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1.0 Executive Summary

This document reports on progress and methods for the calibration and uncertainty quantification
of the Independence model developed at UT Austin. The Independence model is an advanced
thermodynamic and process model framework for piperazine solutions as a high-performance
CO; capture solvent. Progress is presented in the framework of the CCSI standard basic data
model inference framework. Recent work has largely focused on the thermodynamic submodels
of Independence.'

! This uncertainty quantification work constitutes of portion of a PhD. thesis currently in preparation. See 1.Holland,
T. M. A Comprehensive Coal Conversion Model Extended to Oxy-coal Conditions. Brigham Young University,
Provo, UT, 2017.
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2.0 Milestone Summary and Completion

Milestone M1.17.2.3 objective: Update the Independence vapor-liquid equilibrium (VLE)
thermodynamic basic data models. The Independence model is an advanced thermodynamic and
process model framework for piperazine solutions as a high-performance CO; capture solvent.
The submodels in the original Independence model were sequentially regressed set of parameters
from numerous data sets in the Aspen Plus modeling framework. The data sets for preliminary
uncertainty quantification and propagation are:

o Low temperature water/amine heat capacity data (Hilliard, 2008)

e High temperature water/amine heat capacity data (Nguyen, 2012°)

e Water/amine volatility data (Hilliard, 2008> and Nguyen, 2012°)

e Low temperature CO;, solubility data (Dugas, 2009°, and Fulks, 2011°)
e High temperature CO, solubility data (Xu, 2011°)

e Loaded CO, heat capacity (Freeman, 2010)

From the above data the Henry’s constant (H; i20), unloaded PZ/water asymmetric activity
coefficient (y,,*), and solution heat capacity were regressed using a Gaussian process (GP) based
emulation and calibration.

Scope
e Receive model and data
e Dissect model to establish theoretical motivations and parameters to be calibrated
e Determine physically feasible ranges and prior distributions on model parameters
e Determine observational error in the data to the extent possible
e (Calibrate the model to available data
¢  Quantify uncertainty

e  Suggest model updates based on calibrated model/data discrepancy

The CCSI UQ methodology was demonstrated for monoethanolamine (MEA) in a recent
publication.® This methodology is consistently applied throughout CCSI, as evidenced by the
piperazine work in the Independence frame-work reported here. Figure 1 below outlines the
method employed in the recent publication and the direct parallels the current methodology
applied at LANL. In this case, both systems are chemical solvent process models, and the details
of the methodology are very highly analogous to each other in both the MEA and piperazine (PZ)
systems. However, the same methodology can readily be adapted to numerous scenarios in
virtually all disciplines. Note that the process model is initially developed from industry best-
practices prior to any UQ or calibration. Subsequently, the next three steps break the process
model down into submodels and identify model parameters. Where possible, subsets of data are
used to calibrate individual submodels for a clean, simple calibration. The resulting posterior
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distributions and model discrepancy may then be propagated forward into more complex or
physically intertwined submodels. In the case of CO; capture solvents, it is difficult to isolate
chemical kinetic parameters, hydraulic parameters, and mass transfer parameters from each
other, so several submodels may be jointly calibrated to relevant data sets in an effort to find self-
consistent parameter posteriors. Finally, the parameter posteriors and their discrepancy are
propagated into the original process model and any additional process model parameters are
calibrated (such as a packing efficiency coefficient). Ultimately, a statistical emulator or
calibrated model will produce process model predictions. These predictions will differ from
measured data, and the discrepancy function will offer insight at every level of the calibration
into where and how physical models should be extended to more closely match reality. Critical
data gaps may also be identified. In either case, it will often be useful to iterate on the UQ and
calibration process as calibration results inspire updated models and additional data collection.

Develop a Robust Process Model (for MEA or PZ)

Address Properties that are Difficult to Measure (e.g., convoluted
mass transfer, kinetic, and hydraulic models)

Validate the Process Model (the theoretically designed process
model contains calibrated submodels and propagated uncertainty
and discrepancy, which must be validated to full-process data)

Figure 1 — A logic flow diagram for the CCSI UQ and calibration methodology. The methodology
outlined here is suitable for any chemical process model, and can easily be generalized to a vast
array of physical modelling scenarios.
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3.0 Uncertainty Quantification and Calibration

Bayesian Calibration

Bayes’ Law itself is an almost trivial statement of probability law, as seen in Equations 3-1
through 3-4. This derivation utilizes only the commutative property of probabilities and a
definition of conditional probability. The result (Equation 3-4) is known as Bayes’ Law, and the
terms P(A|B), P(B|A), P(A), and P(B) are known respectively as the posterior, the likelihood, the
prior of A and the prior of B. In discussions of model calibration, Bayes’ Law is better couched
in terms y (model output), x (model input), and 0 (model parameters for both the physical model
and the statistically machinery) as in Equation 3-5, where 0 is the vector containing all model
parameters (both for the physical model and the internal, statistical parameters).

P(ANB) = P(BNA) 3-1

P(ANB) = P(A[B)P(B) 3-2

P(A|B)P(B) = P(B|A)P(A) 3-3
_ P(BJ|A)P(A)

PAIB) = —— = 3-4

fory (¥10) o« fy)o(y|0)fe(0) 3-5

Equation 3-5 merits considerable explanation. First, Equation 3-5 is composed of pdfs of the
posterior, the likelihood, and the prior of 0, and omits the prior probability distribution of'y.
Second it is a proportionality, not strictly an equation. Note that the capital letters designate a
random variable (i.e., the map between an event (with some pdf) and a corresponding numerical
value) while the lower case letters indicating specific realizations or outcomes (a particular
vector of parameter values (0) or data points (y)). The following bullets detail the terms of
Equation 3-5:

e The prior of y (fy(y)) is effectively a scaling factor that would constrain the left hand side
probability distribution to integrate to unity (as required for a pdf). However, the prior of
y physically corresponds to the pdf of the experimental data, which is not generally
accessible. Fortunately, the calibration of a model searches for the most likely parameter
values, given the data and prior beliefs regarding parameter values, so relative likelihood
given any sets of parameters is retained, regardless of any scaling factor. Thus,
knowledge of fy is not necessary for practical application.

e The prior of 0 (fe (0)) physically represents prior beliefs on the joint pdf of every model
parameter and every internal parameter. As a matter of practical convenience, the joint
pdfis typically assumed to be uncorrelated, and each parameter effectively has its own
pdf, which is often simply the uniform pdf over some range of physically feasible space
as determined by a domain expert. In reality, the model form typically dictates some
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correlation between model parameters, which should ideally be accounted for. The
aforementioned internal parameters are those parameters that are necessary to execute the
calibration, but not part of the mathematical model meant to capture some physical
phenomenon. An example is given in Equation 3-6, where o; is an internal parameter; see
the next bullet point for an explanation for Equation 3-6.

