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A Segregated System

• Most of Aij are “large sparse” matrices

• This structure is common:

1. Multi-physics (the focus of this talk)

2. Constraints

3. Optimization

• “Effective preconditioners” are robust and scalable for 

these systems



Multi-Physics PDEs

My working definition: Multi-physics 

PDEs are characterized by 

multiple interacting time and 

spatial scales arising from 

coupling between many distinct 

physical fields and mechanisms.

For example

1. Fluid-dynamics

2. Magnetohydrodynamics

3. Semiconductor modeling

4. Many more…



MHD example: Multiple Time Scales

MHD has multiple interacting time scales

• Often much faster than target mechanism

• Interaction makes operator splitting more challenging (time 
scales not well separated)

• We will use implicit time stepping with block 
preconditioners targeting each time scale



Some “Classical” Block Preconditioners

Benefits:

• Easy to implement!

• Nice convergence theory

When are they “effective”?

• Little coupling

• One directional coupling

Jacobi Gauss-Seidel



Schur Complements for 2x2 Systems

An important result:

M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on 

preconditioning for indefinite linear systems, SISC, 21 (2000).

Use a block LU factorization:



A First-Order PDE

Assume positive a**, simplifies to a second order wave:

Using a finite difference discretization, Jacobian is: 



Three Block Preconditioners

• h=1/500, Δt=h
• GMRES iterations averaged 

over 10 steps
• Required inverses of A00, A11, 

and S computed directly

auu/avv auv avu MJ MGS MSC CF
L

1 1 1 2 2 2 1

1 10 10 42 34 2 10

1 10
0

10
0

31
7

251 2 100

1 10 1 3.8 3 2 3

1 10
0

1 44 42 2 10

1 10
0

10 14
1

131 2 31

10 1 1 3 2 2 0.1

10 10 10 2 3 2 1

10 10
0

10
0

77 49 2 10



My “Algorithm” for Block Preconditioner
Development

A quick and dirty (i.e. non-rigorous) approach to 

understanding what is included in a block preconditioner:

1. Consider the desired time step Δt

2. Look at explicit stability limit of all time scales:

• Diffusion: νΔt/Δx2

• Advection: |u|Δt/Δx

• Waves (typically from coupling): |w|Δt/Δx

3. Everything where the stability limit is “relatively 

large” for the desired time step must be addressed 

in the preconditioner!



Incompressible Navier-Stokes

Segregated Jacobian is (C=0 implies stable discretization):

• using multigrid

• using SIMPLEC, PCD or LSC



Navier-Stokes: SIMPLEC Schur Complement

Use Neumann series expansion (assume)

Truncate after K terms

For K=0: explicitly compute approximate Schur complement

• M-1 = diag(F)-1 is SIMPLE

• M-1 = absRowSum(F)-1 is SIMPLEC

SIMPLE-like methods restricted by assumptions on Neumann series

 CFL like constraint on time step for effective preconditioner



Navier-Stokes: Commuting

To avoid CFL restriction, try another approach: Assume

motivates discrete commuting

which gives an approximate Schur complement (for C=0)

is a discrete convection-diffusion operator on pressure



Navier-Stokes: PCD Approximation

Pressure Laplacian

Pressure Conv-Diff

Pressure Mass

Need to approximate

1. Inverse of pressure Laplacian

2. Application of pressure convection-diffusion operator

3. Pressure mass inverse (just use a lumped inverse!)

Pressure Convection-Diffusion (PCD) method

• Explicit construction Laplacian and conv-diff operators

• Gives PCD schur complement approximation



Navier-Stokes: LSC Approximation

PCD works well – but not algebraic!

 requires extra infrastructure to construct Ap and Fp

Lease-Squares Commutator (LSC) addresses this

Approximated with AMG Easy to evaluate

Substituting LS approximation of Fp into S gives



Navier-Stokes: Schur Complement Summary

SIMPLEC

PCD

LSC

Inverses
Required



Navier-Stokes: Results

Backward Facing Step: Steady
• Re = 200
• 1 to 1024 Processors
• Stabilization:

• Pressure: PSPG
• Velocity: SUPG (residual only)

Kelvin Helmholtz: Transient
• Re = 5000
• 1 to 1024Processors
• Stabilization: SUPG & PSPG
• CFL = 2.5

* E. C. Cyr, J. N. Shadid, R. S. Tuminaro, Stabilization and Scalable Block Preconditioning for the Navier-Stokes 
Equations, J. Comp. Phys., 231:345-363, 2011.  



