

Exceptional service in the national interest

DOE Subsurface Technology and Engineering RD&D (SubTER) Overview

Marianne C. Walck, Ph.D.

Director, Geoscience, Climate and Consequence Effects Center

November 12, 2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

DOE has created a crosscutting Subsurface Tech Team

The screenshot shows the ENERGY.GOV website with a green header. The header includes the ENERGY.GOV logo, a search bar, and navigation links for PUBLIC SERVICES, SCIENCE & INNOVATION, ENERGY SAVER, ABOUT ENERGY.GOV, and OFFICES. Below the header, the page title is "SUBSURFACE TECH TEAM". There is a collage of four images: a worker in a hard hat and safety gear, a large industrial pipe, a conveyor belt system, and a rocky landscape. To the right, there is a "LEARN MORE" sidebar with links to Home, About, and Public Events/Activities, and a "CONTACT US" section with the U.S. Department of Energy address and email: Subsurface@hq.doe.gov.

Home > Subsurface Tech Team

SUBSURFACE TECH TEAM

Energy sources originating from beneath the Earth's surface satisfy over 80% of total U.S. energy needs. Finding and effectively exploiting these resources while mitigating impacts of their use constitute major technical and socio-political challenges and opportunities.

Next generation advances in subsurface technologies will enable increases in domestic natural gas supplies, as well as more than 100 gigawatts equivalent (GWe) of clean, renewable geothermal energy.

BENEFITS

The subsurface provides hundreds of years of safe storage capacity for carbon dioxide (CO₂), and opportunities for environmentally responsible management and disposal of hazardous materials and other energy waste streams. The subsurface can also serve as a reservoir for energy storage for power produced from intermittent generation sources.

These opportunities have immediate connection to societal needs and administration priorities. Clean energy deployment and CO₂ storage are critical components of the President's Climate Action Plan, necessary to meet the 2050 greenhouse gas (GHG) emissions reduction target. Increasing domestic energy supply from greater hydrocarbon resource recovery, in a sustainable and environmentally sound manner, are also Administration goals that enhance national security and fuel economic growth.

The screenshot shows the U.S. Department of Energy website footer. It features the Department of Energy logo, links to Careers & Internships and Contact Us, and several informational links: 1000 Independence Ave. SW, Washington DC 20585, 202-586-5000; ABOUT THIS SITE (Web Policies, Privacy, No Fear Act, Whistleblower Protection, Information Quality, Open Gov, Accessibility); ENERGY DEPARTMENT (Budget & Performance, Directives, Delegations & Requirements, FOIA, Inspector General, Privacy Program, Small Business); and FEDERAL GOVERNMENT (The White House, USA.gov).

Common Subsurface Energy Challenges

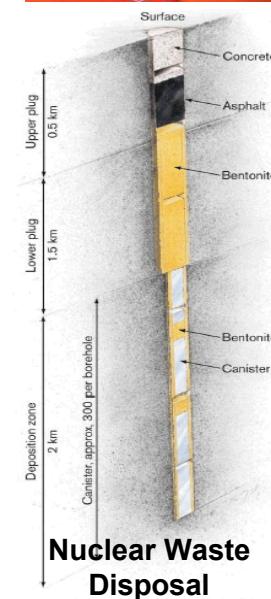
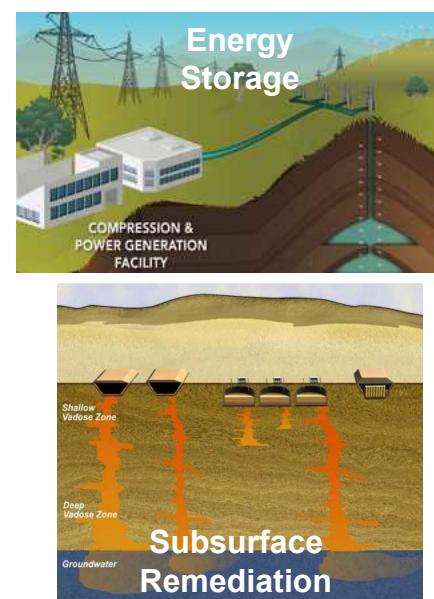
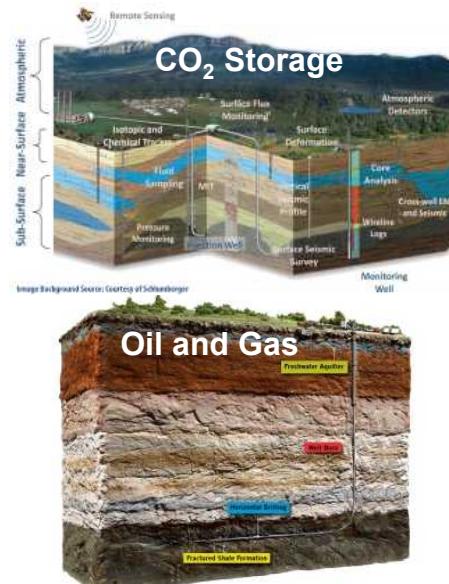
Discovering, Characterizing, and Predicting

