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} A Segregated System
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* Most of A;; are “large sparse” matrices
* This structure 1s common:
1. Multi-physics (the focus of this talk)
2. Constraints
3. Optimization
* “Effective preconditioners’ are robust and scalable for
these systems



My working definition: Multi-physics

For example
1.

2.
3.
4

Multi-Physics PDEs

PDEs are characterized by
multiple interacting time and
spatial scales arising from
coupling between many distinct
physical fields and mechanisms.

Fluid-dynamics
Magnetohydrodynamics
Semiconductor modeling
Many more...




A
}‘ MHD example: Multiple Time Scales

MHD has multiple interacting time scales

Often much faster than target mechanism

Interaction makes operator splitting more challenging (time
scales not well separated)

We will use implicit time stepping with block
preconditioners targeting each time scale

Island Sloshing
Magnetic

Island Merging

! |
107 106 10 104 103 10-2 10" 100 10°

Time Scale



\

ome “Classical’ Block Preconditioners

Benefits:
* Easy to implement!

* Nice convergence theory
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When are they “effective”?

* Little coupling

* One directional coupling



A
p Schur Complements for 2x2 Systems

Use a block LU factorization:

{Aoo Ao1} _ { I } {Aoo Aoq
Ag Ap ApAyy T S
where S = All — AlOAaglAOl

An 1mportant result:
M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on
preconditioning for indefinite linear systems, SISC, 21 (2000).

A A
Moo = { 00 51}



A
1" A First-Order PDE

Assume positive a.., simplifies to a second order wave:

Qu_l_auu Gup| O [u| [0
ot |v Ayy  Qpy | Ox |V - 0

Using a finite difference discretization, Jacobian is:
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Three Block Preconditioners

Aoo
Mry=1"" a4,

A
Mgg = |7 A(ﬁ

A
Mg — |10 So1

* h=1/500, At=h

 GMRES iterations averaged
over 10 steps

* Required inverses of Ay, Ay,
and S computed directly




—"
Mgorithm” for Block Preconditioner
Development

A quick and dirty (1.e. non-rigorous) approach to

understanding what 1s included in a block preconditioner:

1. Consider the desired time step At

2. Look at explicit stability limit of all time scales:
 Diffusion: vAt/Ax?
* Advection: |u|At/Ax
*  Waves (typically from coupling): [w|At/Ax

3. Everything where the stability limit 1s “relatively
large™ for the desired time step must be addressed
in the preconditioner!



A
} Incompressible Navier-Stokes

Ju+u-Vu—V - vVu+Vp=1f
V-u=»J0

Segregated Jacobian 1s (C=0 implies stable discretization):
F BTl [ I FBT:>M_FBT
B C| |BF!' I S B S

where S~ C — BF~1B7T

F~1 ~ ! using multigrid
S—1 ~ S~ using SIMPLEC, PCD or LSC



A 4
#/ier-Stokes: SIMPLEC Schur Complement

Use Neumann series expansion (assume)

Fl=M'N (1-FMY)
1=0

Truncate after K terms
1

S=C-B (Ml » (I- FMW’) BT
i=0

For K=0: explicitly compute approximate Schur complement

M = diag(F)'is SIMPLE

« M =absRowSum(F)’ is SIMPLEC

SIMPLE-like methods restricted by assumptions on Neumann series

» CFL like constraint on time step for effective preconditioner



p Navier-Stokes: Commuting

To avoid CFL restriction, try another approach: Assume

0 5 0 5
V'(E—FW-V— vV )U,N (E—I—W-V— vV )pV-

motivates discrete commuting
BQ,'F ~ F,Q,'B
which gives an approximate Schur complement (for C=0)
S=-BF'B" ~ -Q,F, " (BQ,'B") =5

F, is a discrete convection-diffusion operator on pressure



} Navier-Stokes: PCD Approximation

S—1 ~ —(BQ,;lBT)_lele
| J ]

Pressure Laplacian < = Pressure Mass

Pressure Conv-Diff
Need to approximate
1. Inverse of pressure Laplacian
2. Application of pressure convection-diffusion operator

3. Pressure mass inverse (just use a lumped inverse!)

Pressure Convection-Diffusion (PCD) method

* Explicit construction Laplacian and conv-diff operators

V.V~ A4, %ﬁme—ﬂ%VNE,

* Gives PCD schur complement approximation

S~ x Spbp = A F,Q!



