment. The result is the same, but the prior in the sequential case 
is the posterior of the immediately preceding data point (i.e., the prior of θ for point yi+1 is 
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the posterior for point yi). The posterior is a joint pdf of dimensionality equal to the 
length of θ), and samples from the posterior can be inserted into the model to generate 
model predictions with quantified uncertainty, as in Equation 3-7, where yp,i,j is the 
predicted output for the conditions of data point i and using parameters from sample j, η 
is the model output (or emulator output) for the sample parameters and experimental 
inputs, and εi is the observational error. Numerous samples build what amounts to an 
error bar conditional on xi and θj.   

								yB,9,C = η 𝐱𝒊, 𝛉𝒋 + εC																																																																																																																															3-7 

In addition, the calibration process may include some discrepancy term δ, which models the 
difference between reality and model predictions as a function of experimental inputs. Ideally, 
the model should be constructed to perfectly reflect reality, but in all practical applications this is 
not possible. As a simple example, ballistic motion can be captured by integrating the 
acceleration of an object with respect to time (one integration obtains the velocity equation, 
while two integrations yields the position equation). In many contexts, the integration neglects 
drag force as a matter of convenience, but this always introduces some error, which should be 
reflected in δ. In this case, δ would generally be small at small velocity values and large as high 
velocity increases the magnitude of drag forces. In general, the calibrated model would have 
some form as in Equation 3-8. 

								yB,9,C = η 𝐱𝒊, 𝛉𝒋 + δ(𝒙𝒊) + εC																																																																																																																	3-8 

Gaussian Processes (GPs) for Model Emulation 

In general, statistical model emulation seeks to capture the relationship between model inputs 
and outputs without requiring the computational expense of physical models. This allows a 
simulation scientist to explore expensive models in a timely manner, using relatively few runs 
from a high-cost computational experiment. Statistical surrogate models or emulators are 
especially useful in evaluating model predictions where no input/output pairs are given from the 
computational experiment. See Welch et al. 9 and Sacks et al. 10 for further discussion on the 
subject of statistical emulators. Gaussian processes are a popular and powerful tool for statistical 
emulation because they have the potential for enormous flexibility with relatively few parameters 
and they naturally incorporate uncertainty in model output. Gaussian processes are fully defined 
by a vector of mean values and a covariance matrix, so defining an emulator is conceptually as 
simple as arriving at the relevant mean and covariance. In some well-behaved cases, such as a 
linear model of p dimensions, the mean may be immediately obvious, and the covariance matrix 
can be generated from a kernel function. The kernel for a one-dimensional, linear covariance 
matrix for n data points on the domain -1≤ x≤1 is shown in Equation 3-9, where x is the 
independent variable vector of length n, and i and j are used as indices in the covariance matrix. 
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								𝐶𝑜𝑣(𝑖, 𝑗) = x9𝑥C																																																																																																																														3-9 

More complex cases require a more complex kernel or a covariance function tuned to the 
specific scenario and physical model. The model η is a statistical emulator (specifically a GP), 
and both δ and ε are similarly constructed GPs. The sum of the three GPs is also a GP, and an 
appropriate sample from the posterior distributions of θ in conjunction with any input values in 
the domain yields a model prediction including model and observational uncertainty as shown in 
Equation 3-8. The emulators for η, δ, and ε are fully defined by mean and covariance matrices as 
shown below. Further details are available elsewhere 11-14. Equation 3-10 differs subtly from 
Equation 3-8 in that the model predictions for the ith input and jth sample of θ is not the 
prediction of interest. Instead, Equation 3-10 is an emulator that captures model behavior for the 
vector x for the ith

 set of input conditions at some fixed vector θ* that includes the model 
parameters and the emulator internal parameters. GP emulators require internal parameters, 
which are represented in Equation 3-10 by IP. The emulator could also use samples from the 
posterior of θ* (the vector of parameters and internal parameters for η) to generate estimates of 
uncertainty, and η(x,θ), δ(xi), and εi in Equation 3-8 may well be emulators, in which case 
Equations 3-8 and 3-10 are identical.  

Gaussian Processes for Model Calibration 

In principle, Bayesian calibration with GPs is identical to the Bayesian calibration with the 
simple model shown in Section 0, though the details of execution differ. In particular, the priors 
and hyper-priors of internal parameters becomes very complex, and the form of the likelihood 
function is far less neat.  

GP calibration requires model parameters and prior distributions as inputs. In addition, internal 
parameters are required for the GP emulator to function as it explores the parameter space and 
generates a posterior distribution of the model parameters, model discrepancy, and observational 
uncertainty. The internal parameters are not fixed values; instead they each have their own prior 
distribution (called hyper-priors) which is adjusted during the calibration process.  

Figure 2 summarizes the concepts of calibration and UQ from a graphical point of view. In 
Figure 2, the prior distributions on both θ and IP are informed by the data (the likelihood 
function is computed for both internal parameters and model parameters), and a new, posterior 
parameter space is produced, where parameter values that are likely to explain the data have a 
high probability density while parameter values that explain the data very poorly are assigned 
correspondingly low probability densities. 
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Figure 2 – Graphical representation of model calibration with discrepancy 

 

As a final note, the likelihood function itself is not given here, both because it is extremely 
intricate and lengthy, and because any reader interested in that level of detail would do far better 
to thoroughly peruse the literature references in an effort to reconstruct highly advanced model 
analysis machinery.  

Models 

The UT Austin Piperazine model “Independence” is a collection of thermodynamic, kinetic, and 
heat and mass transfer submodel in the Aspen Plus framework. Some of the submodels are user 
models written in FORTRAN, but the majority are native Aspen submodels with user defined 
parameters. Ultimately, the uncertainty quantification (UQ) and calibration work will calibrate 
four layers of submodels: thermodynamics, kinetics, heat and mass transfer, and the full process 
model of a CO2 absorber/stripper system. Further data and detailed descriptions are available 
elsewhere.2-7 Because the submodels contain numerous parameters calibrated to a large body of 
data, it is mathematically and computationally unfeasible to simultaneously calibrate all 
parameters in all submodels. Instead, the strategy of sequential calibration with carefully 
propagated uncertainty between submodels has been adopted. The thermodynamic submodels 
and parameters have been identified and separately calibrated. 
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Non-Random Two Liquid Electrolyte Model (NRTLe)  

The NRTLe model is an activity coefficient model native to Aspen plus with a number of internal 
parameters. It predicts activity coefficients based on molecular interactions in the liquid phase. 
The interactions fall into 3 categories (local, Pitzer-Debye-Huckle, and Born), and they are 
captured in the asymmetric Gibbs excess energy in Equation 3-1, where the asterisk indicates the 
asymmetric convention (i.e., the related activity coefficient is γ*= γ/ γ∞). Equation 3-2 show the 
relation between the asymmetric Gibbs excess energy and the asymmetric activity coefficient. 
 