Efficiently and accurately locate target geophysical and geochemical responses, finding more viable and low-risk resources, and quantitatively infer their evolution under future engineered conditions

Accessing

Safe and cost-effective drilling, with reservoir integrity

Engineering




Create/construct desired subsurface conditions in challenging high-pressure/high-temperature environments

Sustaining

Maintain optimal subsurface conditions over multi-decadal or longer time frames through complex system evolution

Monitoring

Improve observational methods and advance understanding of multi-scale complexities through system lifetimes

Overview of Program Roles

Energy Policy & Systems Analysis

- Advisement: Secretary of Energy
- Policy: low-carbon and secure energy economy
- Technical assistance: States and local entities

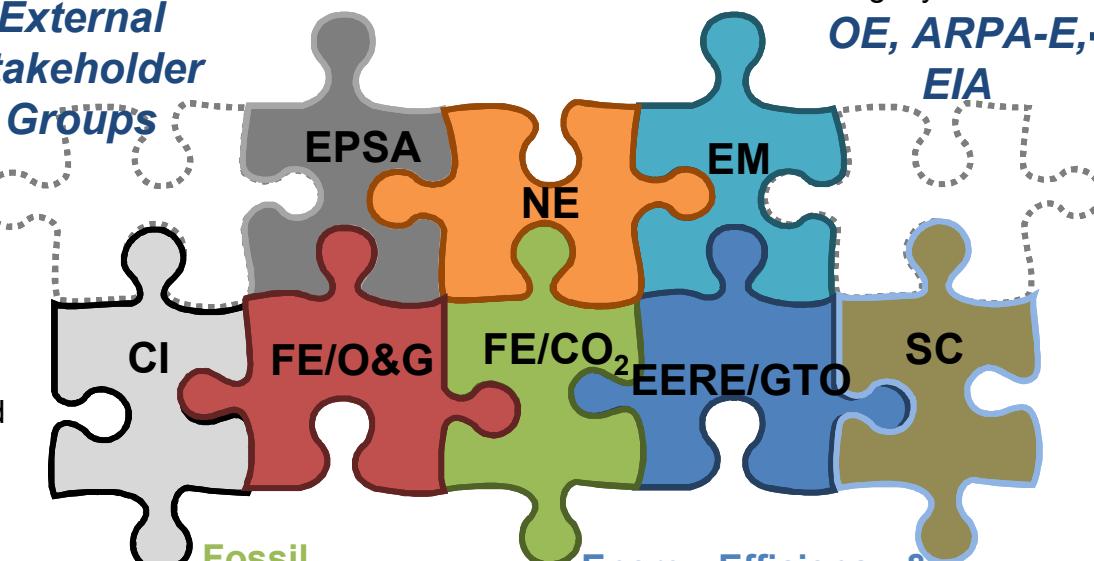
External Stakeholder Groups

Congressional & Inter-governmental Affairs

- Interactions: elected officials, regulators, and stakeholders
- Information access for change agents

Fossil Energy/Oil & Gas

- R&D and access: clean, affordable traditional fuel sources
- R&D: drilling, well construction and integrity, and hydraulic fracturing technologies


Nuclear Energy

- Policy and technology: disposition of used nuclear fuel and waste
- R&D: deep borehole disposal concept

Environmental Management

- Modeling and tools: subsurface evaluation and characterization
- Cleanup: nuclear weapons legacy

OE, ARPA-E, EIA

Fossil Energy/Carbon Storage

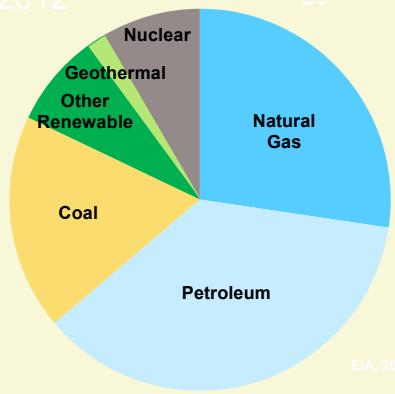
- Policy and technology: challenges of CO₂ storage to inform regulators, industry, and the public
- R&D: CO₂ offshore and onshore storage

Energy Efficiency & Renewable Energy/Geothermal Technologies Office

- R&D: locate, access, and develop geothermal resources
- R&D: access, create, and sustain enhanced geothermal systems (EGS)

SubTER Tech Team

- Encompasses relevant offices
- Reports to Under Secretary for Energy and Science
- Identifies and facilitates crosscutting subsurface R&D and policy priorities for DOE
- Develops collaborative spend plan and funding scenarios