fyje(y10) = HN()’i:Mi(x).Ui) 3-6

e The likelihood function (fyje(y|0)) (in this case, Equation 3-6) is often the most difficult
to compute from a practical standpoint. Physically, the function quantifies the question,
“How likely are the data, given the numerical values of the current parameter vector 6?”
In other words, if specific values are plugged into a model, how likely are those
parameters to explain (or fit) the data. The answer to the goodness of fit question must
include information about the noise or observational error in the data. Equation 3-6
quantifies the likelihood (and captures the observation error) with commonly employed
assumptions: the data points are independent, so the probability of all observations is the
product of the probability of each observation (the observation y; has no bearing on the
observation yi), identically distributed (the observation error distribution is the same for
all yi), and normally distributed (fully defined by the normal pdf equation with some p
and o). The parameter o; is an internal parameter if it cannot be reliably estimated from
other information, which is to say it is necessary to compute the likelihood function, but
is not known, and must be calibrated against the data along with the other parameters in
0. It represents the standard deviation of the normally distributed observation error for
observation y;, and if the errors are considered to be identically distributed, the value of o;
is constant for all i. On the other hand, y; is typically formulated as a function of . When
evaluating any vector of model parameters (a subset of vector 0), the model will predict a
specific value given the values of vector 0 and the experimental inputs associated with
data point y; (the predicted value is then designated as ). Since the goal is to evaluate the
likelihood of the parameter values in 0 for the specific model in question, the output of
model under the conditions of y; with specific values of 0 is a reasonable mean. If the
probability density (N(yi;p,0)) of yi under conditions 1 with the specific values of 0 is
very low, then the experimental value of y; is several standard deviations away from the
model prediction (the mean of the normal pdf), and the values of 8 do not result in a
model that represents the data well. Note that if ¢ is considered an internal parameter to
be calibrated, it requires a prior pdf. This prior is often not based on knowledge of the
actual observational error (which is unknown, otherwise o would have a fixed value).
Instead, it is typically a prior that favors small values, under the assumption that the
experiments resulted in reasonably consistent observations with pains taken to minimize
error.

o Finally, the posterior pdf of the parameters given the data (feyv) is the product of the
likelihood of the data given the parameters and the prior parameter probability. This can
be calculated simultaneous or sequentially for multiple experiments or multiple data
points in the same experiment. The result is the same, but the prior in the sequential case
is the posterior of the immediately preceding data point (i.e., the prior of 0 for point yis; is

Page | 3-2



M1.17.2.3 Report Rev. 01, 05/30/2017

the posterior for point y;). The posterior is a joint pdf of dimensionality equal to the
length of @), and samples from the posterior can be inserted into the model to generate
model predictions with quantified uncertainty, as in Equation 3-7, where y,;; is the
predicted output for the conditions of data point i and using parameters from sample j,
is the model output (or emulator output) for the sample parameters and experimental
inputs, and ¢; is the observational error. Numerous samples build what amounts to an
error bar conditional on x; and 6;.

YP,i,j = T](Xl', 9]) + £j 3-7

In addition, the calibration process may include some discrepancy term o, which models the
difference between reality and model predictions as a function of experimental inputs. Ideally,
the model should be constructed to perfectly reflect reality, but in all practical applications this is
not possible. As a simple example, ballistic motion can be captured by integrating the
acceleration of an object with respect to time (one integration obtains the velocity equation,
while two integrations yields the position equation). In many contexts, the integration neglects
drag force as a matter of convenience, but this always introduces some error, which should be
reflected in d. In this case, 6 would generally be small at small velocity values and large as high
velocity increases the magnitude of drag forces. In general, the calibrated model would have
some form as in Equation 3-8.

Vpij = N(Xe 91') +8(x) + ¢ 3-8

Gaussian Processes (GPs) for Model Emulation

In general, statistical model emulation seeks to capture the relationship between model inputs
and outputs without requiring the computational expense of physical models. This allows a
simulation scientist to explore expensive models in a timely manner, using relatively few runs
from a high-cost computational experiment. Statistical surrogate models or emulators are
especially useful in evaluating model predictions where no input/output pairs are given from the
computational experiment. See Welch et al. ° and Sacks et al. ' for further discussion on the
subject of statistical emulators. Gaussian processes are a popular and powerful tool for statistical
emulation because they have the potential for enormous flexibility with relatively few parameters
and they naturally incorporate uncertainty in model output. Gaussian processes are fully defined
by a vector of mean values and a covariance matrix, so defining an emulator is conceptually as
simple as arriving at the relevant mean and covariance. In some well-behaved cases, such as a
linear model of p dimensions, the mean may be immediately obvious, and the covariance matrix
can be generated from a kernel function. The kernel for a one-dimensional, linear covariance
matrix for n data points on the domain -1< x<1 is shown in Equation 3-9, where x is the
independent variable vector of length n, and i and j are used as indices in the covariance matrix.
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Cov(i,)) = x;x; 3-9

More complex cases require a more complex kernel or a covariance function tuned to the
specific scenario and physical model. The model 7 is a statistical emulator (specifically a GP),
and both 6 and ¢ are similarly constructed GPs. The sum of the three GPs is also a GP, and an
appropriate sample from the posterior distributions of @ in conjunction with any input values in
the domain yields a model prediction including model and observational uncertainty as shown in
Equation 3-8. The emulators for 1, 8, and ¢ are fully defined by mean and covariance matrices as
shown below. Further details are available elsewhere ''"'*. Equation 3-10 differs subtly from
Equation 3-8 in that the model predictions for the i input and " sample of @ is not the
prediction of interest. Instead, Equation 3-10 is an emulator that captures model behavior for the
vector x for the i" set of input conditions at some fixed vector 8* that includes the model
parameters and the emulator internal parameters. GP emulators require internal parameters,
which are represented in Equation 3-10 by IP. The emulator could also use samples from the
posterior of 8* (the vector of parameters and internal parameters for 1) to generate estimates of
uncertainty, and n(x,0), d(xi), and &; in Equation 3-8 may well be emulators, in which case
Equations 3-8 and 3-10 are identical.

Gaussian Processes for Model Calibration

In principle, Bayesian calibration with GPs is identical to the Bayesian calibration with the
simple model shown in Section 0, though the details of execution differ. In particular, the priors
and hyper-priors of internal parameters becomes very complex, and the form of the likelihood
function is far less neat.

GP calibration requires model parameters and prior distributions as inputs. In addition, internal
parameters are required for the GP emulator to function as it explores the parameter space and
generates a posterior distribution of the model parameters, model discrepancy, and observational
uncertainty. The internal parameters are not fixed values; instead they each have their own prior
distribution (called hyper-priors) which is adjusted during the calibration process.