																𝑮𝑬𝒙∗ = 𝑮𝑬𝒙,𝒍𝒄∗ + 𝑮𝑬𝒙,𝑷𝑫𝑯∗ + 𝑮𝑬𝒙,𝑩𝒐𝒓𝒏∗ 																																																																											3-10 

															𝑹𝑻 ∗ 𝒍𝒏(𝜸𝒊∗) 		= 		
𝝏𝑮𝑬𝒙

∗

𝝏𝒏𝒊
																																																																																																					3-11 

All three liquid interactions are represented by a number of complex expressions with numerous 
parameters. However, in this work, only the local contribution is considered for calibration and 
UQ, with other parameters being considered fixed in the present scope of work. The local Gibbs 
excess energy contribution is calculated via Equation 3-3, where m, c, and a denote molecule, 
cation, and anion respectively. The constituents of Equation 3-3 are given by Equations 3-4 
through 3-7. Because α is set by a heuristic (0.3 for molecule-molecule interactions, 0.2 for 
electrolyte-electrolyte or molecule-electrolyte interactions where the molecule is water, and 0.1 
where the molecule is a solute), only the values of various types of τ need to be computed. The 
value “G” (shown in Equation 3-6 for molecule-ionic pairs) represents differences in liquid 
component interaction that contribute to a non-ideal solution and thus a non-unity activity 
coefficient.  Since the value of G is not often known, Equations 3-6 is used to compute it, which 
in turn requires an alternative approach to obtain τ. Equations 3-4, 3-5, and 3-7 are empirical 
correlations with (typically regressed) parameters that give τ as a function of temperature in K. 
Given the many pair-wise interactions in real systems, the total number of parameters to be 
regressed quickly becomes prohibitive, and often only the first one or two parameters in the 
empirical correlations are non-zero.  See Table 3-1 for additional details on parameter equations 
and locations in Aspen Plus, and note that Xj=xjCj, where x is the mole fraction and C is either z 
(the charge on the ion) or unity for molecules. 
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																𝑮𝑬𝒙,𝒍𝒄
∗

𝑹𝑻
= 𝑿𝒎𝒎

𝑿𝒋𝑮𝒋𝒎𝝉𝒋𝒎𝒋

𝑿𝒌𝑮𝒌𝒎𝒌
+ 𝑿𝒄𝒄 ( 𝑿𝒂j

𝑿𝒂jj𝒂jj
)𝒂k

𝑮𝒋𝒄,𝒂j𝒄𝝉𝒋𝒄,𝒂j𝒄𝒋

𝑿𝒌𝑮𝒋𝒄,𝒂j𝒄𝒌
+

																															 𝑿𝒂𝒂 ( 𝑿𝒄j
𝑿𝒄jj𝒄jj
)𝒄k

𝑮𝒋𝒂,𝒂j𝒄𝝉𝒋𝒂,𝒂j𝒄𝒋

𝑿𝒌𝑮𝒋𝒂,𝒂j𝒄𝒌
																																																																			3-12 

																𝝉𝒎𝒄,𝒂𝒄 = −𝒍𝒏 𝑿𝒂𝒆𝒙𝒑 o𝜶𝒄𝒂,𝒎𝝉𝒄𝒂,𝒎
𝑿𝒂j𝒂j

𝒂 − 𝝉𝒄𝒂,𝒎 + 𝝉𝒎,𝒄𝒂																																											3-13 

																𝝉𝒎,𝒂𝒄 = 𝑨𝒎,𝒂𝒄 +
𝑩𝒎,𝒂𝒄
𝑻

+ 𝑪𝒎,𝒂𝒄
𝑻𝒓𝒆𝒇o𝑻

𝑻
+ 𝒍𝒏 𝑻

𝑻𝒓𝒆𝒇
																																														3-14 

																𝑮𝒎𝒄,𝒂𝒄 = 𝒆𝒙𝒑(−𝜶𝒄𝒂,𝒎𝝉𝒎𝒄,𝒂𝒄)																																																																																					3-15 

																𝝉𝒎,𝒎k = 𝑨𝒎,𝒎k +
𝑩𝒎,𝒎j
𝑻

+ ⋯																																																																																									3-16 

In addition to the activity coefficient equations, the thermodynamic system in Independence 
requires self-consistency between submodels for Henry’s constant, heat capacity, vapor-liquid 
equilibrium, and chemical equilibrium. The heat capacity and Henry’s constant (Equation 3-8) 
submodels are empirical, and typically only use two or three parameters of the between five and 
eleven available parameters. Models for Cp are shown in Table 3-1, but are not shown with the 
other equations below because several different model forms are available. Regression data are 
proprietary and are omitted.  

Equation 3-9 is a form of the teenage vapor-liquid equilibrium equation (i.e., an intermediate for 
of the VLE that is usually adequate for engineering design), where the activity coefficient is 
referenced to the infinite dilution activity coefficient. Similarly, the henry’s constant replaces the 
vapor pressure of component i in the solvent (water), because the Henry’s constant is 
conceptualized as the constant of direct proportionality between vapor-phase partial pressure of 
component i and liquid phase mol fraction of i (H=Pi/xi). This is only valid at ~infinite dilution 
of component i, but by an abuse of theory Equation 3-9 is serviceable. That is, γ* is allowed to 
compensate for H, even though the activity coefficient is theoretically rooted in liquid-liquid 
non-idealities while Henry’s constant is only valid at infinite dilution because of liquid non-
idealities, but is conceptualized for largely non-condensable gases rather than all non-water 
components in a system.  This abuse is a convenience introduced because much of the data and a 
number of submodels were referenced to the infinite dilution state, and Aspen does not have 
another convenient way to compensate for the change in reference state 2.  

Finally, the location of the ionic activity coefficient τ parameters are given in Table 3-2, and 
Equations 3-10 through 3-13 show the equilibrium equation and the chemical equations used in 
Independence. 



M1.17.2.3 Report               Rev. 01, 05/30/2017 

Page | 3-8  

																𝒍𝒏 𝑯𝒊,𝒔𝒐𝒍𝒗𝒆𝒏𝒕 = 𝑨𝒊 +
𝑩𝒊
𝑻
+ 𝑪𝒊𝒍𝒏 𝑻 + 𝑫𝒊 +

𝑬𝒊
𝑻𝟐
																																																						3-17 

																𝒚𝒊𝝓𝒊𝑷 = 𝒙𝒊𝜸𝒊∗𝑯𝒊,𝑯𝟐𝑶																																																																																																					3-18 
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Table 3-1 – Thermodynamic parameters of interest in Independence 

Parame
ter	
Numbe
r	

Parameter	
Location	

Parameter	
Element	

Paramet
er	
Designati
on	

Parameter	
Description	 Relevant	equation	

1	

Properties>M
ethods>Para
meters>Pure	
Components>
CPAQ0	 1	 C1	

This	parameter	Is	
in	the	heat	
capacity	equation	
referenced	to	the	
infinite	dilution	in	
water	state	for	
CO3-	

Cp=C1+C2*T+C3*T^
2+C4/T+C5/T^2+C6/
T^0.5	

2	

Properties>M
ethods>Para
meters>Pure	
Components>
CPAQ0	 2	 C2	

This	parameter	Is	
in	the	heat	
capacity	equation	
referenced	to	the	
infinite	dilution	in	
water	state	for	
CO3-	

