

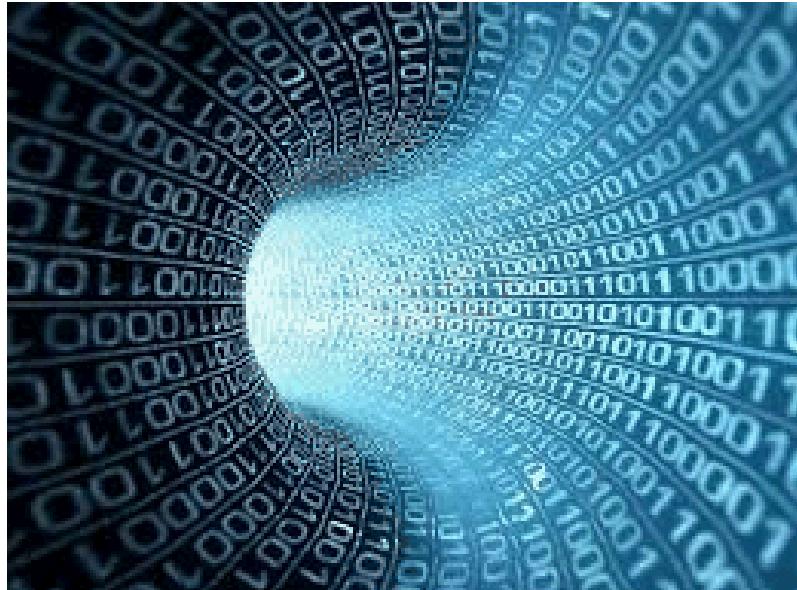
Sampling and Streaming Algorithms for Counting Small Patterns in BIG Graphs

Ali Pinar
Sandia National Laboratories

Joint work with C. Seshadhri, T. Kolda, and M. Jha

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sampling may be the key to process large data sets

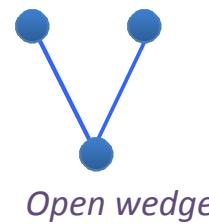
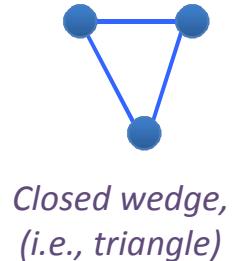
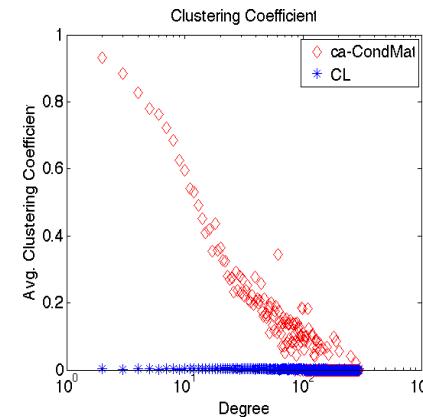
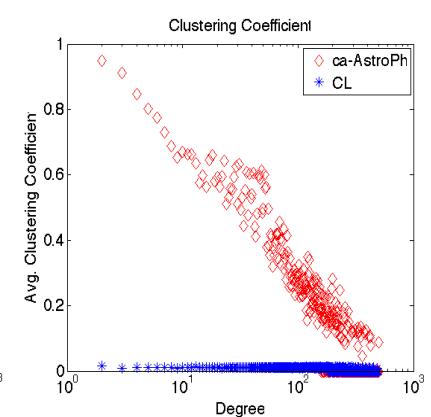