Figure 2 summarizes the concepts of calibration and UQ from a graphical point of view. In
Figure 2, the prior distributions on both 0 and IP are informed by the data (the likelihood
function is computed for both internal parameters and model parameters), and a new, posterior
parameter space is produced, where parameter values that are likely to explain the data have a
high probability density while parameter values that explain the data very poorly are assigned
correspondingly low probability densities.
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Figure 2 — Graphical representation of model calibration with discrepancy

As a final note, the likelihood function itself is not given here, both because it is extremely
intricate and lengthy, and because any reader interested in that level of detail would do far better
to thoroughly peruse the literature references in an effort to reconstruct highly advanced model
analysis machinery.

Models

The UT Austin Piperazine model “Independence” is a collection of thermodynamic, kinetic, and
heat and mass transfer submodel in the Aspen Plus framework. Some of the submodels are user
models written in FORTRAN, but the majority are native Aspen submodels with user defined
parameters. Ultimately, the uncertainty quantification (UQ) and calibration work will calibrate
four layers of submodels: thermodynamics, kinetics, heat and mass transfer, and the full process
model of a CO, absorber/stripper system. Further data and detailed descriptions are available
elsewhere.”” Because the submodels contain numerous parameters calibrated to a large body of
data, it is mathematically and computationally unfeasible to simultaneously calibrate all
parameters in all submodels. Instead, the strategy of sequential calibration with carefully
propagated uncertainty between submodels has been adopted. The thermodynamic submodels
and parameters have been identified and separately calibrated.
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Non-Random Two Liquid Electrolyte Model (NRTLe)

The NRTLe model is an activity coefficient model native to Aspen plus with a number of internal
parameters. It predicts activity coefficients based on molecular interactions in the liquid phase.
The interactions fall into 3 categories (local, Pitzer-Debye-Huckle, and Born), and they are
captured in the asymmetric Gibbs excess energy in Equation 3-1, where the asterisk indicates the
asymmetric convention (i.e., the related activity coefficient is y*=y/ y”). Equation 3-2 show the
relation between the asymmetric Gibbs excess energy and the asymmetric activity coefficient.

GZ‘x = G;x,lc + Gz'x,PDH + GE‘x,Born 3-10
RT « In(y)) = ":—: 311

All three liquid interactions are represented by a number of complex expressions with numerous
parameters. However, in this work, only the local contribution is considered for calibration and
UQ, with other parameters being considered fixed in the present scope of work. The local Gibbs
excess energy contribution is calculated via Equation 3-3, where m, ¢, and a denote molecule,
cation, and anion respectively. The constituents of Equation 3-3 are given by Equations 3-4
through 3-7. Because a is set by a heuristic (0.3 for molecule-molecule interactions, 0.2 for
electrolyte-electrolyte or molecule-electrolyte interactions where the molecule is water, and 0.1
where the molecule is a solute), only the values of various types of T need to be computed. The
value “G” (shown in Equation 3-6 for molecule-ionic pairs) represents differences in liquid
component interaction that contribute to a non-ideal solution and thus a non-unity activity
coefficient. Since the value of G is not often known, Equations 3-6 is used to compute it, which
in turn requires an alternative approach to obtain 1. Equations 3-4, 3-5, and 3-7 are empirical
correlations with (typically regressed) parameters that give t as a function of temperature in K.
Given the many pair-wise interactions in real systems, the total number of parameters to be
regressed quickly becomes prohibitive, and often only the first one or two parameters in the
empirical correlations are non-zero. See Table 3-1 for additional details on parameter equations
and locations in Aspen Plus, and note that X;=x;C;, where x is the mole fraction and C is either z
(the charge on the ion) or unity for molecules.
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Cie _ 3y, SNty 5y 5 (o DGt
RT mam s XkGrm TSRS i Xan Yk XkGjcarc

Xer YjGjaarcTjaarc
X - : ’ 3-12
Za a ZC'(ZCHXCH) ZkaGja,alc

X -
Tmcac = —In Za aexp(z ?;(an:itm‘m)] —Team T Tmyca 3-13
a a
Bnac Tref—T T
Tm,ac = Am,ac + T + Cm,ac (T +In (W)) 3-14
Gmc,ac = exp(_aca,mrmc,ac) 3-15
—_— Bm,m’
T = Amans + =+ - 3-16

In addition to the activity coefficient equations, the thermodynamic system in Independence
requires self-consistency between submodels for Henry’s constant, heat capacity, vapor-liquid
equilibrium, and chemical equilibrium. The heat capacity and Henry’s constant (Equation 3-8)
submodels are empirical, and typically only use two or three parameters of the between five and
eleven available parameters. Models for C,, are shown in Table 3-1, but are not shown with the
other equations below because several different model forms are available. Regression data are
proprietary and are omitted.

Equation 3-9 is a form of the teenage vapor-liquid equilibrium equation (i.e., an intermediate for
of the VLE that is usually adequate for engineering design), where the activity coefficient is
referenced to the infinite dilution activity coefficient. Similarly, the henry’s constant replaces the
vapor pressure of component i in the solvent (water), because the Henry’s constant is
conceptualized as the constant of direct proportionality between vapor-phase partial pressure of
component i and liquid phase mol fraction of i (H=Pj/x;). This is only valid at ~infinite dilution
of component i, but by an abuse of theory Equation 3-9 is serviceable. That is, vy is allowed to
compensate for H, even though the activity coefficient is theoretically rooted in liquid-liquid
non-idealities while Henry’s constant is only valid at infinite dilution because of liquid non-
idealities, but is conceptualized for largely non-condensable gases rather than all non-water
components in a system. This abuse is a convenience introduced because much of the data and a
number of submodels were referenced to the infinite dilution state, and Aspen does not have
another convenient way to compensate for the change in reference state °.

Finally, the location of the ionic activity coefficient T parameters are given in Table 3-2, and

Equations 3-10 through 3-13 show the equilibrium equation and the chemical equations used in
Independence.
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3-19
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3-21