Cp=C1+C2*T+C3*T^
2+C4/T+C5/T^2+C6/
T^0.5	

3	

Properties>M
ethods>Para
meters>Pure	
Components>
CPAQ0	 3	 C3	

This	parameter	Is	
in	the	heat	
capacity	equation	
referenced	to	the	
infinite	dilution	in	
water	state	for	
CO3-	

Cp=C1+C2*T+C3*T^
2+C4/T+C5/T^2+C6/
T^0.5	
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4	

Properties>M
ethods>Para
meters>Pure	
Components>
CPAQ0	 1	 C1	

This	parameter	Is	
in	the	heat	
capacity	equation	
referenced	to	the	
infinite	dilution	in	
water	state	for	
HCO3-	

Cp=C1+C2*T+C3*T^
2+C4/T+C5/T^2+C6/
T^0.5	

5	

Properties>M
ethods>Para
meters>Pure	
Components>
CPAQ0	 2	 C2	

This	parameter	Is	
in	the	heat	
capacity	equation	
referenced	to	the	
infinite	dilution	in	
water	state	for	
HCO3-	

Cp=C1+C2*T+C3*T^
2+C4/T+C5/T^2+C6/
T^0.5	

6	

Properties>M
ethods>Para
meters>Pure	
Components>
CPAQ0	 3	 C3	

This	parameter	Is	
in	the	heat	
capacity	equation	
referenced	to	the	
infinite	dilution	in	
water	state	for	
HCO3-	

Cp=C1+C2*T+C3*T^
2+C4/T+C5/T^2+C6/
T^0.5	

7	

Properties>M
ethods>Para
meters>Pure	
Components>
CPAQ0	 1	 C1	

This	parameter	Is	
in	the	heat	
capacity	equation	
referenced	to	the	
infinite	dilution	in	
water	state	for	
PZCOO-2	

Cp=C1+C2*T+C3*T^
2+C4/T+C5/T^2+C6/
T^0.5	

8	

Properties>M
ethods>Para
meters>Pure	
Components>
CPAQ0	 2	 C2	

This	parameter	Is	
in	the	heat	
capacity	equation	
referenced	to	the	
infinite	dilution	in	
water	state	for	
PZCOO-2	

Cp=C1+C2*T+C3*T^
2+C4/T+C5/T^2+C6/
T^0.5	

9	

Properties>M
ethods>Para
meters>Pure	
Components>
CPAQ0	 1	 C1	

This	parameter	Is	
in	the	heat	
capacity	equation	
referenced	to	the	
infinite	dilution	in	
water	state	for	
PZCOO-	

Cp=C1+C2*T+C3*T^
2+C4/T+C5/T^2+C6/
T^0.5	
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10	

Properties>M
ethods>Para
meters>Pure	
Components>
CPAQ0	 2	 C2	

This	parameter	Is	
in	the	heat	
capacity	equation	
referenced	to	the	
infinite	dilution	in	
water	state	for	
PZCOO-	

Cp=C1+C2*T+C3*T^
2+C4/T+C5/T^2+C6/
T^0.5	

11	

Properties>M
ethods>Para
meters>Pure	
Components>
CPAQ0	 1	 C1	

This	parameter	Is	
in	the	heat	
capacity	equation	
referenced	to	the	
infinite	dilution	in	
water	state	for	
PZH+	

Cp=C1+C2*T+C3*T^
2+C4/T+C5/T^2+C6/
T^0.5	

12	

Properties>M
ethods>Para
meters>Pure	
Components>
CPAQ0	 2	 C2	

This	parameter	Is	
in	the	heat	
capacity	equation	
referenced	to	the	
infinite	dilution	in	
water	state	for	
PZH+	

Cp=C1+C2*T+C3*T^
2+C4/T+C5/T^2+C6/
T^0.5	

13	

Properties>M
ethods>Para
meters>Pure	
Components>
CPAQ0	 1	 C1	

This	parameter	Is	
in	the	heat	
capacity	equation	
referenced	to	the	
infinite	dilution	in	
water	state	for	
HPZCOO	

Cp=C1+C2*T+C3*T^
2+C4/T+C5/T^2+C6/
T^0.5	

14	

Properties>M
ethods>Para
meters>Pure	
Components>
CPAQ0	 2	 C2	

This	parameter	Is	
in	the	heat	
capacity	equation	
referenced	to	the	
infinite	dilution	in	
water	state	for	
HPZCOO	

Cp=C1+C2*T+C3*T^
2+C4/T+C5/T^2+C6/
T^0.5	

15	

Properties>M
ethods>Para
meters>Pure	
Components>
CPAQ0	 1	 C1	

This	parameter	Is	
in	the	heat	
capacity	equation	
referenced	to	the	
infinite	dilution	in	
water	state	for	
C5H14-01	

Cp=C1+C2*T+C3*T^
2+C4/T+C5/T^2+C6/
T^0.5	
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16	

Properties>M
ethods>Para
meters>Pure	
Components>
CPDIEC	 1	 A_B	

This	parameter	is	
in	the	correlation	
for	the	dielectric	
constant	of	PZ	

epsilon(T)=A_B+B_B
*(1/T-1/C_B)	

17	

Properties>M
ethods>Para
meters>Pure	
Components>
CPDIEC	 2	 B_B	

This	parameter	is	
in	the	correlation	
for	the	dielectric	
constant	of	PZ	

epsilon(T)=A_B+B_B
*(1/T-1/C_B)	

18	

Properties>M
ethods>Para
meters>Pure	
Components>
CPDIEC	 3	 C_B	

This	parameter	is	
in	the	correlation	
for	the	dielectric	
constant	of	PZ	

epsilon(T)=A_B+B_B
*(1/T-1/C_B)	

19	

Properties>M
ethods>Para
meters>Pure	
Components>
CPIG	 1	 C_1	

This	parameter	is	
in	the	correlation	
for	Ideal	gas	heat	
capacity	for	
HPZCOO	

CP_IG(T)=C_1+C_2*
T+C_3*T^2+C_4*T^
3+C_5*T^4+C_6*T^
5	

20	

Properties>M
ethods>Para
meters>Pure	
Components>
CPIG	 2	 C_2	

This	parameter	is	
in	the	correlation	
for	Ideal	gas	heat	
capacity	for	
HPZCOO	

CP_IG(T)=C_1+C_2*
T+C_3*T^2+C_4*T^
3+C_5*T^4+C_6*T^
5	

21	

Properties>M
ethods>Para
meters>Pure	
Components>
CPIG	 9	 C_9	

This	parameter	is	
in	the	correlation	
for	Ideal	gas	heat	
capacity	for	
HPZCOO	for	
extrapolation	
below	
temperatures	at	
C_7	

CP_IG(T)=C_9+C_10
*T	

22	

Properties>M
ethods>Para
meters>Pure	
Components>
CPIG	 10	 C_10	

This	parameter	is	
in	the	correlation	
for	Ideal	gas	heat	
capacity	for	
HPZCOO	for	