Source: <http://www.greenbookblog.org/wp-content/uploads/2012/03/big-data.jpg>

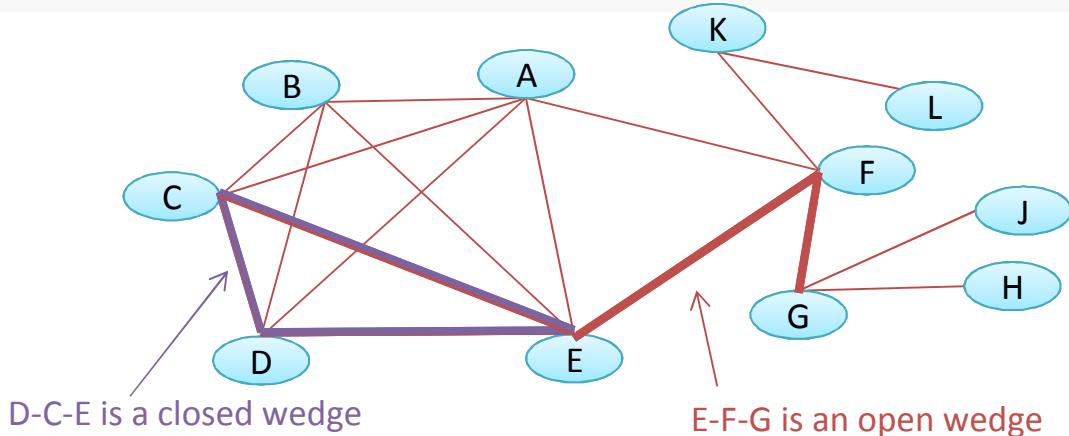
- Sizes of the modern data sets redefine the landscape for algorithmic research.
 - Single pass through the data may be a luxury.
- In many applications the speed of data is the challenge.
- Sampling/streaming algorithms can identify general trends in the data.
 - but not find needle in a haystack.
- The goal of sampling is to provide
 - good estimations with error/confidence bounds,
 - by looking at a small portion of the data.
- Sampling is not an alternative to parallelism.
 - They get along well together.

Triangles are critical for graph analysis

- Interpreted in many ways in social sciences.
 - Identifier for bridges between communities.
 - Likelihood to go against norms
- Applied to spam detection
- Used to compare graphs
- Proposed as a guide for community structure.
- Stated as a core feature for graph models [Vivar&Banks11]
 - Cornerstone for Block Two-level Erdos-Renyi (BTER) model
- Rich set of algorithmic results
 - Algorithms, runtime analysis, streaming algorithms, MapReduce, ...
 - Enables decomposition into dense blocks
 - Well-defined property of the graph, not an artifact of the algorithm



Algorithms for important metrics: transitivity for large graphs



Enumeration: Find *every* wedge. Check if each is closed.

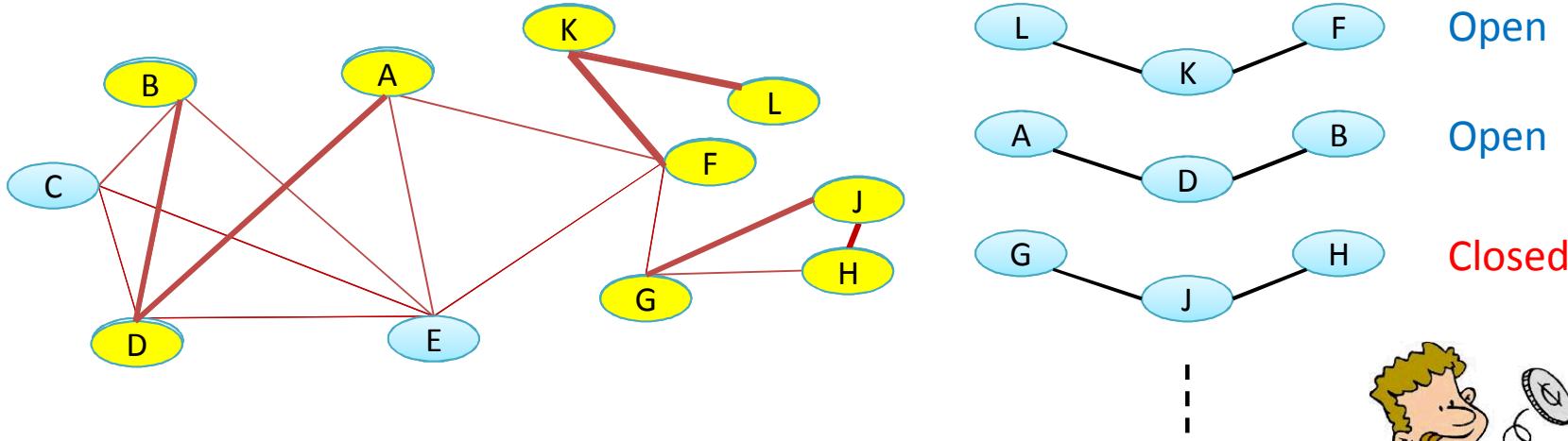
$$\begin{aligned} \text{Transitivity} &= C = \# \text{ closed wedges} / \# \text{ wedges} \\ &= 3 * \# \text{ triangles} / \# \text{ wedges} \end{aligned}$$