3-22

Table 3-1 — Thermodynamic parameters of interest in Independence

Parame Paramet
ter er
Numbe | Parameter Parameter Designati | Parameter
r Location Element on Description Relevant equation
This parameter Is
in the heat
Properties>M capacity equation
ethods>Para referenced to the
meters>Pure infinite dilution in | Cp=C1+C2*T+C3*TA
Components> water state for 2+C4/T+C5/T~2+C6/
1 | CPAQO 1|cC1 CO3- TA0.5
This parameter Is
in the heat
Properties>M capacity equation
ethods>Para referenced to the
meters>Pure infinite dilution in | Cp=C1+C2*T+C3*TA
Components> water state for 2+C4/T+C5/T~2+C6/
2 | CPAQO 2| C2 CO3- TA0.5
This parameter Is
in the heat
Properties>M capacity equation
ethods>Para referenced to the
meters>Pure infinite dilution in | Cp=C1+C2*T+C3*TA
Components> water state for 2+C4/T+C5/T~2+C6/
3 | CPAQO 3|C3 CO3- TA0.5
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This parameter Is
in the heat
Properties>M capacity equation
ethods>Para referenced to the
meters>Pure infinite dilution in | Cp=C1+C2*T+C3*TA
Components> water state for 2+C4/T+C5/T~2+C6/
4 | CPAQO 1|cC1 HCO3- TA0.5
This parameter Is
in the heat
Properties>M capacity equation
ethods>Para referenced to the
meters>Pure infinite dilution in | Cp=C1+C2*T+C3*TA
Components> water state for 2+C4/T+C5/T~2+C6/
5 | CPAQO 2| C2 HCO3- TA0.5
This parameter Is
in the heat
Properties>M capacity equation
ethods>Para referenced to the
meters>Pure infinite dilution in | Cp=C1+C2*T+C3*TA
Components> water state for 2+C4/T+C5/T~2+C6/
6 | CPAQO 3|C3 HCO3- TA0.5
This parameter Is
in the heat
Properties>M capacity equation
ethods>Para referenced to the
meters>Pure infinite dilution in | Cp=C1+C2*T+C3*TA
Components> water state for 2+C4/T+C5/T~2+C6/
7 | CPAQO 1|cC1 PZCOO-2 TA0.5
This parameter Is
in the heat
Properties>M capacity equation
ethods>Para referenced to the
meters>Pure infinite dilution in | Cp=C1+C2*T+C3*TA
Components> water state for 2+C4/T+C5/T~2+C6/
8 | CPAQO 2| C2 PZCOO-2 TA0.5
This parameter Is
in the heat
Properties>M capacity equation
ethods>Para referenced to the
meters>Pure infinite dilution in | Cp=C1+C2*T+C3*TA
Components> water state for 2+C4/T+C5/T~2+C6/
9 | CPAQO 1|cC1 PZCOO- TA0.5
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This parameter Is
in the heat
Properties>M capacity equation
ethods>Para referenced to the
meters>Pure infinite dilution in | Cp=C1+C2*T+C3*TA
Components> water state for 2+C4/T+C5/T~2+C6/
10 | CPAQO 2| C2 PZCOO- TA0.5
This parameter Is
in the heat
Properties>M capacity equation
ethods>Para referenced to the
meters>Pure infinite dilution in | Cp=C1+C2*T+C3*TA
Components> water state for 2+C4/T+C5/T~2+C6/
11 | CPAQO 1|C1 PZH+ T70.5
This parameter Is
in the heat
Properties>M capacity equation
ethods>Para referenced to the
meters>Pure infinite dilution in | Cp=C1+C2*T+C3*TA
Components> water state for 2+C4/T+C5/T~2+C6/
12 | CPAQO 2| C2 PZH+ T70.5
This parameter Is
in the heat
Properties>M capacity equation
ethods>Para referenced to the
meters>Pure infinite dilution in | Cp=C1+C2*T+C3*TA
Components> water state for 2+C4/T+C5/T~2+C6/
13 | CPAQO 1|cC1 HPZCOO TA0.5
This parameter Is
in the heat
Properties>M capacity equation
ethods>Para referenced to the
meters>Pure infinite dilution in | Cp=C1+C2*T+C3*TA
Components> water state for 2+C4/T+C5/T~2+C6/
14 | CPAQO 2| C2 HPZCOO TA0.5
This parameter Is
in the heat
Properties>M capacity equation
ethods>Para referenced to the
meters>Pure infinite dilution in | Cp=C1+C2*T+C3*TA
Components> water state for 2+C4/T+C5/T~2+C6/
15 | CPAQO 1|cC1 C5H14-01 TA0.5
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Properties>M

ethods>Para This parameter is
meters>Pure in the correlation
Components> for the dielectric epsilon(T)=A_B+B_B
16 | CPDIEC 1/ AB constant of PZ *(1/T-1/C_B)
Properties>M
ethods>Para This parameter is
meters>Pure in the correlation
Components> for the dielectric epsilon(T)=A_B+B_B
17 | CPDIEC 2| BB constant of PZ *(1/T-1/C_B)
Properties>M
ethods>Para This parameter is
meters>Pure in the correlation
Components> for the dielectric epsilon(T)=A_B+B_B
18 | CPDIEC 3|C.B constant of PZ *(1/T-1/C_B)
Properties>M This parameter is
ethods>Para in the correlation | CP_IG(T)=C_1+C_2*
meters>Pure for Ideal gas heat | T+C_3*TA2+C_4*TA
Components> capacity for 3+C_5*TM4+C_6*TA
19 | CPIG 1/C21 HPZCOO 5
Properties>M This parameter is
ethods>Para in the correlation | CP_IG(T)=C_1+C_2*
meters>Pure for Ideal gas heat | T+C_3*TA2+C_4*TA
Components> capacity for 3+C_5*TM4+C_6*TA
20 | CPIG 2|C2 HPZCOO 5
This parameter is
in the correlation
for Ideal gas heat
capacity for
Properties>M HPZCOO for
ethods>Para extrapolation
meters>Pure below
Components> temperatures at CP_IG(T)=C_9+C_10
21 | CPIG 9|C9 Cc_7 *T
Properties>M This parameter is
ethods>Para in the correlation
meters>Pure for Ideal gas heat
Components> capacity for CP_IG(T)=C_9+C_10
22 | CPIG 10 | C_10 HPZCOO for *TAC_11
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extrapolation
below
temperatures at
Cc_7
This parameter is
in the correlation
for Ideal gas heat
capacity for
Properties>M HPZCOO for
ethods>Para extrapolation
meters>Pure below
Components> temperatures at CP_IG(T)=C_9+C_10
23 | CPIG 11| C_11 Cc_7 *TAC_11
This parameter is
the lower
Properties>M temperature limit
ethods>Para in the correlation
meters>Pure for Ideal gas heat
Components> capacity for
24 | CPIG 7|C7 HPZCOO N/A
This parameter is
in the correlation
for Ideal gas heat
capacity
(probably the
Aspen
polynomial) for
PZ but not used
because the
DIPPR equation is
Properties>M indicated in
ethods>Para THRSWT/7 and CP_IG(T)=C_1+C_2*
meters>Pure parameters for T+C_3*T"2+C_4*TA
Components> that are assigned | 3+C_5*T7A4+C_6*T"
25 | CPIG 1/C21 in CPIGDP. 5
This parameter is
in the correlation
for Ideal gas heat
capacity
Properties>M (probably the
ethods>Para Aspen CP_IG(T)=C_1+C_2*
meters>Pure polynomial) for T+C_3*T"2+C_4*TA
Components> PZ but not used 3+C_5*TM4+C_6*TA
26 | CPIG 2|C2 because the 5
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DIPPR equation is
indicated in
THRSWT/7 and
parameters for
that are assigned
in CPIGDP.