CP_IG(T)=C_9+C_10
*T^C_11	
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extrapolation	
below	
temperatures	at	
C_7	

23	

Properties>M
ethods>Para
meters>Pure	
Components>
CPIG	 11	 C_11	

This	parameter	is	
in	the	correlation	
for	Ideal	gas	heat	
capacity	for	
HPZCOO	for	
extrapolation	
below	
temperatures	at	
C_7	

CP_IG(T)=C_9+C_10
*T^C_11	

24	

Properties>M
ethods>Para
meters>Pure	
Components>
CPIG	 7	 C_7	

This	parameter	is	
the	lower	
temperature	limit	
in	the	correlation	
for	Ideal	gas	heat	
capacity	for	
HPZCOO	 N/A	

25	

Properties>M
ethods>Para
meters>Pure	
Components>
CPIG	 1	 C_1	

This	parameter	is	
in	the	correlation	
for	Ideal	gas	heat	
capacity	
(probably	the	
Aspen	
polynomial)	for	
PZ	but	not	used	
because	the	
DIPPR	equation	is	
indicated	in	
THRSWT/7	and	
parameters	for	
that	are	assigned	
in	CPIGDP.	

CP_IG(T)=C_1+C_2*
T+C_3*T^2+C_4*T^
3+C_5*T^4+C_6*T^
5	

26	

Properties>M
ethods>Para
meters>Pure	
Components>
CPIG	 2	 C_2	

This	parameter	is	
in	the	correlation	
for	Ideal	gas	heat	
capacity	
(probably	the	
Aspen	
polynomial)	for	
PZ	but	not	used	
because	the	

CP_IG(T)=C_1+C_2*
T+C_3*T^2+C_4*T^
3+C_5*T^4+C_6*T^
5	
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DIPPR	equation	is	
indicated	in	
THRSWT/7	and	
parameters	for	
that	are	assigned	
in	CPIGDP.	

27	

Properties>M
ethods>Para
meters>Pure	
Components>
CPIG	 1	 C_1	

This	parameter	is	
in	the	correlation	
for	Ideal	gas	heat	
capacity	
(probably	the	
Aspen	
polynomial)	for	
C5H13-01	but	not	
used	because	the	
DIPPR	equation	is	
indicated	in	
THRSWT/7	and	
parameters	for	
that	are	assigned	
in	CPIGDP.	

CP_IG(T)=C_1+C_2*
T+C_3*T^2+C_4*T^
3+C_5*T^4+C_6*T^
5	

28	

Properties>M
ethods>Para
meters>Pure	
Components>
CPIG	 2	 C_2	

This	parameter	is	
in	the	correlation	
for	Ideal	gas	heat	
capacity	
(probably	the	
Aspen	
polynomial)	for	
C5H13-01	but	not	
used	because	the	
DIPPR	equation	is	
indicated	in	
THRSWT/7	and	
parameters	for	
that	are	assigned	
in	CPIGDP.	

CP_IG(T)=C_1+C_2*
T+C_3*T^2+C_4*T^
3+C_5*T^4+C_6*T^
5	

29	

Properties>M
ethods>Para
meters>Pure	
Components>
CPIGDP	 1	 C_1	

This	parameter	is	
in	the	correlation	
for	Ideal	gas	heat	
capacity	for	
C5H13-01	given	
that	
THRSWT/7=107	
and	the	

CP_IG(T)=C_1+C_2*(
(C_3/T)/sinh(C_3/T))
^2+C_4*((C_5/T_/co
sh(C_5/T))	
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parameters	came	
from	CPIGDP.	

30	

Properties>M
ethods>Para
meters>Pure	
Components>
CPIGDP	 2	 C_2	

This	parameter	is	
in	the	correlation	
for	Ideal	gas	heat	
capacity	for	
C5H13-01	given	
that	
THRSWT/7=107	
and	the	
parameters	came	
from	CPIGDP.	

CP_IG(T)=C_1+C_2*(
(C_3/T)/sinh(C_3/T))
^2+C_4*((C_5/T_/co
sh(C_5/T))	

31	

Properties>M
ethods>Para
meters>Pure	
Components>
CPIGDP	 3	 C_3	

This	parameter	is	
in	the	correlation	
for	Ideal	gas	heat	
capacity	for	
C5H13-01	given	
that	
THRSWT/7=107	
and	the	
parameters	came	
from	CPIGDP.	

CP_IG(T)=C_1+C_2*(
(C_3/T)/sinh(C_3/T))
^2+C_4*((C_5/T_/co
sh(C_5/T))	

32	

Properties>M
ethods>Para
meters>Pure	
Components>
CPIGDP	 4	 C_4	

This	parameter	is	
in	the	correlation	
for	Ideal	gas	heat	
capacity	for	
C5H13-01	given	
that	
THRSWT/7=107	
and	the	
parameters	came	
from	CPIGDP.	

CP_IG(T)=C_1+C_2*(
(C_3/T)/sinh(C_3/T))
^2+C_4*((C_5/T_/co
sh(C_5/T))	

33	

Properties>M
ethods>Para
meters>Pure	
Components>
CPIGDP	 5	 C_5	

This	parameter	is	
in	the	correlation	
for	Ideal	gas	heat	
capacity	for	
C5H13-01	given	
that	
THRSWT/7=107	

CP_IG(T)=C_1+C_2*(
(C_3/T)/sinh(C_3/T))
^2+C_4*((C_5/T_/co
sh(C_5/T))	
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and	the	
parameters	came	
from	CPIGDP.	

34	

Properties>M
ethods>Para
meters>Pure	
Components>
DHVLDP	 1	 C_1	

This	parameter	
uses	the	DIPPR	
equation	
(THRSWT/4=106)	
for	the	heat	of	
vaporization	of	
liquid	PZ.	

DelH_vap=C_1*(1-
T_r)^(C_2+C_3*T+C
_4*T^2+C_5*T^3)	

35	

Properties>M
ethods>Para
meters>Pure	
Components>
DHVLDP	 2	 C_2	

This	parameter	
uses	the	DIPPR	
equation	
(THRSWT/4=106)	
for	the	heat	of	
vaporization	of	
liquid	PZ.	

DelH_vap=C_1*(1-
T_r)^(C_2+C_3*T+C
_4*T^2+C_5*T^3)	

36	

Properties>M
ethods>Para
meters>Pure	
Components>
DHVLDP	 3	 C_3	

This	parameter	
uses	the	DIPPR	
equation	
(THRSWT/4=106)	
for	the	heat	of	
vaporization	of	
liquid	PZ.	

DelH_vap=C_1*(1-
T_r)^(C_2+C_3*T+C
_4*T^2+C_5*T^3)	

37	

Properties>M
ethods>Para
meters>Pure	
Components>
DHVLWT	 1	 C_1	

This	parameter	
uses	the	Watson	
equation	
(THRSWT/4=0)	for	
the	heat	of	
vaporization	of	
liquid	H2O.	