A
p Navier-Stokes: LSC Approximation

PCD works well — but not algebraic!

> requires extra infrastructure to construct 4, and F,

Lease-Squares Commutator (LSC) addresses this

(FpQ,;l)T ~ argmin |B* X — F1' Q. 'B!|
X

Substituting LS approximation of /), into § gives

St~ ST en = —(BQ;'BY) Y (BQ,'FQ,'B")(BQ,'B")™!
| ] 1 J
Approximated with AMG <+=—— —> Hasy to evaluate




hier-Stokes: Schur Complement Summary

e
SIMPLEC —B AbsRowSum(F) 'B* —B AbsRowSum(F) 'B?
PCD QpFy 4y A
LSC —(BQ:'BT)(BQ'FQ;*BTy"Y(BQ;'BT) (BQ; 'BT)~!




Navier-Stokes: Results

Linear Ite;ations: Re=200 with S‘UPG-PSPG
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Backward Facing Step: Steady
* Re =200
* 1 to 1024 Processors

* Stabilization:
* Pressure: PSPG
* Velocity: SUPG (residual only)
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Kelvin Helmholtz: Transient

* Re =5000

* ] to 1024Processors

* Stabilization: SUPG & PSPG
*CFL=2.5
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* E. C. Cyr, J. N. Shadid, R. S. Tuminaro, Stabilization and Scalable Block Preconditioning for the Navier-Stokes

Equations, J. Comp. Phys., 231:345-363, 2011.



A 1
4 compressible MHD: B-Field Lagrange
Multiplier Formulation

Magnetohydrodynamics (MHD) equations couple fluid flow to
magnetics equations

@—FH'VU—VVQU—FV]?— i(V x B) x B =f
ot o
V-u=0
a—B—Vx(uxB)+EV><V><B+Vr:O
875 7o
V-B=0
Using a stabilized finite element formulation
F Bg Z 1 [u f
B, C, p 0
Jx= |y D BT| |B|~ |o
i Br,a CB_ _’l“_ _0_

* Equal order basis functions for all fields, C, and C; are nonzero stabilization operators



A 4
p Multiple Time Scales: MHD

1
O M Vu— Va4 Vp— = (V x B) x B —f
ot o

V-u =0

B
8——V><(u><B)+EV><V><B+Vr:O
ot 10

V-B =0
Some time scales are obvious:
» Diffusion (fast, often implicit)
» Elliptic constraints (real fast, often implicit)

» Advection (fast or slow, explicit or implicit)

Others are not so obvious (to me anyway)



A 4
}" Multiple Time Scales: MHD

1
Jou | u-Véu—l—V5p—[—(V><5B)><B}:O
[875] o
V-ou=0

908 —{V X (du x Bﬂntv&r =0

ot
V.-0B =0

A linearization about (u,B), dropped diffusive terms
» Particulars of linearization important to fixed point
convergence
Alfvén Wave generated by coupling
o o B
» Highlighed coupling gives wave speed: v4 = ——
. (19 29 : : plL[/O
» Secondary gives wave “character’: anisotropic




Can | see the Alfvén wave?

Magnetic Reconnection Simulation

a=aigl

Yep! Alfvén wave effects can be seen D =& C
clearly in magnetic reconnection © ' ' ©

Aurora Borealis

https://www.voutube.om/watch?v:i_x3 s80DaKg http://en.wikipedia.org/wiki/File:Northern Lights 2.jpg



https://www.youtube.com/watch?v=i_x3s8ODaKg

A 4
}" Splitting for MHD

Two split block factorization preconditioners

(A) Mspiitas =

> Coupled multigrid for magnetics ([))
» Block LU with SIMPLEC for Magnetics-Velocity (Alfvén)
» Block LU with PCD or SIMPLEC for Fluids

F BT
B C

F Z1 [F!