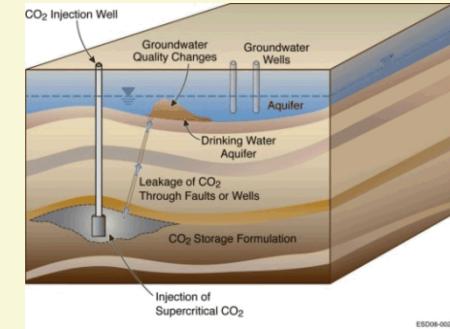

Science

- Basic research: geology, geophysics, and biogeochemistry
- Expertise: subsurface chemistry, complex fluid flow

The National Labs Subsurface Big Idea – March, 2014: Adaptive Control of Subsurface Fractures and Flow

FRACTURE CONTROL IS CRITICAL FOR MANY SUBSURFACE ENERGY STRATEGIES
shale hydrocarbon, geologic carbon sequestration, enhanced geothermal energy, nuclear waste disposal, compressed air energy storage

EIA, 2012


The subsurface supplies >80% of US Energy

Shale Hydrocarbon Production

Control fracture length & branching patterns, and flow

Safe Subsurface Storage of CO₂

Enhance injectivity, optimize storage, plug leakage pathways

Anticipated Outcomes:

- ▶ Doubling of recovery efficiency from tight hydrocarbon reservoirs
- ▶ Order-of-magnitude increase in geothermal production
- ▶ Technical basis for safe and secure carbon sequestration and geologic nuclear waste disposal
- ▶ Increased public confidence
- ▶ Sustained U.S. leadership in subsurface technologies

Subsurface Working Team: 13 Laboratories

ANL: Mark Nutt

BNL: Martin Schoonen

INL: Earl Mattson, Hai Huang

LANL: Rajesh Pawar, Melissa Fox, Andy Wolfsberg

LBNL: Susan Hubbard (co-lead), Curt Oldenburg (deputy), Jens Birkholzer

LLNL: Roger Aines, Jeff Roberts, Rob Mellors

NREL: Charles Visser

NETL: Grant Bromhal, Cindy Powell

ORNL: Eric Pierce, Yarom Polksky

PNNL: Alain Bonneville, Dawn Wellman

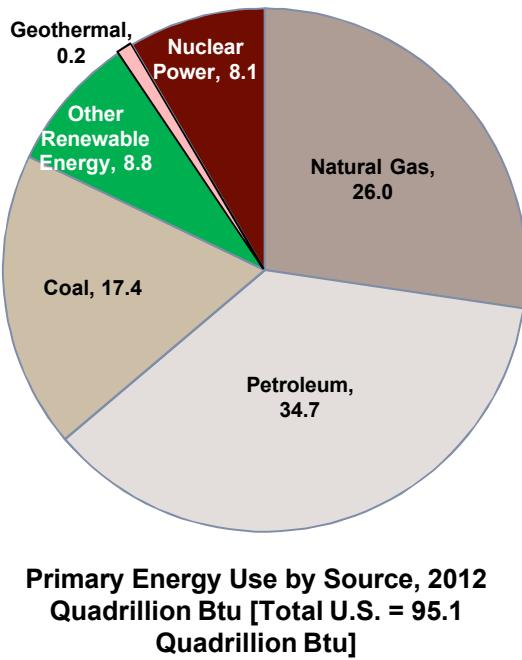
SLAC: Gordon Brown

SNL: Marianne Walck (co-lead), Doug Blankenship (deputy), Susan Altman

SRNL: Lisa Oliver, Ralph Nichols

Subsurface Control for a Safe and Effective Energy Future

Adaptive Control of Subsurface Fractures and Fluid Flow


Intelligent Wellbore Systems

Subsurface Stress & Induced Seismicity

Permeability Manipulation

New Subsurface Signals

Energy Field Observatories

Energy Production

- Increase U.S. electrical production from geothermal reservoirs
- Increase U.S. unconventional oil and natural gas for multiple uses

Economic & Social Benefits

- Retain U.S. leadership
- Increased public confidence
- Increase revenues (taxes and royalty) to Federal, State, and local governments

Protect the Environment

- President's Climate Action Plan: Safely store CO₂ to meet GHG emissions reduction targets
- Safe storage/disposal of nuclear waste
- Reduced risk of induced seismicity
- Protect drinking water resources

Energy Security

- Increased recovery factors from tight formations can vastly increase the longevity of US energy security

Subsurface Control for a Safe and Effective Energy Future

Adaptive Control of Subsurface Fractures and Fluid Flow

Intelligent Wellbore Systems

Materials: adaptive cements, muds, casing

Real time, in-situ data acquisition and transmission system

Diagnostics tools, remediation tools and techniques

Quantification of material/seal fatigue and failure

Advanced drilling and completion tools (e.g., anticipative drilling & centralizers)

Well abandonment analysis/R&D

Subsurface Stress & Induced Seismicity

Stress state beyond the borehole

Signal acquisition and processing and inversion

Localized manipulation of subsurface stress

Risk assessment

Permeability Manipulation

Physicochemical rock physics, including fluid-rock interactions

New approaches to remotely characterize in-situ fractures and to monitor fracture initiation/branching and fluid flow