DelH_vap(T)=DelH_
vap(T1)*((1-
T/Tc)/(1_T1/Tc))^(a+
b*(1-T/Tc))	

38	

Properties>M
ethods>Para
meters>Pure	
Components>
DHVLWT	 2	 C_2	

This	parameter	
uses	the	Watson	
equation	
(THRSWT/4=0)	for	
the	heat	of	
vaporization	of	
liquid	H2O.	

DelH_vap(T)=DelH_
vap(T1)*((1-
T/Tc)/(1_T1/Tc))^(a+
b*(1-T/Tc))	

39	

Properties>M
ethods>Para
meters>Pure	 3	 C_3	

This	parameter	
uses	the	Watson	
equation	

DelH_vap(T)=DelH_
vap(T1)*((1-
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Components>
DHVLWT	

(THRSWT/4=0)	for	
the	heat	of	
vaporization	of	
liquid	H2O.	

T/Tc)/(1_T1/Tc))^(a+
b*(1-T/Tc))	

40	

Properties>M
ethods>Para
meters>Pure	
Components>
DHVLWT	 4	 C_4	

This	parameter	
uses	the	Watson	
equation	
(THRSWT/4=0)	for	
the	heat	of	
vaporization	of	
liquid	H2O.	

DelH_vap(T)=DelH_
vap(T1)*((1-
T/Tc)/(1_T1/Tc))^(a+
b*(1-T/Tc))	

41	

Properties>M
ethods>Para
meters>Pure	
Components>
DHVLWT	 5	 C_5	

This	parameter	
uses	the	Watson	
equation	
(THRSWT/4=0)	for	
the	heat	of	
vaporization	of	
liquid	H2O.	

DelH_vap(T)=DelH_
vap(T1)*((1-
T/Tc)/(1_T1/Tc))^(a+
b*(1-T/Tc))	

42	

Properties>M
ethods>Para
meters>Pure	
Components>
DNLDIP	 1	 A	

This	parameter	
uses	the	DIPPR	
equation	116	
(THRSWT/2=116),	
typically	used	for	
H2O,	for	the	
liquid	molar	
density	of	C5H13-
01	

kmol/cum=A+B*T^0
.35+C*T^(2/3)+D*T+
E*T^(4/3)	

43	

Properties>M
ethods>Para
meters>Pure	
Components>
DNLDIP	 2	 B	

This	parameter	
uses	the	DIPPR	
equation	116	
(THRSWT/2=116),	
typically	used	for	
H2O,	for	the	
liquid	molar	
density	of	C5H13-
01	

kmol/cum=A+B*T^0
.35+C*T^(2/3)+D*T+
E*T^(4/3)	

44	

Properties>M
ethods>Para
meters>Pure	
Components>
DNLDIP	 3	 C	

This	parameter	
uses	the	DIPPR	
equation	116	
(THRSWT/2=116),	
typically	used	for	
H2O,	for	the	
liquid	molar	

kmol/cum=A+B*T^0
.35+C*T^(2/3)+D*T+
E*T^(4/3)	
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density	of	C5H13-
01	

45	

Properties>M
ethods>Para
meters>Pure	
Components>
DNLDIP	 4	 D	

This	parameter	
uses	the	DIPPR	
equation	116	
(THRSWT/2=116),	
typically	used	for	
H2O,	for	the	
liquid	molar	
density	of	C5H13-
01	

kmol/cum=A+B*T^0
.35+C*T^(2/3)+D*T+
E*T^(4/3)	

46	

Properties>M
ethods>Para
meters>Pure	
Components>
IONMOB	 1	 see	help	

These	are	
coefficients	for	
PZH+	for	the	
Jones-Dole	
correction	to	the	
viscosity	of	a	
solution	due	to	
the	presence	of	
electrolytes.	

complicated	and	
ugly,	see	help	page	

47	

Properties>M
ethods>Para
meters>Pure	
Components>
IONMOB	 2	 see	help	

These	are	
coefficients	for	
PZH+	for	the	
Jones-Dole	
correction	to	the	
viscosity	of	a	
solution	due	to	
the	presence	of	
electrolytes.	

complicated	and	
ugly,	see	help	page	

48	

Properties>M
ethods>Para
meters>Pure	
Components>
IONMOB	 1	 see	help	

These	are	
coefficients	for	
PZCOO-	for	the	
Jones-Dole	
correction	to	the	
viscosity	of	a	
solution	due	to	
the	presence	of	
electrolytes.	

complicated	and	
ugly,	see	help	page	

49	

Properties>M
ethods>Para
meters>Pure	 2	 see	help	

These	are	
coefficients	for	
PZCOO-	for	the	
Jones-Dole	

complicated	and	
ugly,	see	help	page	
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Components>
IONMOB	

correction	to	the	
viscosity	of	a	
solution	due	to	
the	presence	of	
electrolytes.	

50	

Properties>M
ethods>Para
meters>Pure	
Components>
IONMOB	 1	 see	help	

These	are	
coefficients	for	
PZCOO-2	for	the	
Jones-Dole	
correction	to	the	
viscosity	of	a	
solution	due	to	
the	presence	of	
electrolytes.	

complicated	and	
ugly,	see	help	page	

51	

Properties>M
ethods>Para
meters>Pure	
Components>
IONMOB	 2	 see	help	

These	are	
coefficients	for	
PZCOO-2	for	the	
Jones-Dole	
correction	to	the	
viscosity	of	a	
solution	due	to	
the	presence	of	
electrolytes.	

complicated	and	
ugly,	see	help	page	

52	

Properties>M
ethods>Para
meters>Pure	
Components>
MDH	 	 see	help	

This	is	a	
parameter	for	the	
a	Rackett	
equation	mixing	
rule	for	PZ	(to	
determine	liquid	
molar	volume).	
The	parameter	is	
VCRKT,	which	is	
the	critical	
volume.	

complicated	and	
ugly,	see	help	page	

53	

Properties>M
ethods>Para
meters>Pure	
Components>
MDH	 	 see	help	

This	is	a	
parameter	for	the	
a	Rackett	
equation	mixing	
rule	for	PZ	(to	
determine	liquid	
molar	volume).	
The	parameter	is	
RKTZRA,	which	
appears	to	be	the	

complicated	and	
ugly,	see	help	page	
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compressibility	
factor.	

54	

Properties>M
ethods>Para
meters>Pure	
Components>
MDH	 	 see	help	

This	is	a	
parameter	for	the	
a	Rackett	
equation	mixing	
rule	for	CO2	(to	
determine	liquid	
molar	volume).	
The	parameter	is	
RKTZRA,	which	
appears	to	be	the	
compressibility	
factor.	

complicated	and	
ugly,	see	help	page	

55	

Properties>M
ethods>Para
meters>Pure	
Components>
MDH	 	 see	help	

This	is	a	
parameter	for	the	
a	Rackett	
equation	mixing	
rule	for	CO2	(to	
determine	liquid	
molar	volume).	
The	parameter	is	
VCRKT,	which	is	
the	critical	
volume.	

complicated	and	
ugly,	see	help	page	

56	

Properties>M
ethods>Para
meters>Pure	
Components>
MDH	 	 see	help	

This	is	a	
parameter	for	the	
a	Rackett	
equation	mixing	
rule	for	HPZCOO	
(to	determine	
liquid	molar	
volume).	The	
parameter	is	
VCRKT,	which	is	
the	critical	
volume.	

complicated	and	
ugly,	see	help	page	

57	

Properties>M
ethods>Para
meters>Pure	 	 see	help	

This	is	a	
parameter	for	the	
a	Rackett	
equation	mixing	

complicated	and	
ugly,	see	help	page	
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Components>
MDH	

rule	for	HPZCOO	
(to	determine	
liquid	molar	
volume).	The	
parameter	is	
RKTZRA,	which	
appears	to	be	the	
compressibility	
factor.	