Properties>M

This parameter is
in the correlation
for Ideal gas heat
capacity
(probably the
Aspen
polynomial) for
C5H13-01 but not
used because the
DIPPR equation is
indicated in

ethods>Para THRSWT/7 and CP_IG(T)=C_1+C_2*
meters>Pure parameters for T+C_3*T"2+C_4*TA
Components> that are assigned | 3+C_5*T7A4+C_6*T"
27 | CPIG 1(C.1 in CPIGDP. 5
This parameter is
in the correlation
for Ideal gas heat
capacity
(probably the
Aspen
polynomial) for
C5H13-01 but not
used because the
DIPPR equation is
Properties>M indicated in
ethods>Para THRSWT/7 and CP_IG(T)=C_1+C_2*
meters>Pure parameters for T+C_3*T"2+C_4*TA
Components> that are assigned | 3+C_5*T7A4+C_6*T"
28 | CPIG 2|C2 in CPIGDP. 5
This parameter is
in the correlation
for Ideal gas heat
Properties>M capacity for
ethods>Para C5H13-01 given CP_IG(T)=C_1+C_2*(
meters>Pure that (C_3/T)/sinh(C_3/T))
Components> THRSWT/7=107 A2+C_4*((C_5/T /Jco
29 | CPIGDP 1/C1 and the sh(C_5/T))
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parameters came
from CPIGDP.
This parameter is
in the correlation
for Ideal gas heat
capacity for
C5H13-01 given
Properties>M that
ethods>Para THRSWT/7=107 CP_IG(T)=C_1+C_2%*(
meters>Pure and the (C_3/T)/sinh(C_3/T))
Components> parameters came | A2+C_4*((C_5/T_/co
30 | CPIGDP 2/C2 from CPIGDP. sh(C_5/T))
This parameter is
in the correlation
for Ideal gas heat
capacity for
C5H13-01 given
Properties>M that
ethods>Para THRSWT/7=107 CP_IG(T)=C_1+C_2%*(
meters>Pure and the (C_3/T)/sinh(C_3/T))
Components> parameters came | A2+C_4*((C_5/T_/co
31 | CPIGDP 3(c.3 from CPIGDP. sh(C_5/T))
This parameter is
in the correlation
for Ideal gas heat
capacity for
C5H13-01 given
Properties>M that
ethods>Para THRSWT/7=107 CP_IG(T)=C_1+C_2%*(
meters>Pure and the (C_3/T)/sinh(C_3/T))
Components> parameters came | A2+C_4*((C_5/T_/co
32 | CPIGDP 4|cCa from CPIGDP. sh(C_5/T))
This parameter is
in the correlation
Properties>M for Ideal gas heat
ethods>Para capacity for CP_IG(T)=C_1+C_2*(
meters>Pure C5H13-01 given (C_3/T)/sinh(C_3/T))
Components> that A2+C_4*((C_5/T /Jco
33 | CPIGDP 5|/C.5 THRSWT/7=107 | sh(C_5/T))
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and the
parameters came
from CPIGDP.
This parameter
uses the DIPPR
Properties>M equation
ethods>Para (THRSWT/4=106)
meters>Pure for the heat of DelH_vap=C_1*(1-
Components> vaporization of T r)MC_2+C_3*T+C
34 | DHVLDP 1(C.1 liquid PZ. _4*TA2+4C_5*T"3)
This parameter
uses the DIPPR
Properties>M equation
ethods>Para (THRSWT/4=106)
meters>Pure for the heat of DelH_vap=C_1*(1-
Components> vaporization of T r)MC_2+C_3*T+C
35 | DHVLDP 2|C2 liquid PZ. _4*TA2+4C_5*T"3)
This parameter
uses the DIPPR
Properties>M equation
ethods>Para (THRSWT/4=106)
meters>Pure for the heat of DelH_vap=C_1*(1-
Components> vaporization of T r)MC_2+C_3*T+C
36 | DHVLDP 3|C_3 liquid PZ. _4*TA2+4C_5*T"3)
This parameter
uses the Watson
Properties>M equation
ethods>Para (THRSWT/4=0) for | DelH_vap(T)=DelH_
meters>Pure the heat of vap(T1)*((1-
Components> vaporization of T/Tc)/(1_T1/Tc))Ma+
37 | DHVLWT 1(C.1 liquid H20. b*(1-T/Tc))
This parameter
uses the Watson
Properties>M equation
ethods>Para (THRSWT/4=0) for | DelH_vap(T)=DelH_
meters>Pure the heat of vap(T1)*((1-
Components> vaporization of T/Tc)/(1_T1/Tc))Ma+
38 | DHVLWT 2|C2 liquid H20. b*(1-T/Tc))
Properties>M This parameter
ethods>Para uses the Watson DelH_vap(T)=DelH_
39 | meters>Pure 3(C3 equation vap(T1)*((1-
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Components> (THRSWT/4=0) for | T/Tc)/(1_T1/Tc)) a+
DHVLWT the heat of b*(1-T/Tc))
vaporization of
liquid H20.
This parameter
uses the Watson
Properties>M equation
ethods>Para (THRSWT/4=0) for | DelH_vap(T)=DelH_
meters>Pure the heat of vap(T1)*((1-
Components> vaporization of T/Tc)/(1_T1/Tc))Ma+
40 | DHVLWT 4|1C4 liquid H20. b*(1-T/Tc))
This parameter
uses the Watson
Properties>M equation
ethods>Para (THRSWT/4=0) for | DelH_vap(T)=DelH_
meters>Pure the heat of vap(T1)*((1-
Components> vaporization of T/Tc)/(1_T1/Tc))Ma+
41 | DHVLWT 5|C.5 liquid H20. b*(1-T/Tc))
This parameter
uses the DIPPR
equation 116
(THRSWT/2=116),
Properties>M typically used for
ethods>Para H20, for the
meters>Pure liquid molar kmol/cum=A+B*TA0
Components> density of C5H13- | .35+C*TA(2/3)+D*T+
42 | DNLDIP 1A 01 EXTA(4/3)
This parameter
uses the DIPPR
equation 116
(THRSWT/2=116),
Properties>M typically used for
ethods>Para H20, for the
meters>Pure liquid molar kmol/cum=A+B*TA0
Components> density of C5H13- | .35+C*TA(2/3)+D*T+
43 | DNLDIP 2|B 01 EXTA(4/3)
This parameter
uses the DIPPR
Properties>M equation 116
ethods>Para (THRSWT/2=116),
meters>Pure typically used for | kmol/cum=A+B*TA0
Components> H20, for the .35+C*TA(2/3)+D*T+
44 | DNLDIP 3|C liquid molar E*TA(4/3)
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density of C5H13-
01
This parameter
uses the DIPPR
equation 116
(THRSWT/2=116),
Properties>M typically used for
ethods>Para H20, for the
meters>Pure liquid molar kmol/cum=A+B*TA0
Components> density of C5H13- | .35+C*TA(2/3)+D*T+
45 | DNLDIP 4D 01 EXTA(4/3)
These are
coefficients for
PZH+ for the
Jones-Dole
Properties>M correction to the
ethods>Para viscosity of a
meters>Pure solution due to
Components> the presence of complicated and
46 | IONMOB 1 | see help | electrolytes. ugly, see help page
These are
coefficients for
PZH+ for the
Jones-Dole
Properties>M correction to the
ethods>Para viscosity of a
meters>Pure solution due to
Components> the presence of complicated and
47 | IONMOB 2 | see help | electrolytes. ugly, see help page
These are
coefficients for
PZCOO- for the
Jones-Dole
Properties>M correction to the
ethods>Para viscosity of a
meters>Pure solution due to
Components> the presence of complicated and
48 | IONMOB 1 | see help | electrolytes. ugly, see help page
These are
Properties>M coefficients for
ethods>Para PZCOO- for the complicated and
49 | meters>Pure 2 | see help | Jones-Dole ugly, see help page
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Components> correction to the
IONMOB viscosity of a
solution due to
the presence of
electrolytes.
These are
coefficients for
PZCOO-2 for the
Jones-Dole
Properties>M correction to the
ethods>Para viscosity of a
meters>Pure solution due to
Components> the presence of complicated and
50 | IONMOB 1 | see help | electrolytes. ugly, see help page
These are
coefficients for
PZCOO-2 for the
Jones-Dole
Properties>M correction to the
ethods>Para viscosity of a
meters>Pure solution due to
Components> the presence of complicated and
51 | IONMOB 2 | see help | electrolytes. ugly, see help page
This is a
parameter for the
a Rackett
equation mixing
rule for PZ (to
determine liquid
Properties>M molar volume).
ethods>Para The parameter is
meters>Pure VCRKT, which is
Components> the critical complicated and
52 | MDH see help | volume. ugly, see help page
This is a
parameter for the
a Rackett
equation mixing
rule for PZ (to
Properties>M determine liquid
ethods>Para molar volume).
meters>Pure The parameter is
Components> RKTZRA, which complicated and
53 | MDH see help | appears to be the | ugly, see help page
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compressibility
factor.