Manipulating (enhancing, reducing and eliminating) flow paths

Novel stimulation methods

New Subsurface Signals

Diagnostic signatures of system behavior and critical thresholds

Autonomous acquisition, processing and assimilation approaches

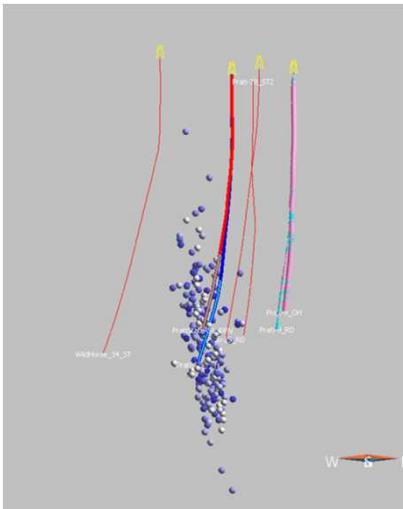
Integration of different measurements collected over different scales to quantify critical parameters and improve spatial and temporal resolutions

Energy Field Observatories (Wells, Ops and Logistics)

Fit For Purpose Simulation Capabilities

What Is Unique About the SubTER Proposal?

Courtesy of Ravn Power

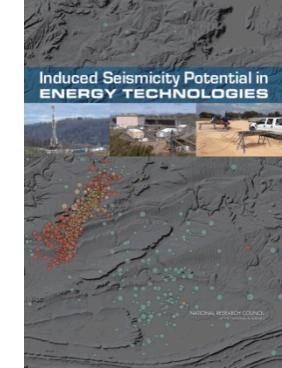

Courtesy of CalEnergy

Courtesy of Geothermal Resources Council

- Facilitates innovation to address **climate change** and reduce greenhouse gas emissions
 - Safe storage of CO₂
 - Increased deployment of renewable energy (geothermal)
 - Reduction of fugitive methane emissions through improved wellbore technologies, etc.
- Addresses challenges and opportunities with **water** management
- Drives innovation to improve **safety** associated with subsurface energy operations
- Advances new concepts for safe and responsible disposal of **nuclear waste**
- Increased recovery factors from tight formations can vastly increase the longevity of US **energy security**
- Implementation of a **new collaborative model** to tackle an energy “grand challenge” faced by multiple sectors

Criticality of Core Themes

Subsurface Stress and Induced Seismicity


Induced
Seismicity at The
Geysers
Geothermal Field
(Calpine)

Increasing societal relevance of induced seismicity as EGS deployment and CO₂ storage grow, akin to oil and gas today

Experts Eye Oil and Gas Industry as Quakes Shake Oklahoma
--New York Times, Dec. 12, 2013

Approach to Date: Geothermal sector has proactively developed its own induced seismicity management protocol. CO₂ storage developing new risk assessment tools through NRAP.

Subsurface Stress and Induced Seismicity Program:

- Improved stress measurements
- Broader data acquisition and sharing
- Advanced risk assessment tools

Permeability Manipulation and New Subsurface Signals are also critical components of overall effective reservoir management that are essential for scaling up EGS and CO₂ storage safely and effectively

Outcomes:

- Improved understanding of the subsurface
- Mitigation and reduced risk
- Safe scale up
- Improved resource identification and development

Criticality of Core Themes

Wellbore Integrity

New Study Published in the Proceedings of the National Academy of Science Highlights Wellbore Integrity as a Critical Issue

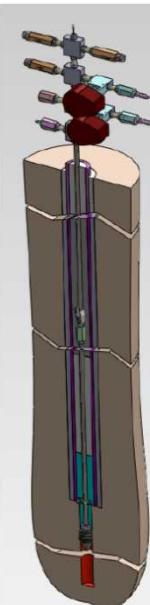
--Darrah et al. PNAS- September 15, 2014

"We document fugitive gases in eight clusters of domestic water wells overlying the Marcellus and Barnett Shales, including declining water quality through time over the Barnett. Gas geochemistry data implicate leaks through annulus cement (four cases), production casings (three cases), and underground well failure (one case) rather than gas migration induced by hydraulic fracturing deep underground."

Deep borehole disposal provides an alternative approach.

Quarrels Continue Over Repository for Nuclear Waste –New York Times, June 27, 2013

Approach: New Ways to Control Permeability and Flow


Precise control over fracturing and fluid flow is critical for efficient extraction of energy resources, as well as for containment of CO₂ and waste streams.