Sampling: Sample a few wedges (uniformly). Check if each is closed.

$$C = \# \text{ closed sampled wedges} / \# \text{ sampled wedges}$$

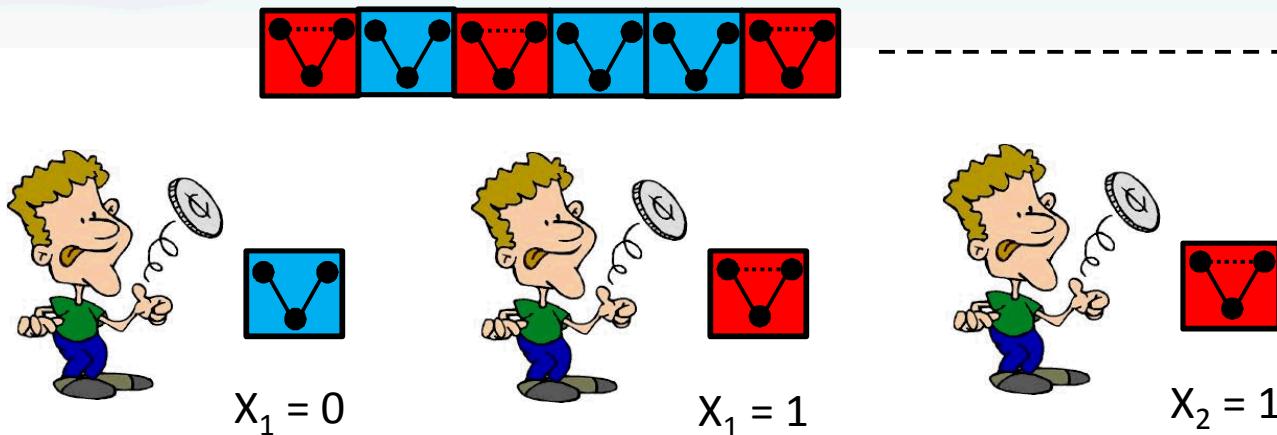
Seshadhri, P., Kolda, *SIAM Intl. Conf. Data Mining 2013*, Best Research Paper award

Wedge sampling to compute transitivity



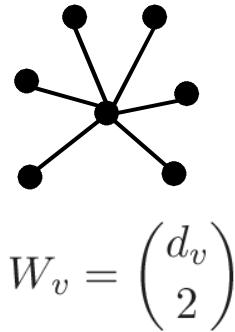
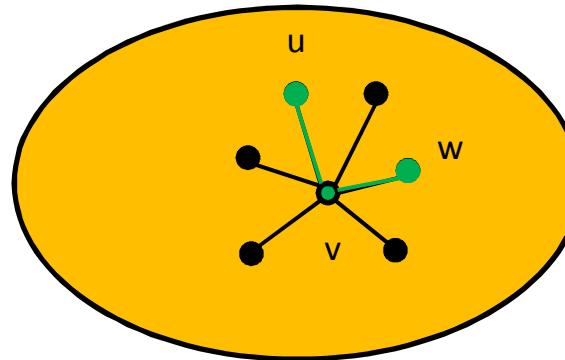
- $C = 3T/W = \text{fraction of closed wedges}$
- Consider list of all wedges, indexed with open/closed
- Pick a uniform random wedge. $X = 1$ if wedge is closed. Else $X = 0$
- X is Bernoulli random variable
and $E[X] = \text{fraction of closed wedges} = C = 3T/W$