58	

Properties>M
ethods>Para
meters>Pure	
Components>
MDH	 	 see	help	

This	is	a	
parameter	for	the	
a	Rackett	
equation	mixing	
rule	for	C5H13-01	
(to	determine	
liquid	molar	
volume).	The	
parameter	is	
VCRKT,	which	
appears	to	be	the	
compressibility	
factor.	

complicated	and	
ugly,	see	help	page	

59	

Properties>M
ethods>Para
meters>Pure	
Components>
MDH	 	 see	help	

This	is	a	
parameter	for	the	
a	Rackett	
equation	mixing	
rule	for	C5H13-01	
(to	determine	
liquid	molar	
volume).	The	
parameter	is	
RKTZRA,	which	
appears	to	be	the	
compressibility	
factor.	

complicated	and	
ugly,	see	help	page	

60	

Properties>M
ethods>Para
meters>Pure	
Components>
Review	 scalar	 scalar	

The	aqueous	
gibbs	energy	of	
formation	for	
C5H14-01.	 scalar	

61	

Properties>M
ethods>Para
meters>Pure	 scalar	 scalar	

The	aqueous	
enthalpy	of	
formation	for	
C5H14-01.	 scalar	
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Components>
Review	

62	

Properties>M
ethods>Para
meters>Pure	
Components>
USRDEF	 scalar	 scalar	

The	aqueous	
gibbs	energy	of	
formation	for	
PZCOO-2	 scalar	

63	

Properties>M
ethods>Para
meters>Pure	
Components>
USRDEF	 scalar	 scalar	

The	aqueous	
gibbs	energy	of	
formation	for	
PZCOO-	 scalar	

64	

Properties>M
ethods>Para
meters>Pure	
Components>
USRDEF	 scalar	 scalar	

The	aqueous	
gibbs	energy	of	
formation	for	
HPZCOO	 scalar	

65	

Properties>M
ethods>Para
meters>Pure	
Components>
USRDEF	 scalar	 scalar	

The	aqueous	
enthalpy	of	
formation	for	
PZCOO-2	 scalar	

66	

Properties>M
ethods>Para
meters>Pure	
Components>
USRDEF	 scalar	 scalar	

The	aqueous	
enthalpy	of	
formation	for	
PZCOO-	 scalar	

67	

Properties>M
ethods>Para
meters>Pure	
Components>
USRDEF	 scalar	 scalar	

The	aqueous	
enthalpy	of	
formation	for	
HPZCOO	 scalar	

68	

Properties>M
ethods>Para
meters>Pure	
Components>
USRDEF	 scalar	 scalar	

The	gibbs	energy	
of	formation	for	
HPZCOO	 scalar	

69	

Properties>M
ethods>Para
meters>Pure	 scalar	 scalar	

The	enthalpy	of	
formation	for	
HPZCOO	 scalar	
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Components>
USRDEF	

70	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>H
enry	 1	 AIJ	

All	molecular	
species	were	
declared	as	
Henry's	
components	
(except	water,	
which	is	the	
solvent).	This	is	a	
parameter	in	the	
Henry's	law	
correlation	for	PZ.	

H_i,j=AIJ+BIJ/T+CIJ*l
n(T)+DIJ*T+EIJ/T^2	

71	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>H
enry	 2	 BIJ	

All	molecular	
species	were	
declared	as	
Henry's	
components	
(except	water,	
which	is	the	
solvent).	This	is	a	
parameter	in	the	
Henry's	law	
correlation	for	PZ.	

H_i,j=AIJ+BIJ/T+CIJ*l
n(T)+DIJ*T+EIJ/T^2	

72	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>H
enry	 3	 CIJ	

All	molecular	
species	were	
declared	as	
Henry's	
components	
(except	water,	
which	is	the	
solvent).	This	is	a	
parameter	in	the	
Henry's	law	
correlation	for	PZ.	

H_i,j=AIJ+BIJ/T+CIJ*l
n(T)+DIJ*T+EIJ/T^2	

73	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>H
enry	 4	 DIJ	

All	molecular	
species	were	
declared	as	
Henry's	
components	
(except	water,	
which	is	the	
solvent).	This	is	a	
parameter	in	the	

H_i,j=AIJ+BIJ/T+CIJ*l
n(T)+DIJ*T+EIJ/T^2	
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Henry's	law	
correlation	for	PZ.	

74	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>H
enry	 1	 AIJ	

All	molecular	
species	were	
declared	as	
Henry's	
components	
(except	water,	
which	is	the	
solvent).	This	is	a	
parameter	in	the	
Henry's	law	
correlation	for	
C5H13-01.	

H_i,j=AIJ+BIJ/T+CIJ*l
n(T)+DIJ*T+EIJ/T^2	

75	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>H
enry	 2	 BIJ	

All	molecular	
species	were	
declared	as	
Henry's	
components	
(except	water,	
which	is	the	
solvent).	This	is	a	
parameter	in	the	
Henry's	law	
correlation	for	
C5H13-01.	

H_i,j=AIJ+BIJ/T+CIJ*l
n(T)+DIJ*T+EIJ/T^2	

76	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>H
enry	 3	 CIJ	

All	molecular	
species	were	
declared	as	
Henry's	
components	
(except	water,	
which	is	the	
solvent).	This	is	a	
parameter	in	the	
Henry's	law	
correlation	for	
C5H13-01.	

H_i,j=AIJ+BIJ/T+CIJ*l
n(T)+DIJ*T+EIJ/T^2	

77	

Properties>M
ethods>Para
meters>Binar 4	 DIJ	

All	molecular	
species	were	
declared	as	

H_i,j=AIJ+BIJ/T+CIJ*l
n(T)+DIJ*T+EIJ/T^2	



M1.17.2.3 Report               Rev. 01, 05/30/2017 

Page | 3-24  

y	
Interaction>H
enry	

Henry's	
components	
(except	water,	
which	is	the	
solvent).	This	is	a	
parameter	in	the	
Henry's	law	
correlation	for	
C5H13-01.	