Approach to Date:

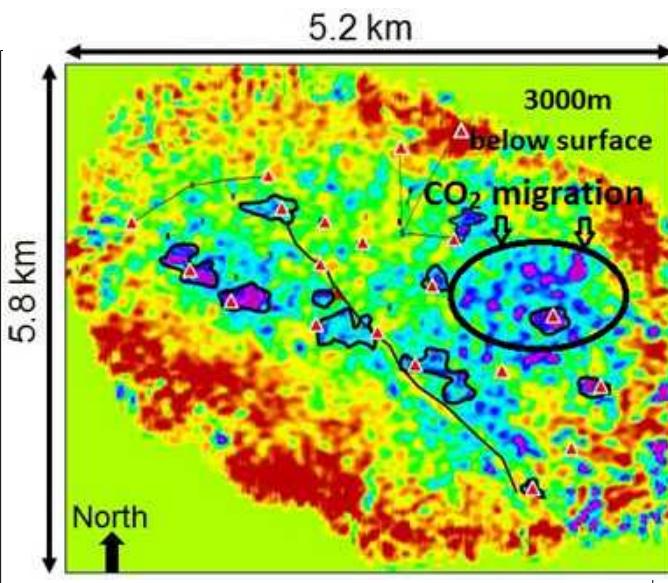
- Geometry-based approaches
- Chemical manipulation
- Incomplete physical treatment in models

Gas phase bi-propellant energetic stimulation design
(Sandia National Laboratories)

SubTER Permeability Manipulation Objectives:

- Novel stimulation techniques (e.g., water-free energetics, shape-memory alloys)
- Advances in reservoir and seal performance mechanisms for contaminant flow and trapping
- In-situ, real time imaging, modeling, and analysis of flow

Outcomes:


- Improved control over fluid migration and reservoir integrity
- Mitigation and reduced risk
- Safe scale up of EGS, carbon storage, and high-level waste disposal

Approach: New Ways to Acquire and Integrate Subsurface Signals

High fidelity characterization of subsurface environments is critical to successful subsurface engineering efforts.

Approach to Date:

- Seismic, electromagnetic, and gravity methods from the surface and the wellbore.

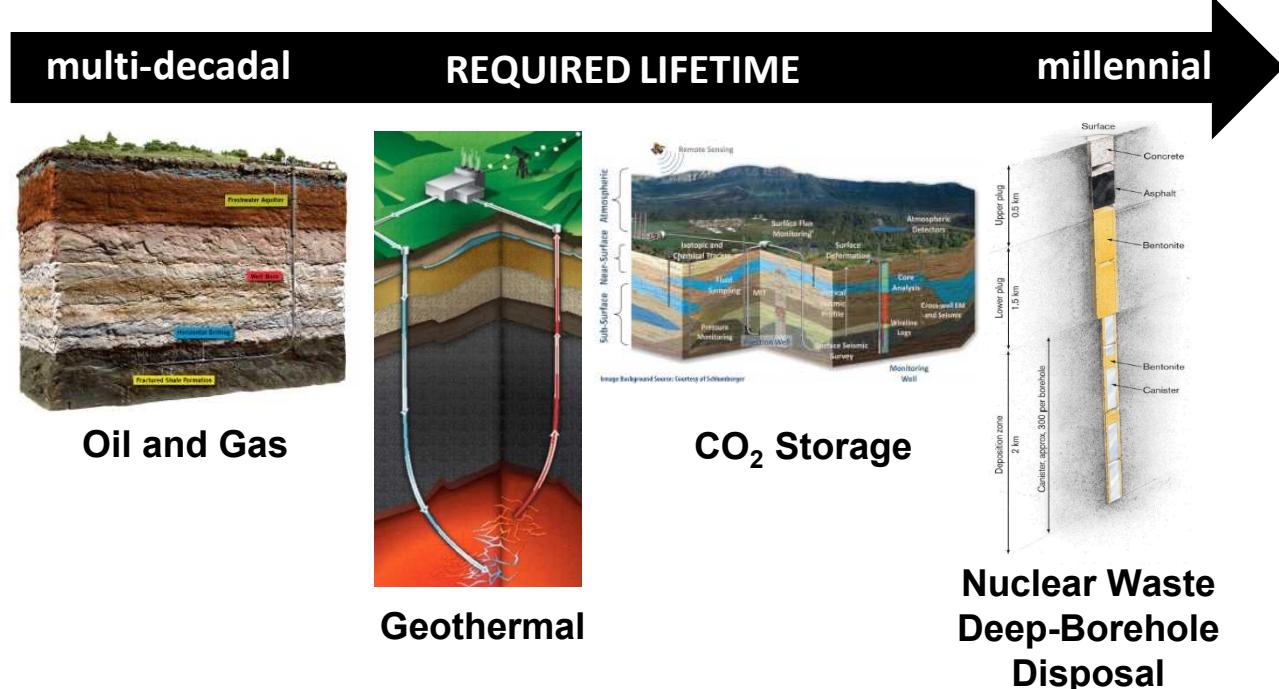
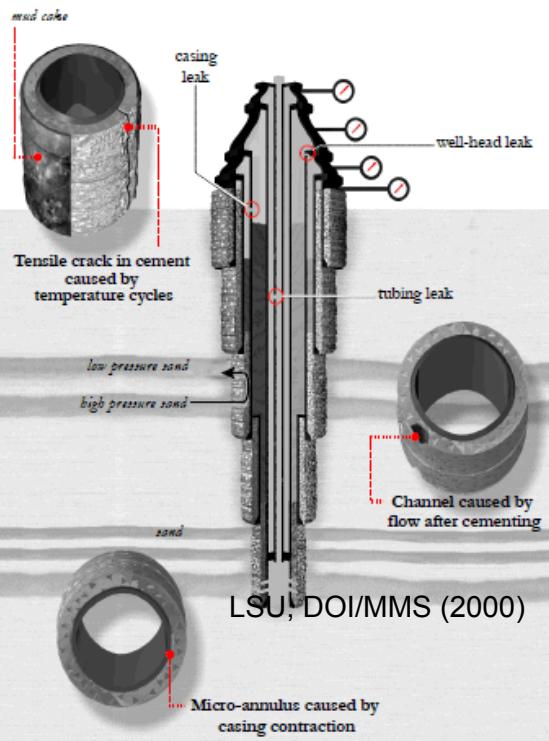
High resolution inverted seismic images of CO₂ migration at the Cranfield injection site