Repeat, repeat, repeat



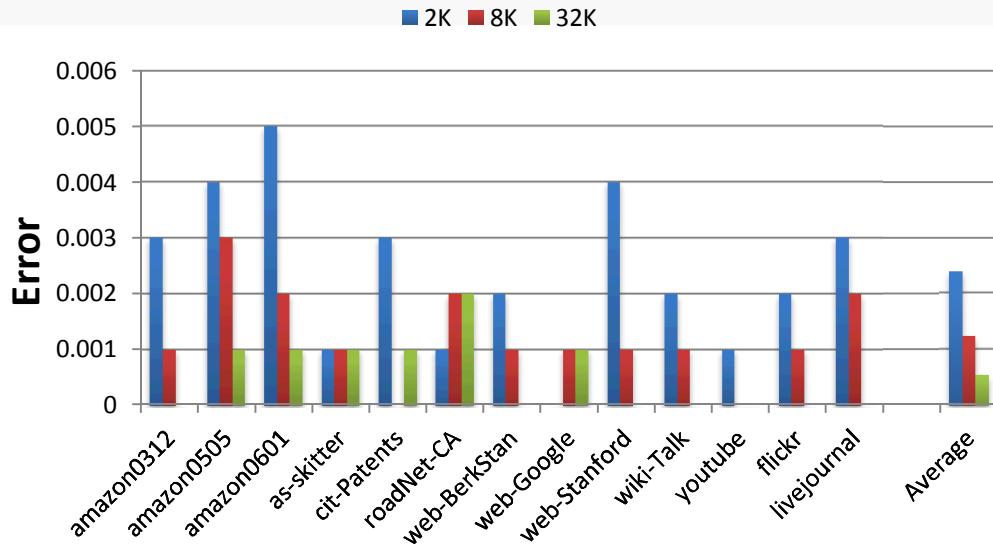
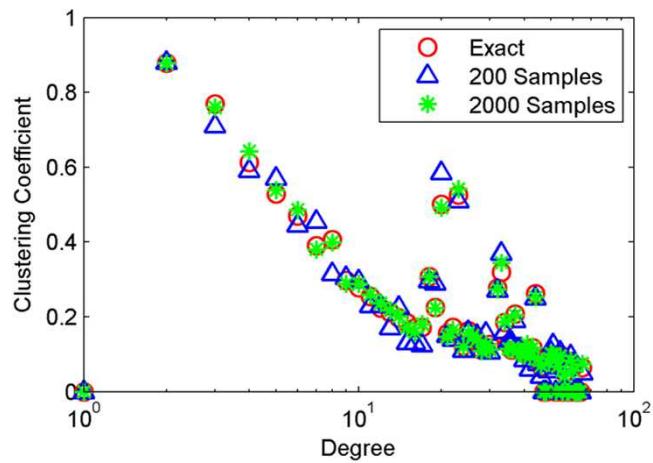
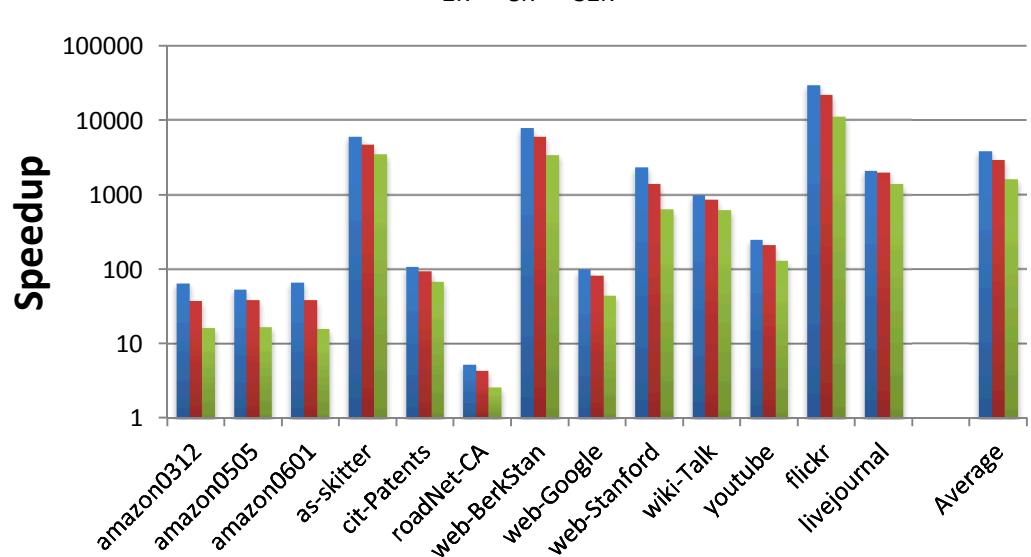
- Perform k independent experiments. Let $Y = (1/k) \sum_i X_i$
 - Y is fraction of closed wedges in sample
 - $E[Y] = C$. Y converges to C as k grows
- [Chernoff-Hoeffding]: $\Pr[|Y - \tau| > \varepsilon] < e^{-k\varepsilon^2}$
 - $k = \varepsilon^{-2} \log (1/\delta)$. With prob $> 1 - \delta$, estimate is accurate within ε
 - **With 38K samples, error < 0.01 with prob > 0.999**
 - Number of samples independent of graph size