78	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 1	 AJI	

This	parameter	is	
used	for	
computing	tau	for	
the	molecule-
molecule	portion	
of	the	NRTL	
model.	
Component	I	is	
water	and	J	is	PZ.	

tau_i,j=AIJ+BIJ/T+EIJ
*ln(T)+FIJ*T	

79	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 2	 BJI	

This	parameter	is	
used	for	
computing	tau	for	
the	molecule-
molecule	portion	
of	the	NRTL	
model.	
Component	I	is	
water	and	J	is	PZ.	

tau_i,j=AIJ+BIJ/T+EIJ
*ln(T)+FIJ*T	

80	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 1	 AIJ	

This	parameter	is	
used	for	
computing	tau	for	
the	molecule-
molecule	portion	
of	the	NRTL	
model.	
Component	I	is	
HPZCOO	and	J	is	
CO2.	

tau_i,j=AIJ+BIJ/T+EIJ
*ln(T)+FIJ*T	

81	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 2	 BIJ	

This	parameter	is	
used	for	
computing	tau	for	
the	molecule-
molecule	portion	
of	the	NRTL	
model.	

tau_i,j=AIJ+BIJ/T+EIJ
*ln(T)+FIJ*T	
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Component	I	is	
HPZCOO	and	J	is	
CO2.	

82	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 1	 AJI	

This	parameter	is	
used	for	
computing	tau	for	
the	molecule-
molecule	portion	
of	the	NRTL	
model.	
Component	I	is	
CO2	and	J	is	PZ.	

tau_i,j=AIJ+BIJ/T+EIJ
*ln(T)+FIJ*T	

83	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 2	 BJI	

This	parameter	is	
used	for	
computing	tau	for	
the	molecule-
molecule	portion	
of	the	NRTL	
model.	
Component	I	is	
CO2	and	J	is	PZ.	

tau_i,j=AIJ+BIJ/T+EIJ
*ln(T)+FIJ*T	

84	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 1	 AJI	

This	parameter	is	
used	for	
computing	tau	for	
the	molecule-
molecule	portion	
of	the	NRTL	
model.	
Component	I	is	
H2O	and	J	is	
C5H13-01.	

tau_i,j=AIJ+BIJ/T+EIJ
*ln(T)+FIJ*T	

85	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 2	 BJI	

This	parameter	is	
used	for	
computing	tau	for	
the	molecule-
molecule	portion	
of	the	NRTL	
model.	
Component	I	is	
H2O	and	J	is	
C5H13-01.	

tau_i,j=AIJ+BIJ/T+EIJ
*ln(T)+FIJ*T	
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86	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 1	 AIJ	

This	parameter	is	
used	for	
computing	tau	for	
the	molecule-
molecule	portion	
of	the	NRTL	
model.	
Component	I	is	
C5H13-01	and	J	is	
CO2.	

tau_i,j=AIJ+BIJ/T+EIJ
*ln(T)+FIJ*T	

87	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 2	 BIJ	

This	parameter	is	
used	for	
computing	tau	for	
the	molecule-
molecule	portion	
of	the	NRTL	
model.	
Component	I	is	
C5H13-01	and	J	is	
CO2.	

tau_i,j=AIJ+BIJ/T+EIJ
*ln(T)+FIJ*T	

88	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 1	 AJI	

This	parameter	is	
used	for	
computing	tau	for	
the	molecule-
molecule	portion	
of	the	NRTL	
model.	
Component	I	is	
C5H13-01	and	J	is	
CO2.	

tau_i,j=AIJ+BIJ/T+EIJ
*ln(T)+FIJ*T	

89	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 2	 BJI	

This	parameter	is	
used	for	
computing	tau	for	
the	molecule-
molecule	portion	
of	the	NRTL	
model.	
Component	I	is	
C5H13-01	and	J	is	
CO2.	

tau_i,j=AIJ+BIJ/T+EIJ
*ln(T)+FIJ*T	
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90	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 3	 CIJ	

This	parameter	is	
typically	
computed	via	a	
heuristic,	and	is	
used	to	compute	
alpha,	which	
appears	to	be	
symmetrical	in	
this	case.	
Component	I	is	
H2O	and	
component	J	is	
PZ.	

alpha_i,j=CIJ+(T-
273.15)*DIJ	

91	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 3	 CIJ	

This	parameter	is	
typically	
computed	via	a	
heuristic,	and	is	
used	to	compute	
alpha,	which	
appears	to	be	
symmetrical	in	
this	case.	
Component	I	is	
HPZCOO	and	
component	J	is	
CO2.	

alpha_i,j=CIJ+(T-
273.15)*DIJ	

92	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 3	 CIJ	

This	parameter	is	
typically	
computed	via	a	
heuristic,	and	is	
used	to	compute	
alpha,	which	
appears	to	be	
symmetrical	in	
this	case.	
Component	I	is	
CO2	and	
component	J	is	
PZ.	

alpha_i,j=CIJ+(T-
273.15)*DIJ	

93	

Properties>M
ethods>Para
meters>Binar
y	 3	 CIJ	

This	parameter	is	
typically	
computed	via	a	
heuristic,	and	is	
used	to	compute	

alpha_i,j=CIJ+(T-
273.15)*DIJ	
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Interaction>N
RTL-1	

alpha,	which	
appears	to	be	
symmetrical	in	
this	case.	
Component	I	is	
H2O	and	
component	J	is	
C5H13-01.	

94	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 3	 CIJ	

This	parameter	is	
typically	
computed	via	a	
heuristic,	and	is	
used	to	compute	
alpha,	which	
appears	to	be	
symmetrical	in	
this	case.	
Component	I	is	
C5H13-01	and	
component	J	is	
CO2.	

alpha_i,j=CIJ+(T-
273.15)*DIJ	

95	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 3	 CIJ	

This	parameter	is	
typically	
computed	via	a	
heuristic,	and	is	
used	to	compute	
alpha,	which	
appears	to	be	
symmetrical	in	
this	case.	
Component	I	is	PZ	
and	component	J	
is	C5H13-01.	

alpha_i,j=CIJ+(T-
273.15)*DIJ	

96	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>N
RTL-1	 3	 CIJ	

This	parameter	is	
typically	
computed	via	a	
heuristic,	and	is	
used	to	compute	
alpha,	which	
appears	to	be	
symmetrical	in	
this	case.	
Component	I	is	
C5H13-01	and	

alpha_i,j=CIJ+(T-
273.15)*DIJ	
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component	J	is	
HPZCOO.	

97	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>V
LCLK	 1	 VCA	

This	parameter	is	
used	to	calculate	
the	liquid	molar	
volume	using	the	
Clarke	equation	
for	electrolyte	
solutions	of	PZH+	
and	PZCOO-	

Messy,	see	help	
pages.	

98	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>V
LCLK	 2	 ACA	

This	parameter	is	
used	to	calculate	
the	liquid	molar	
volume	using	the	
Clarke	equation	
for	electrolyte	
solutions	of	PZH+	
and	PZCOO-	

Messy,	see	help	
pages.	

99	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>V
LCLK	 1	 VCA	

This	parameter	is	
used	to	calculate	
the	liquid	molar	
volume	using	the	
Clarke	equation	
for	electrolyte	
solutions	of	PZH+	
and	HCO3-	

Messy,	see	help	
pages.	