SubTER Subsurface Signals Objectives:

- R&D on small-scale deployable sensors
- Autonomous acquisition, processing and assimilation
- Identification of critical system transitions

Outcomes:

- New ways to “see” subsurface fractures and fluid pathways.
- Acquisition of data necessary for adaptive control of subsurface fractures and fluid flow.

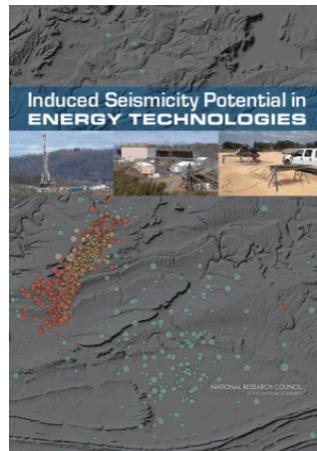
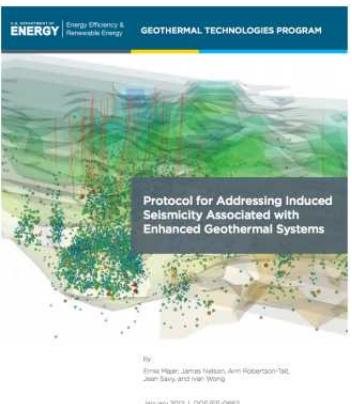


Approach: Intelligent Wellbore Systems R&D

Intelligent Wellbores: Self-healing cements and integrated-casing monitoring systems for enhanced wellbore performance assurance

wide band gap semiconductors + advanced manufacturing + HT electronics and sensors + materials science industry + national labs + academia

Casing/cement failure modes

Class VI permit process, used-fuel disposition regulatory framework,...



Approach: “Virtual” Field Observatory

Increasing societal relevance of induced seismicity as wastewater injection associated with natural gas extraction continues to expand and as EGS deployment grows.

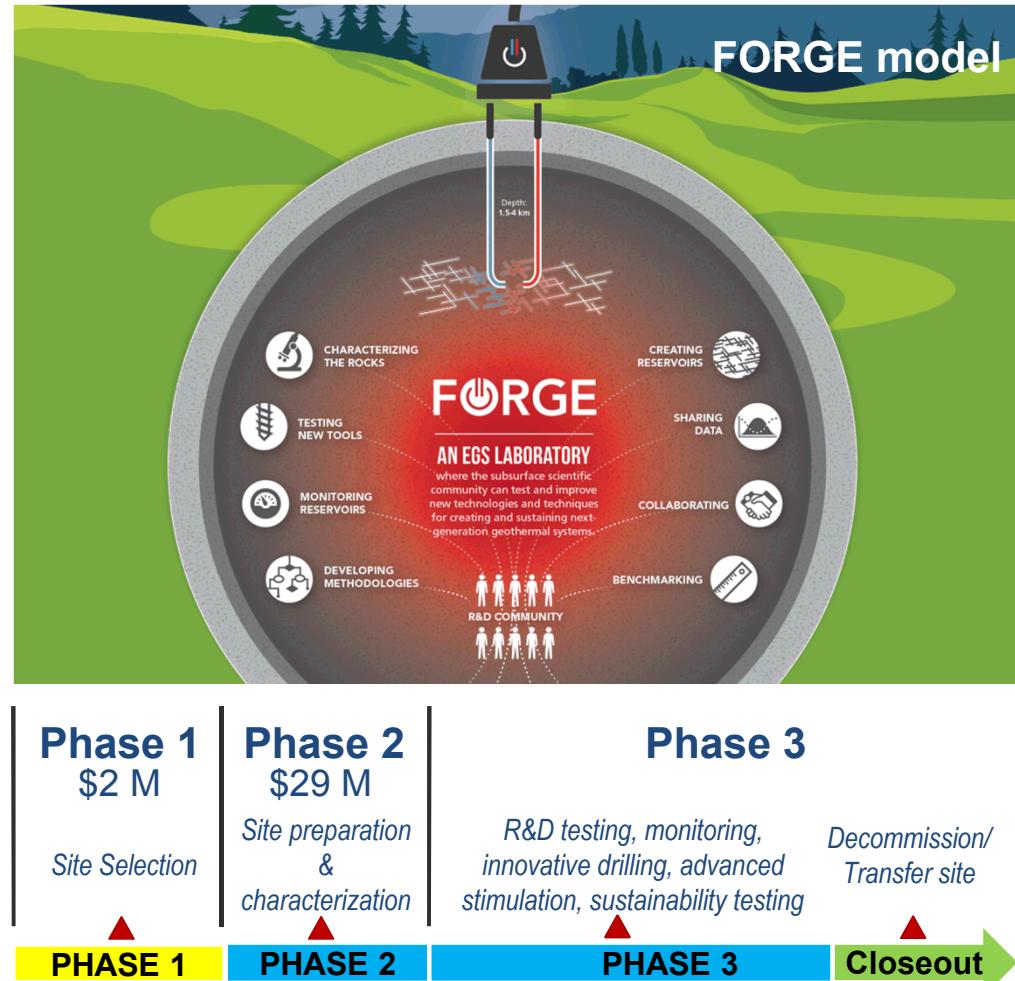
Approach to Date:

- Induced seismicity management protocol

SubTER Subsurface Stress and Induced Seismicity Program:

- Improved stress measurements
- Broader data acquisition and sharing
- Advanced risk assessment tools

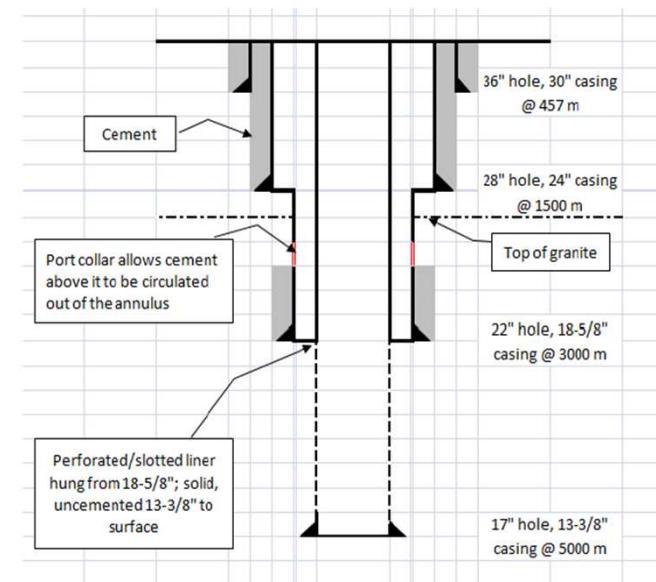
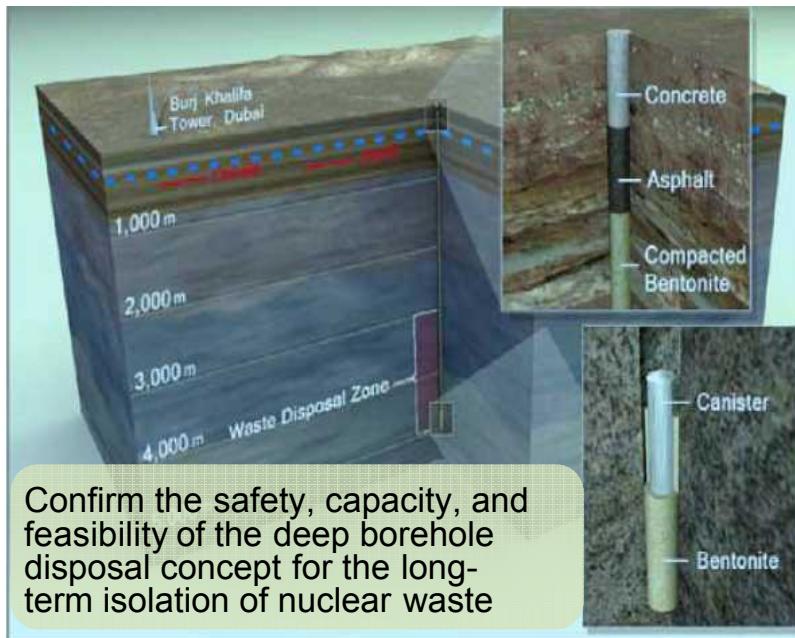
Permeability Manipulation and New Subsurface Signals are also critical components of overall effective reservoir management that are essential for ensuring safe and effective subsurface operations.