We do not need to generate a wedge list

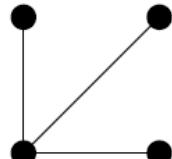


- But list of wedges not possible to generate. So how to get random wedge?
- Pick vertex v with probability W_v/W
- Pick two uniform random neighbors of v to get wedge (u, v, w)
 - This is a uniform random wedge
- So simply repeat this many times to get a set of wedges. Output fraction of closed wedges as estimate for C

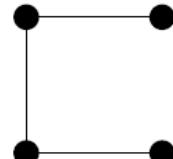
Wedge sampling is effective in practice



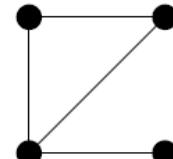
Beyond 3 vertices: how about 4?



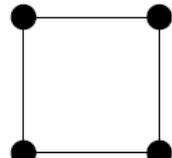
(i) 3-star



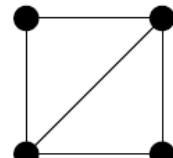
(ii) 3-path



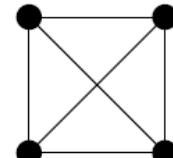
(iii) tailed-triangle



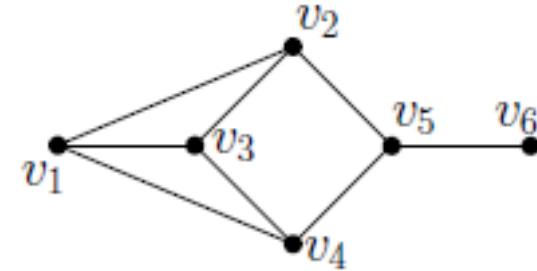
(iv) 4-cycle



(v) chordal-4-cycle



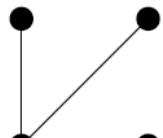
(vi) 4-clique



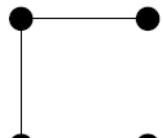
$$\begin{pmatrix} 1 & 0 & 1 & 0 & 2 & 4 \\ 0 & 1 & 2 & 4 & 6 & 12 \\ 0 & 0 & 1 & 0 & 4 & 12 \\ 0 & 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \end{pmatrix} = \begin{pmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \\ N_5 \\ N_6 \end{pmatrix}$$