Properties>M

This is a
parameter for the
a Rackett
equation mixing
rule for CO2 (to
determine liquid
molar volume).
The parameter is

ethods>Para RKTZRA, which
meters>Pure appears to be the
Components> compressibility complicated and
54 | MDH see help | factor. ugly, see help page
This is a
parameter for the
a Rackett
equation mixing
rule for CO2 (to
determine liquid
Properties>M molar volume).
ethods>Para The parameter is
meters>Pure VCRKT, which is
Components> the critical complicated and
55 | MDH see help | volume. ugly, see help page
This is a
parameter for the
a Rackett
equation mixing
rule for HPZCOO
(to determine
liquid molar
Properties>M volume). The
ethods>Para parameter is
meters>Pure VCRKT, which is
Components> the critical complicated and
56 | MDH see help | volume. ugly, see help page
This is a
Properties>M parameter for the
ethods>Para a Rackett complicated and
57 | meters>Pure see help | equation mixing ugly, see help page
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Components>
MDH

rule for HPZCOO
(to determine
liquid molar
volume). The
parameter is
RKTZRA, which
appears to be the
compressibility
factor.

Properties>M

This is a
parameter for the
a Rackett
equation mixing
rule for C5H13-01
(to determine
liquid molar
volume). The
parameter is

ethods>Para VCRKT, which
meters>Pure appears to be the
Components> compressibility complicated and
58 | MDH see help | factor. ugly, see help page
This is a
parameter for the
a Rackett
equation mixing
rule for C5H13-01
(to determine
liquid molar
volume). The
Properties>M parameter is
ethods>Para RKTZRA, which
meters>Pure appears to be the
Components> compressibility complicated and
59 | MDH see help | factor. ugly, see help page
Properties>M
ethods>Para The aqueous
meters>Pure gibbs energy of
Components> formation for
60 | Review scalar scalar C5H14-01. scalar
The aqueous
Properties>M enthalpy of
ethods>Para formation for
61 | meters>Pure | scalar scalar C5H14-01. scalar
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Components>
Review
Properties>M
ethods>Para The aqueous
meters>Pure gibbs energy of
Components> formation for

62 | USRDEF scalar scalar PZCOO-2 scalar
Properties>M
ethods>Para The aqueous
meters>Pure gibbs energy of
Components> formation for

63 | USRDEF scalar scalar PZCOO- scalar
Properties>M
ethods>Para The aqueous
meters>Pure gibbs energy of
Components> formation for

64 | USRDEF scalar scalar HPZCOO scalar
Properties>M
ethods>Para The aqueous
meters>Pure enthalpy of
Components> formation for

65 | USRDEF scalar scalar PZCOO-2 scalar
Properties>M
ethods>Para The aqueous
meters>Pure enthalpy of
Components> formation for

66 | USRDEF scalar scalar PZCOO- scalar
Properties>M
ethods>Para The aqueous
meters>Pure enthalpy of
Components> formation for

67 | USRDEF scalar scalar HPZCOO scalar
Properties>M
ethods>Para
meters>Pure The gibbs energy
Components> of formation for

68 | USRDEF scalar scalar HPZCOO scalar
Properties>M The enthalpy of
ethods>Para formation for

69 | meters>Pure | scalar scalar HPZCOO scalar
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Components>
USRDEF
All molecular
species were
declared as
Henry's
components
Properties>M (except water,
ethods>Para which is the
meters>Binar solvent). Thisis a
y parameter in the
Interaction>H Henry's law H_i,j=AlU+BIJ/T+ClJ*I
70 | enry 1| AU correlation for PZ. | n(T)+DU*T+El/TA2
All molecular
species were
declared as
Henry's
components
Properties>M (except water,
ethods>Para which is the
meters>Binar solvent). This is a
y parameter in the
Interaction>H Henry's law H_i,j=AlU+BIJ/T+ClJ*I
71 | enry 2 | Bl correlation for PZ. | n(T)+DU*T+E/TA2
All molecular
species were
declared as
Henry's
components
Properties>M (except water,
ethods>Para which is the
meters>Binar solvent). This is a
y parameter in the
Interaction>H Henry's law H_i,j=Al+BIJ/T+ClJ*I
72 | enry 3(ClU correlation for PZ. | n(T)+DU*T+EW/TA2
All molecular
species were
declared as
Properties>M Henry's
ethods>Para components
meters>Binar (except water,
y which is the
Interaction>H solvent). Thisisa | H_i,j=AlJ+BlJ/T+ClJ*|
73 | enry 4 | DU parameter in the | n(T)+DU*T+El/TA2
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Henry's law
correlation for PZ.
All molecular
species were
declared as
Henry's
components
(except water,
Properties>M which is the
ethods>Para solvent). This is a
meters>Binar parameter in the
y Henry's law
Interaction>H correlation for H_i,j=Al+BIJ/T+ClJ*I
74 | enry 1| AU C5H13-01. n(T)+DIU*T+EN/TA2
All molecular
species were
declared as
Henry's
components
(except water,
Properties>M which is the
ethods>Para solvent). This is a
meters>Binar parameter in the
y Henry's law
Interaction>H correlation for H_i,j=AlU+BIJ/T+ClJ*I
75 | enry 2| Bl C5H13-01. n(T)+DIU*T+EN/TA2
All molecular
species were
declared as
Henry's
components
(except water,
Properties>M which is the
ethods>Para solvent). This is a
meters>Binar parameter in the
y Henry's law
Interaction>H correlation for H_i,j=Al+BIJ/T+ClJ*I
76 | enry 3|ClU C5H13-01. n(T)+DI*T+EN/TA2
Properties>M All molecular
ethods>Para species were H_i,j=AlU+BIJ/T+ClJ*I
77 | meters>Binar 4 | DU declared as n(T)+DU*T+E/TA2