100	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>V
LCLK	 2	 ACA	

This	parameter	is	
used	to	calculate	
the	liquid	molar	
volume	using	the	
Clarke	equation	
for	electrolyte	
solutions	of	PZH+	
and	HCO3-	

Messy,	see	help	
pages.	

101	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>V
LCLK	 1	 VCA	

This	parameter	is	
used	to	calculate	
the	liquid	molar	
volume	using	the	
Clarke	equation	
for	electrolyte	

Messy,	see	help	
pages.	
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solutions	of	PZH+	
and	PZCOO-2	

102	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>V
LCLK	 2	 ACA	

This	parameter	is	
used	to	calculate	
the	liquid	molar	
volume	using	the	
Clarke	equation	
for	electrolyte	
solutions	of	PZH+	
and	PZCOO-2	

Messy,	see	help	
pages.	

103	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>V
LCLK	 1	 VCA	

This	parameter	is	
used	to	calculate	
the	liquid	molar	
volume	using	the	
Clarke	equation	
for	electrolyte	
solutions	of	
C5H14-01	and	
HCO3-	

Messy,	see	help	
pages.	

104	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>V
LCLK	 2	 ACA	

This	parameter	is	
used	to	calculate	
the	liquid	molar	
volume	using	the	
Clarke	equation	
for	electrolyte	
solutions	of	
C5H14-01	and	
HCO3-	

Messy,	see	help	
pages.	

105	

Properties>M
ethods>Para
meters>Binar
y	
Interaction>V
LCLK	 1	 VCA	

This	parameter	is	
used	to	calculate	
the	liquid	molar	
volume	using	the	
Clarke	equation	
for	electrolyte	
solutions	of	
C5H14-01	and	
CO3-2	

Messy,	see	help	
pages.	

106	

Properties>M
ethods>Para
meters>Binar
y	 2	 ACA	

This	parameter	is	
used	to	calculate	
the	liquid	molar	
volume	using	the	
Clarke	equation	

Messy,	see	help	
pages.	
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Interaction>V
LCLK	

for	electrolyte	
solutions	of	
C5H14-01	and	
CO3-2	

 

Table 3-2 – Ionic τ values2 

Location 
τm,ca		or	τca,m	"a"	
Values	(GMEL-CC)	

Properties>Methods>Parameters>Electrolyte	
Pair>GMEL-CC-1	

H2O	

PZH+	

PZCOO-	

“	

PZH+	

PZCOO-	

H2O	

“	

PZ	

PZH+	

PZCOO-	

“	

PZH+	

PZCOO-	

PZ	

“	

PZH+	

PZCOO-	

                                                
2 The parameters in Table 3-2 have their greatest impact in the difference between each pair of molecule-ion 
interactions (τm,ca and τca,m). Therefore, only one parameter is adjusted (highlighted in blue) while the other half of 
the pairwise interaction is stationary (highlighted in red). 
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HPZCOO	

“	

PZH+	

HCO3-	

HPZCOO	

“	

HPZCOO	

PZH+	

HCO3-	

“	

HPZCOO	

PZH+	

PZCOO-	

“	

PZH+	

PZCOO-2	

HPZCOO	

“	

HPZCOO	

PZH+	

PZCOO-2	

“	

H2O	

PZH+	

PZCOO-2	

“	

PZH+	

PZCOO-2	

H2O	

“	

PZ	

PZH+	
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PZCOO-2	

“	

PZH+	

PZCOO-2	

PZ	

	  

 
τm,ca	or	τca,m	"b"	
Values	(GMEL-CD)	

Properties>Methods>Parameters>Electrolyte	
Pair>GMEL-CD-1	

PZH+	

PZCOO-	

CO2	

 

Results 

 

The size and complexity of the thermodynamic parameter set requires a multi-tier calibration. In 
this case, there is a first tier of parameters that propagate forward into the second tier of 
submodels. Tier 1 sample results are shown below, where red lines are the calibrated model 
prediction at the 95% confidence level, black lines are the calibrated model including 
discrepancy (also at the 95% confidence level), and black dots are data. Figure 3 show the 
calibrated heat capacity model, with excellent model/data agreement. Figure 4 demonstrates 
relatively poor agreement with large uncertainty, but this is a direct artefact of the data (which 
has wide scatter). It also recently became apparent that a high temperature data set was excluded 
from the Henry’s constant calibration, which increases uncertainty considerably3 for a model 
form that is exponential in temperature. Finally, Figure 5 shows the univariate (diagonal) and 
bivariate (off-diagonals) marginal posterior distributions for the τ and Hi,H2O parameters. Note 
that the τ parameters were well defined by the calibration, and settled on a probability region 
consistent with past experience 15. The Henry’s constant parameters were not well defined in the 

                                                
3 In this case, the Henry’s constant is found from a 5-parameter empirical correlation. If only the low temperature 
data is used, the correlation predicts the data reasonably well, and only needs to fit two parameters to do so. The 
allowable values of the remaining parameters (at a 95% joint confidence level) result in predictions that over or 
under predict reality by approximately an order of magnitude. When data in submodels fails to span the entire 
operating range, and extrapolations must be made, their impact on the uncertainty (and the effort that should be 
spent in filling the data gap) may be determined mathematically or by expert intuition. Rigorously, the mathematical 
option is superior, but within practical resource constraints, the expert intuition is usually relied upon. 
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univariate marginal, but the bivariate marginal of Henry’s constant parameters one and two show 
that the model is relatively tightly defined when those parameters are conditioned on each other. 
The third Henry’s constant parameter is not refined in any meaningful way either in the 
univariate or bivariate, which was expected in this case. The empirical model allows for up to 
five parameters (to span a large temperature range accurately). In this case, the temperature range 
is narrow, and only two parameters are useful in fitting the data, while the third parameter does 
not improve the fit, as can be noted from a simple regression of the linearized model.  

 

Figure 3 – Calibrated predictions of the heat capacity 
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Figure 4 – Calibrated predictions of the Henry’s constant 

 

Figure 5 – Univariate and bivariate posterior marginal PDFs 
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4.0 Ongoing Work 
Chemical process systems are complex networks of dozens or hundreds of thermodynamic, heat 
and mass transfer, and kinetic parameters, with additional parameters for the macro-scale 
process. The interactions and number of these parameters make proper emulation infeasible in a 
single step, and work is underway for hierarchical propagation of error, so that subsets of 
parameters and data can be calibrated separately, as shown in Figure 5. 

 

 

Figure 6 – Hierarchical calibration flow diagram
6 

Hierarchical Road Map to Prediction at Scale 
Steps taken to Calibrate/Validate Each Unit Problem 
 

1.  Design experimental runs. 

2.  Configure MFIX to model fluid dynamics for the experimental system. 
3.  Conduct scouting runs to ensure code accuracy and stability. 
4.  Determine MFIX model parameters that may be influential to the result (based on prior belief 

and scouting runs). 
5.  Establish a prior distribution for the chosen parameters (based on expert knowledge, previous 

analyses, or a combination of both). 
6.  Design MFIX Model Runs. 
7.  Conduct statistical calibration. 
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