- Much richer set of (connected) patterns
- Induced, C_i , vs. Non-induced, N_i
 - (Vanilla) subgraph: take subset of edges
 - Induced subgraph: take subset of vertices, take all edges in them
 - Getting vanilla counts from induced subgraph counts is not hard

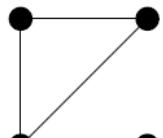
Exact counting is not scalable



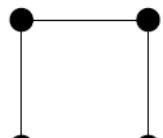
(i) 3-star



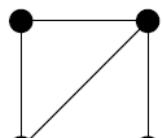
(ii) 3-path



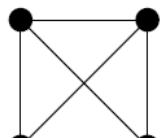
(iii) tailed-triangle



(iv) 4-cycle



(v) chordal-4-cycle



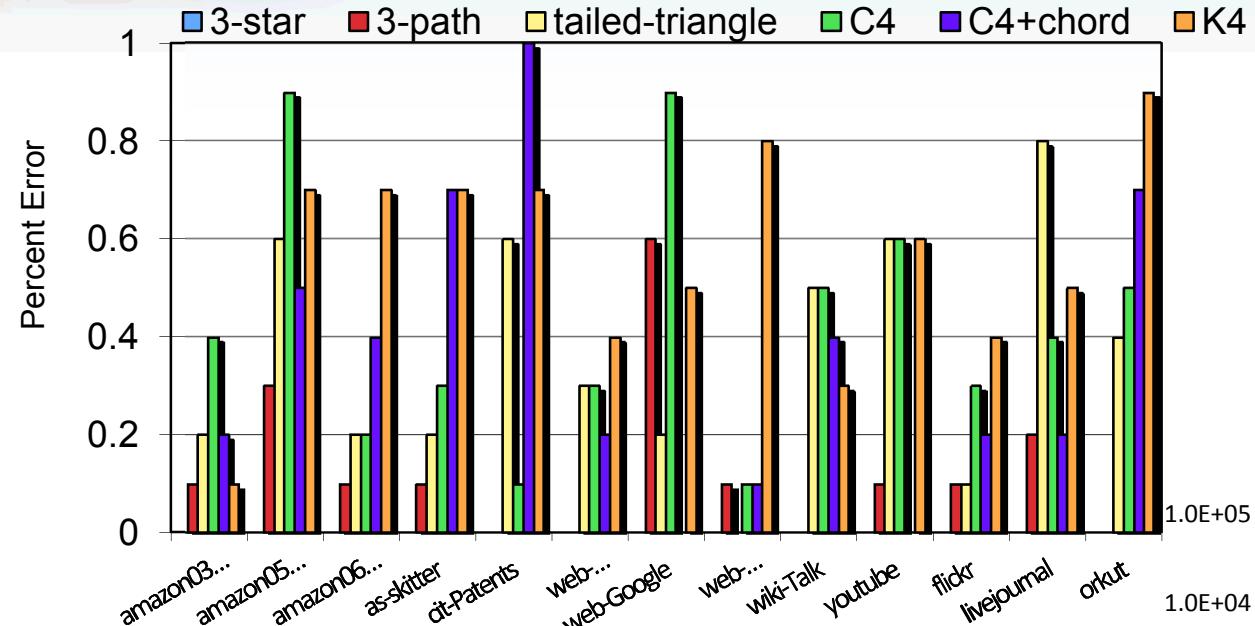
(vi) 4-clique

Past approximate counting work does not scale, either

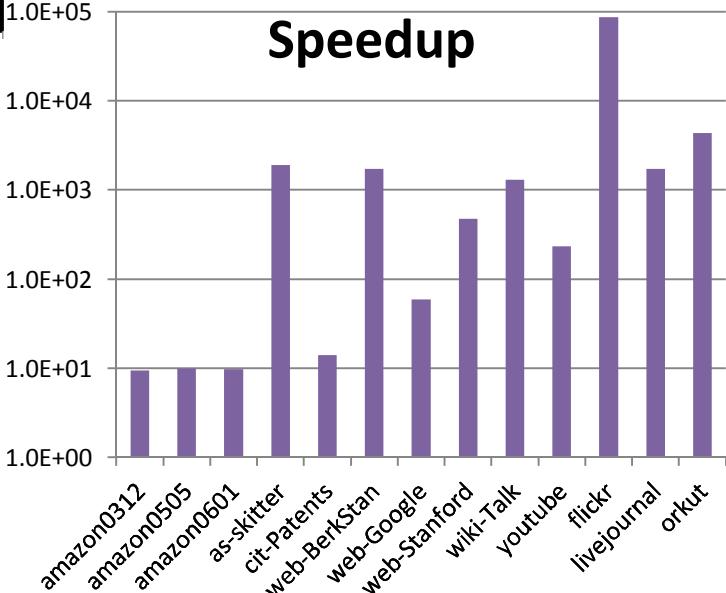
- MCMC methods, color coding, graph sparsification
- No provable methods, accuracies at best $\sim 10\%$, often need computer clusters
- No results for (say) 100M edges

Graph	n	m	3-path	Tail-tri	4-cycle	4-clique	Time
Web-Berk	600K	6M	10B	400B	20B	1B	2 hrs
Flickr	1M	15M	7T	100M	100B	25B	60 hrs
Orkut	3M	200M	10T	1T	70B	3B	19 hrs

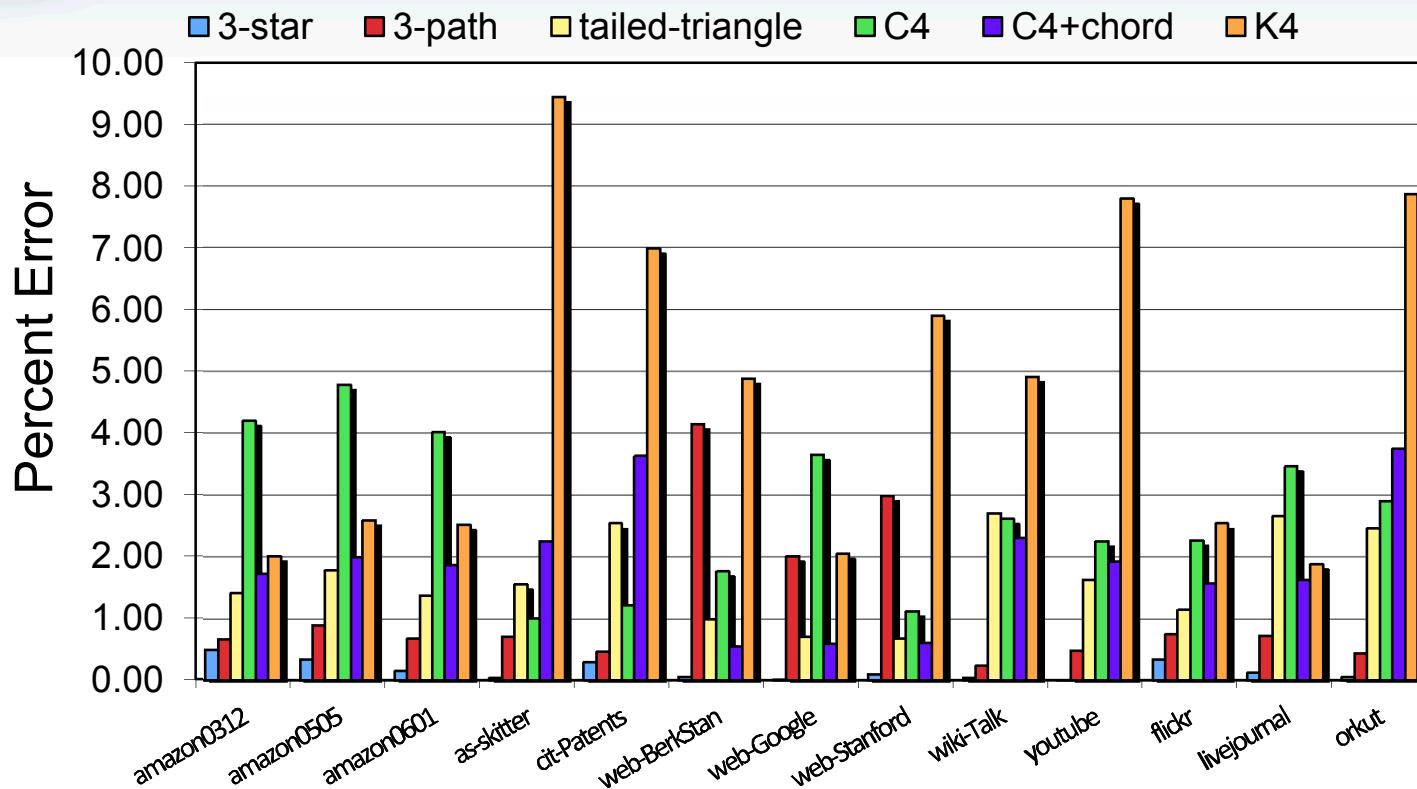
3-path sampling algorithm is fast and accurate