Incompressible MHD: B-Field Lagrange

Multiplier Formulation

Magnetohydrodynamics (MHD) equations couple fluid flow to 
magnetics equations

Using a stabilized finite element formulation

• Equal order basis functions for all fields, Cu and CB are nonzero stabilization operators



Multiple Time Scales: MHD

Some time scales are obvious:

 Diffusion (fast, often implicit) 

 Elliptic constraints (real fast, often implicit)

 Advection (fast or slow, explicit or implicit)

Others are not so obvious (to me anyway)



Multiple Time Scales: MHD

A linearization about (u,B), dropped diffusive terms
 Particulars of linearization important to fixed point 

convergence 

Alfvén Wave generated by coupling
 Highlighed coupling gives wave speed: 

 Secondary gives wave “character”: anisotropic



Magnetic Reconnection Simulation

Can I see the Alfvén wave?

Yep! Alfvén wave effects can be seen 
clearly in magnetic reconnection

https://www.youtube.com/watch?v=i_x3s8ODaKg

NASA Magnetic Reconnection Animation

http://en.wikipedia.org/wiki/File:Northern_Lights_2.jpg

Aurora Borealis

https://www.youtube.com/watch?v=i_x3s8ODaKg


Splitting for MHD

Two split block factorization preconditioners

Shameless plug - previous splitting for 2D vector potential MHD formulation in: Cyr, et al., “A new 
approximate block factorization for 2D incompressible (reduced) resistive MHD”, SISC 2013

 Block LU with SIMPLEC for Magnetics-Velocity (Alfvén)

 Block LU with PCD or SIMPLEC for Fluids

 Block LU with SIMPLEC for magnetics

 Coupled multigrid for magnetics (    )

 Block LU with SIMPLEC for Magnetics-Velocity (Alfvén)

 Block LU with PCD or SIMPLEC for Fluids

B

A



Do these splittings work?

Structurally small perturbation:

Favorable spectrum:

-1



Do these splittings work?
Structurally small perturbation:

Favorable (?) spectrum:

-1



Hydromagnetic Kelvin Helmholtz (HMKH)

Results details:
 Magnetically stabilized 3D shear layer transient simulation

 Run to 5 time units with 2nd order BDF

 Uniform mesh (bilinear elements, 8 unknowns/node)

 Run on 4, 32, 256, 2048 processors (~8,000 unks/core)



HMKH: Weak Scaling (CFL~0.125)

Take home: Split preconditioner scales algorithmically, 
more relevant for mixed discretizations

Take home: Split preconditioner scales algorithmically, 
more relevant for mixed discretizations

Fully coupled Algebraic
ML: Uncoupled AMG with repartitioning
DD: Additive Schwarz Domain Decomposition

Block Preconditioners
Split-3x3: 3x3 Splitting (SIMPLEC everywhere)
Split-4x4: 4x4 Splitting (SIMPLEC everywhere)
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Island Coalescence (IC): 2D Vector Potential

Simulation on half domain
• Symmetry BC
• Perturbed Harris-Sheet

Results details (an initial study):
 Lundquist number: 104

 Starting time right before reconnection: 5.75s
 Results averaged over 45 uniform timesteps
 Run on 1, 4, 16, 64, 256, and 1024 processors (~33000 

unks/core)



IC: Weak Scaling

Take home: Split preconditioner scales algorithmically, 
more relevant for mixed discretizations

Take home: Split preconditioner scales algorithmically, 
more relevant for mixed discretizations

Fully coupled Algebraic
AggC: Aggressive Coarsening Multigrid
DD: Additive Schwarz Domain Decomposition

Block Preconditioners
Split: New Operator split preconditioner
SIMPLEC: Extreme diagonal approximations

* E. C. Cyr, J. N. Shadid, R. S. Tuminaro, R. P. Pawlowski, L. Chacon, A New Approximate Block Factorization Preconditioner for Two 
Dimensional Incompressible (Reduced) Resistive MHD”, SIAM Journal on Scientific Computing, 2013.



Final Thoughts

Discussed block preconditioning

• Multi-physics has broad range of time and spatial scales

• Block Jacobian segregated by physical field

• For tightly coupled physics must handle coupling

• Coupling in Schur complement

• Scalability attained by leveraging multigrid

Showed Results for Navier-Stokes

• Presented SIMPLE, PCD and LSC approximations

• Showed scaling results for stabilized discretizations

Show results for 2D MHD

• Developed operator-split preconditioner
 Focuses on elliptic incompressibility and Alfven wave

• Showed results indicating good performance