Outcomes:

- Improved understanding of the subsurface
- Mitigation and reduced risk
- Safe scale up of EGS and carbon storage
- Improved resource identification and development

Approach: Field Observatories are Critically Important to SubTER Efforts

Required for fundamental subsurface progress:



- Validation through monitoring/production
- Site-specific conditions
- Strong industry engagement
- Multiple business models:
 - Fit-for-purpose, dedicated site (FORGE, RMOTC)
 - Isolated, targeted effort (Frio CCS pilot)
 - Opportunistic (Weyburn)
- Expensive: individual sites = \$10-35M/year commitment

*Validation of new results and approaches at commercial scale;
Road-test monitoring, stimulation, and permeability- and flow-control tools*

Approach: Deep Borehole Field Test

- Demonstrate the feasibility of characterizing and engineering deep boreholes (no actual waste disposal)
- Demonstrate safe processes and operations for safe waste emplacement downhole

Crosscut Benefit: Drilling technology, well construction and integrity, and subsurface characterization.

Clear Alignment with Industry and Stakeholder Priorities

Sandia
National
Laboratories

- Nanotechnology
- Photonics
- *Interfacial Chemistry*
- *Complex Fracture Modeling in Real-time*
- Spectroscopy at the Bit
- Green Chemistry

Society of Petroleum Engineers

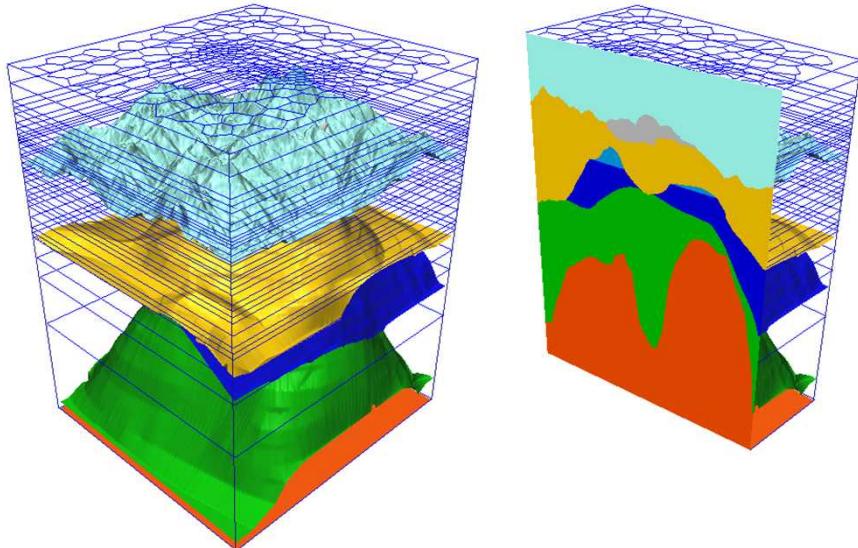
- *Higher Resolution Subsurface Imaging*
- Challenges in Reusing Produced Water
- *In-Situ Molecular Manipulation*
- Increasing Hydrocarbon Recovery Factors
- *Carbon Capture and Sequestration*

the Bernard M. Gordon Center
for Subsurface Sensing & Imaging Systems

- *Subsurface Sensing and Imaging*
- *Physics-Based Signal Processing and Image Understanding*

THE NATIONAL ACADEMIES
Advisers to the Nation on Science, Engineering, and Medicine

Grand Challenges for Earth Resources


Engineering

- *Make the earth transparent*
- *Understand engineering control of coupled subsurface processes*
- *Minimize environmental footprint*
- *Protect people*

- Recognizing the signal within the natural variability
- *Identifying feedback between natural and perturbed systems*
- Quantifying consequences, impacts, and effects
- *Effectively communicating uncertainty and relative risk*

Moving Forward

Stakeholder engagements (DOE/Labs)

- NAS/NRC COGGE Capability Presentation: April 29, 2014; NAS/NRC meeting October 23, 2014
- JASON kickoff: June 20, 2014 – JASON report now available online: funding from 7 DOE Offices
- USEA: July 22, 2014, October 30, 2014
- Shell Rock and Fluid Physics Conference (Amsterdam): September
- QTR engagement – assistance to DOE (ongoing)

Upcoming events

- AGU: Town Hall (December 15), special sessions
- Lab Workshop: November 18-19
- Industry engagement – workshop planned for Spring 2015

DOE: 6 small FY14 projects initiated

Seed funding to these projects will kick-start efforts in FY15, FY16 and beyond . . .

Summary and Vision

- The need for dramatic improvements in subsurface capabilities is both well documented and urgent.
 - Improved recovery factors, CO₂ and energy storage, disposal
 - Subsurface characterization, high resolution imaging, manipulation and management of all subsurface activities
 - Safety, reliability, mitigation of environmental effects, and significant policy impacts
- The DOE Program Offices have worked together and with the National Labs since mid 2013 to identify key approaches and tasks (4 pillars).
 - Actively engaging external stakeholders, including USGS, NSF, industry, additional sectors: RFI, consultations, Jason's study, facilitated meetings
- Field Observatories play an important role in validation of new technologies and approaches.