Page | 3-23




M1.17.2.3 Report

Rev. 01, 05/30/2017

y Henry's
Interaction>H components
enry (except water,
which is the
solvent). Thisis a
parameter in the
Henry's law
correlation for
C5H13-01.
This parameter is
used for
computing tau for
Properties>M the molecule-
ethods>Para molecule portion
meters>Binar of the NRTL
y model.
Interaction>N Component | is tau_i,j=AlJ+BIJ/T+El
78 | RTL-1 1| Al water and Jis PZ. | *In(T)+FU*T
This parameter is
used for
computing tau for
Properties>M the molecule-
ethods>Para molecule portion
meters>Binar of the NRTL
y model.
Interaction>N Component | is tau_i,j=AlJ+BIJ/T+El
79 | RTL-1 2 | Bl water and Jis PZ. | *In(T)+FU*T
This parameter is
used for
computing tau for
the molecule-
Properties>M molecule portion
ethods>Para of the NRTL
meters>Binar model.
y Component | is
Interaction>N HPZCOO and J is tau_i,j=AlJ+BIJ/T+El
80 | RTL-1 1| AU Cco2. *In(T)+FU*T
This parameter is
Properties>M used for
ethods>Para computing tau for
meters>Binar the molecule-
y molecule portion
Interaction>N of the NRTL tau_i,j=AlJ+BIJ/T+El
81 | RTL-1 2 | Bl model. *In(T)+FU*T
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Component | is
HPZCOO and J is
Cco2.
This parameter is
used for
computing tau for
Properties>M the molecule-
ethods>Para molecule portion
meters>Binar of the NRTL
y model.
Interaction>N Component | is tau_i,j=AlJ+BIJ/T+El
82 | RTL-1 1Al CO2 and Jis PZ. *In(T)+FIU*T
This parameter is
used for
computing tau for
Properties>M the molecule-
ethods>Para molecule portion
meters>Binar of the NRTL
y model.
Interaction>N Component | is tau_i,j=AlJ+BIJ/T+El
83 | RTL-1 2 | BJI CO2 and Jis PZ. *In(T)+FIU*T
This parameter is
used for
computing tau for
the molecule-
Properties>M molecule portion
ethods>Para of the NRTL
meters>Binar model.
y Component | is
Interaction>N H20 and Jis tau_i,j=AlJ+BIJ/T+El
84 | RTL-1 1Al C5H13-01. *In(T)+FIU*T
This parameter is
used for
computing tau for
the molecule-
Properties>M molecule portion
ethods>Para of the NRTL
meters>Binar model.
y Component | is
Interaction>N H20 and Jis tau_i,j=AlJ+BIJ/T+El
85 | RTL-1 2 | BJI C5H13-01. *In(T)+FU*T
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This parameter is
used for
computing tau for
the molecule-
Properties>M molecule portion
ethods>Para of the NRTL
meters>Binar model.
y Component | is
Interaction>N C5H13-01 and Jis | tau_i,j=AlJ+BIJ/T+El)
86 | RTL-1 1Al Cco2. *In(T)+FU*T
This parameter is
used for
computing tau for
the molecule-
Properties>M molecule portion
ethods>Para of the NRTL
meters>Binar model.
y Component | is
Interaction>N C5H13-01 and Jis | tau_i,j=AlJ+BIJ/T+El)
87 | RTL-1 2| Bl Cco2. *In(T)+FIU*T
This parameter is
used for
computing tau for
the molecule-
Properties>M molecule portion
ethods>Para of the NRTL
meters>Binar model.
y Component | is
Interaction>N C5H13-01 and Jis | tau_i,j=AlJ+BIJ/T+El)
88 | RTL-1 1Al Cco2. *In(T)+FIU*T
This parameter is
used for
computing tau for
the molecule-
Properties>M molecule portion
ethods>Para of the NRTL
meters>Binar model.
y Component | is
Interaction>N C5H13-01 and Jis | tau_i,j=AlJ+BIJ/T+El)
89 | RTL-1 2 | BJI Cco2. *In(T)+FU*T
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This parameter is
typically
computed via a
heuristic, and is
used to compute
alpha, which
appears to be
Properties>M symmetrical in
ethods>Para this case.
meters>Binar Component | is
y H20 and
Interaction>N component J is alpha_i,j=ClJ+(T-
90 | RTL-1 3|ClU PZ. 273.15)*DlJ
This parameter is
typically
computed via a
heuristic, and is
used to compute
alpha, which
appears to be
Properties>M symmetrical in
ethods>Para this case.
meters>Binar Component | is
y HPZCOO and
Interaction>N component J is alpha_i,j=ClJ+(T-
91 | RTL-1 3|ClU Cco2. 273.15)*DlJ
This parameter is
typically
computed via a
heuristic, and is
used to compute
alpha, which
appears to be
Properties>M symmetrical in
ethods>Para this case.
meters>Binar Component | is
y CO2 and
Interaction>N component J is alpha_i,j=ClJ+(T-
92 | RTL-1 3|ClU PZ. 273.15)*DlJ
This parameter is
Properties>M typically
ethods>Para computed via a
meters>Binar heuristic, and is alpha_i,j=ClJ+(T-
93 |y 3(ClU used to compute | 273.15)*DlJ
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Interaction>N
RTL-1

alpha, which
appears to be
symmetrical in

this case.
Component | is
H20 and
componentJ is
C5H13-01.