A A~

Y D I

F Z 1 F BY
Mot aoa = I I B, C.

phit-ax Y D D! D Bf
i I I By (|
» Block LU with SIMPLEC for Magnetics-Velocity (Alfvén)

» Block LU with PCD or SIMPLEC for Fluids
» Block LU with SIMPLEC for magnetics

Shameless plug - previous splitting for 2D vector potential MHD formulation in: Cyr, et al., “A new
approximate block factorization for 2D incompressible (reduced) resistive MHD ", SISC 2013



p Do these splittings work?

Structurally small perturbation:

F BT A
Mspiit-3x3 = | B ¢
Y |YF'B"| D
Favorable spectrum:
o i,
ng’plz’t—BXB = I A
Ay Ay (D-YF 'K, Z)P~!

S,=C—BF B!
K,=I+B"'S;'BF~!
P=D-YF !z

A =YF 'K,
Ay =-YF BTSS!



p Do these splittings work?

Structurally small perturbation:

F BT Z |ZD 'B!
By, Cy
il YyF-'BT| D BT
] B, Cr |
Favorable (?) spectrum:
] Aq Ao ]
1

1
T Mspiit-axa = As A, (D—YF-1K,7)P-!

I

A, = Z(-I+ D 'K,D)P~!
Ay =—ZD7'By S,

A3 =YF 'K,
Ay=-YF'Btst

S,=C—BF'BY
Sy, =C — BD~ BT
P=D-YF 1z

K,=1+B'S 'BFr!
Ky=I1+B"S,'BD™!
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Results details:
» Magnetically stabilized 3D shear layer transient simulation
> Run to 5 time units with 2" order BDF

» Uniform mesh (bilinear elements, 8 unknowns/node)
» Run on 4, 32, 256, 2048 processors (~8,000 unks/core)



Average Linear Iterations

\

HMKH: Weak Scaling (CFL~0.125)

lterations vs Unknown
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Split-3x3: 3x3 Splitting (SIMPLEC everywhere)
Split-4x4: 4x4 Splitting (SIMPLEC everywhere)

Take home: Split preconditioner scales algorithmically,
more relevant for mixed discretizations
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Average Linear Iterations

\

HMKH: Weak Scaling (CFL~1.125)

Sol\(e Time vs Unknown CQunt

Iterations VS U‘nknown Co‘unt
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ML: Uncoupled AMG with repartitioning Split-3x3: 3x3 Splitting (SIMPLEC everywhere)
DD: Additive Schwarz Domain Decomposition Split-4x4: 4x4 Splitting (SIMPLEC everywhere)

Take home: Split preconditioner scales algorithmically,
more relevant for mixed discretizations
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A
#a.nd Coalescence (IC): 2D Vector Potential

1A

Simulation on half domain
* Symmetry BC
e Perturbed Harris-Sheet

A%z,y,0) = 6 In |cosh (%) + € cos (:SE)]

(-1

Results details (an mitial study):
> Lundquist number: 104
» Starting time right before reconnection: 5.75s
» Results averaged over 45 uniform timesteps
» Runon 1,4, 16, 64, 256, and 1024 processors (~33000

unks/core)
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IC: Weak Scaling

Linear Iterations: At=0.0125
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Time/Nonlinear Step: At=0.0125
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Block Preconditioners
Split: New Operator split preconditioner
SIMPLEC: Extreme diagonal approximations

Take home: Split preconditioner scales algorithmically,
more relevant for mixed discretizations

* E. C. Cyr, J. N. Shadid, R. S. Tuminaro, R. P. Pawlowski, L. Chacon, A New Approximate Block Factorization Preconditioner for Two
Dimensional Incompressible (Reduced) Resistive MHD”, SIAM Journal on Scientific Computing, 2013.



A 4
}" Final Thoughts

Discussed block preconditioning

* Multi-physics has broad range of time and spatial scales
* Block Jacobian segregated by physical field

* For tightly coupled physics must handle coupling

* Coupling in Schur complement

* Scalability attained by leveraging multigrid

Showed Results for Navier-Stokes

* Presented SIMPLE, PCD and LSC approximations
* Showed scaling results for stabilized discretizations
Show results for 2D MHD

* Developed operator-split preconditioner
» Focuses on elliptic incompressibility and Alfven wave

* Showed results indicating good performance