Properties>M
ethods>Para
meters>Binar

Yy
Interaction>N

This parameter is
typically
computed via a
heuristic, and is
used to compute
alpha, which
appears to be
symmetrical in
this case.
Component | is
C5H13-01 and
componentJ is

alpha_i,j=ClJ+(T-

94 | RTL-1 3|ClU Cco2. 273.15)*DlJ
This parameter is
typically
computed via a
heuristic, and is
used to compute
alpha, which
Properties>M appears to be
ethods>Para symmetrical in
meters>Binar this case.
y Component | is PZ
Interaction>N and componentJ | alpha_i,j=ClJ+(T-
95 | RTL-1 3|ClU is C5H13-01. 273.15)*DlJ
This parameter is
typically
computed via a
heuristic, and is
used to compute
Properties>M alpha, which
ethods>Para appears to be
meters>Binar symmetrical in
y this case.
Interaction>N Component | is alpha_i,j=ClJ+(T-
96 | RTL-1 3|CclU C5H13-01 and 273.15)*DlJ
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componentJ is
HPZCOO.
This parameter is
used to calculate
Properties>M the liquid molar
ethods>Para volume using the
meters>Binar Clarke equation
y for electrolyte
Interaction>V solutions of PZH+ | Messy, see help
97 | LCLK 1| VCA and PZCOO- pages.
This parameter is
used to calculate
Properties>M the liquid molar
ethods>Para volume using the
meters>Binar Clarke equation
y for electrolyte
Interaction>V solutions of PZH+ | Messy, see help
98 | LCLK 2 | ACA and PZCOO- pages.
This parameter is
used to calculate
Properties>M the liquid molar
ethods>Para volume using the
meters>Binar Clarke equation
y for electrolyte
Interaction>V solutions of PZH+ | Messy, see help
99 | LCLK 1|VCA and HCO3- pages.
This parameter is
used to calculate
Properties>M the liquid molar
ethods>Para volume using the
meters>Binar Clarke equation
y for electrolyte
Interaction>V solutions of PZH+ | Messy, see help
100 | LCLK 2 | ACA and HCO3- pages.
Properties>M This parameter is
ethods>Para used to calculate
meters>Binar the liquid molar
y volume using the
Interaction>V Clarke equation Messy, see help
101 | LCLK 1| VCA for electrolyte pages.
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solutions of PZH+
and PZCOO-2
This parameter is
used to calculate
Properties>M the liquid molar
ethods>Para volume using the
meters>Binar Clarke equation
y for electrolyte
Interaction>V solutions of PZH+ | Messy, see help
102 | LCLK 2 | ACA and PZCOO0-2 pages.
This parameter is
used to calculate
the liquid molar
Properties>M volume using the
ethods>Para Clarke equation
meters>Binar for electrolyte
y solutions of
Interaction>V C5H14-01 and Messy, see help
103 | LCLK 1| VCA HCO3- pages.
This parameter is
used to calculate
the liquid molar
Properties>M volume using the
ethods>Para Clarke equation
meters>Binar for electrolyte
y solutions of
Interaction>V C5H14-01 and Messy, see help
104 | LCLK 2 | ACA HCO3- pages.
This parameter is
used to calculate
the liquid molar
Properties>M volume using the
ethods>Para Clarke equation
meters>Binar for electrolyte
y solutions of
Interaction>V C5H14-01 and Messy, see help
105 | LCLK 1| VCA C03-2 pages.
This parameter is
Properties>M used to calculate
ethods>Para the liquid molar
meters>Binar volume using the | Messy, see help
106 | vy 2 | ACA Clarke equation pages.
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Interaction>V for electrolyte

LCLK solutions of
C5H14-01 and
C03-2

Table 3-2 — lonic T values?

tm,ca or tca,m a
Location Values (GMEL-CC)

Properties>Methods>Parameters>Electrolyte
Pair>GMEL-CC-1

“

“

“

“

? The parameters in Table 3-2 have their greatest impact in the difference between each pair of molecule-ion
interactions (T, and Te,m). Therefore, only one parameter is adjusted (highlighted in blue) while the other half of
the pairwise interaction is stationary (highlighted in red).
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“

“

“

“

“

“

“

“
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“

tm,ca or tca,m "b"
Values (GMEL-CD)

Properties>Methods>Parameters>Electrolyte
Pair>GMEL-CD-1

Results

The size and complexity of the thermodynamic parameter set requires a multi-tier calibration. In
this case, there is a first tier of parameters that propagate forward into the second tier of
submodels. Tier 1 sample results are shown below, where red lines are the calibrated model
prediction at the 95% confidence level, black lines are the calibrated model including
discrepancy (also at the 95% confidence level), and black dots are data. Figure 3 show the
calibrated heat capacity model, with excellent model/data agreement. Figure 4 demonstrates
relatively poor agreement with large uncertainty, but this is a direct artefact of the data (which
has wide scatter). It also recently became apparent that a high temperature data set was excluded
from the Henry’s constant calibration, which increases uncertainty considerably’ for a model
form that is exponential in temperature. Finally, Figure 5 shows the univariate (diagonal) and
bivariate (off-diagonals) marginal posterior distributions for the T and H; oo parameters. Note
that the t parameters were well defined by the calibration, and settled on a probability region
consistent with past experience '°. The Henry’s constant parameters were not well defined in the

? In this case, the Henry’s constant is found from a 5-parameter empirical correlation. If only the low temperature
data is used, the correlation predicts the data reasonably well, and only needs to fit two parameters to do so. The
allowable values of the remaining parameters (at a 95% joint confidence level) result in predictions that over or
under predict reality by approximately an order of magnitude. When data in submodels fails to span the entire
operating range, and extrapolations must be made, their impact on the uncertainty (and the effort that should be
spent in filling the data gap) may be determined mathematically or by expert intuition. Rigorously, the mathematical
option is superior, but within practical resource constraints, the expert intuition is usually relied upon.
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univariate marginal, but the bivariate marginal of Henry’s constant parameters one and two show
that the model is relatively tightly defined when those parameters are conditioned on each other.
The third Henry’s constant parameter is not refined in any meaningful way either in the
univariate or bivariate, which was expected in this case. The empirical model allows for up to
five parameters (to span a large temperature range accurately). In this case, the temperature range
is narrow, and only two parameters are useful in fitting the data, while the third parameter does
not improve the fit, as can be noted from a simple regression of the linearized model.

. Calibrated Predictions w/ Discrepancy

[}
T
|

X
®))
~
~—
= 5 .
\'d
N
o
© (G
R YA U N
il ”””MHHMH ””“
IR
3L _
2 | | | | | | | | | |
5 10 15 20 25 30 35 40 45 50

Temperature (K)

Figure 3 — Calibrated predictions of the heat capacity
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Figure 4 — Calibrated predictions of the Henry’s constant

Figure 5 — Univariate and bivariate posterior marginal PDFs
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Chemical process systems are complex networks of dozens or hundreds of thermodynamic, heat

and mass transfer, and kinetic parameters, with additional parameters for the macro-scale

process. The interactions and number of these parameters make proper emulation infeasible in a

single step, and work is underway for hierarchical propagation of error, so that subsets of

parameters and data can be calibrated separately, as shown in Figure 5.

Unit Problem 1: 32D Cold Flow Unit Problem 2: 32D Hot Flow

Prior Distribution Prior Distnbution

Parameter 1 Parameter p Parameter 1 Parameter p

. — PN R Fa

Experimental Data & Experimental Data &
Sunulator Runs Sumulator Runs

Posterior Distribution Posterior Distribution
Parameter 1 Parameter p Parameter 1 Parameter p
N
,-‘n'\ .. 7N H .- Ia)
[\ \ A [\

Figure 6 — Hierarchical calibration flow diagram

Unit Problem 3: 32D Reacting Flow

Prior Distribution
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IMW Predictions

Prior Dustribution
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.
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Scale System
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