Graph	Time (exact)	Path-sampling
Web-Berk	2 hrs	3 sec
Flickr	60 hrs	2 sec
Orkut	19 hrs	16 sec

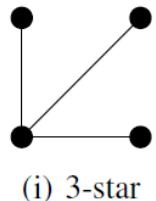


Sampling gives provable accurate results

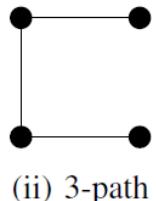


- Algorithm outputs hard error bounds for any desired confidence
 - “With confidence $> 99.9\%$, the output is within 3% of true answer.”
- No assumption on the graph; probability is over the randomness of the algorithm.

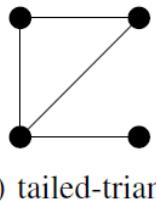
The method



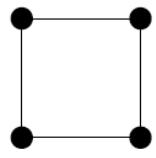
(i) 3-star



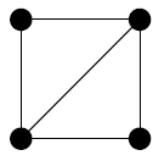
(ii) 3-path



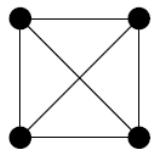
(iii) tailed-triangle



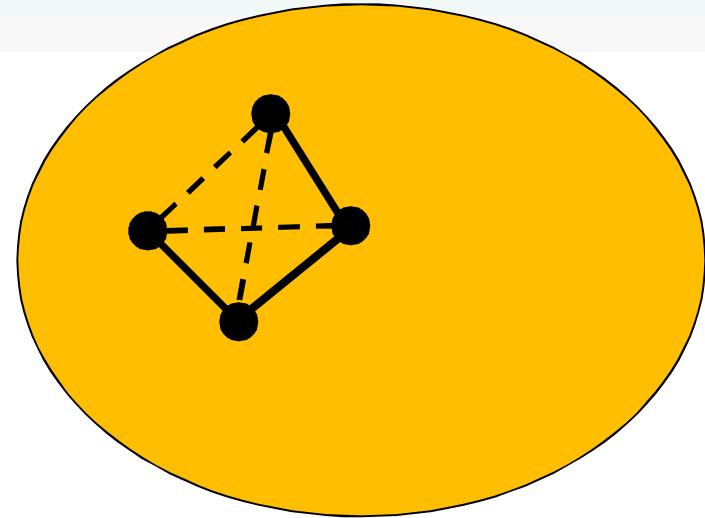
(iv) 4-cycle



(v) chordal-4-cycle

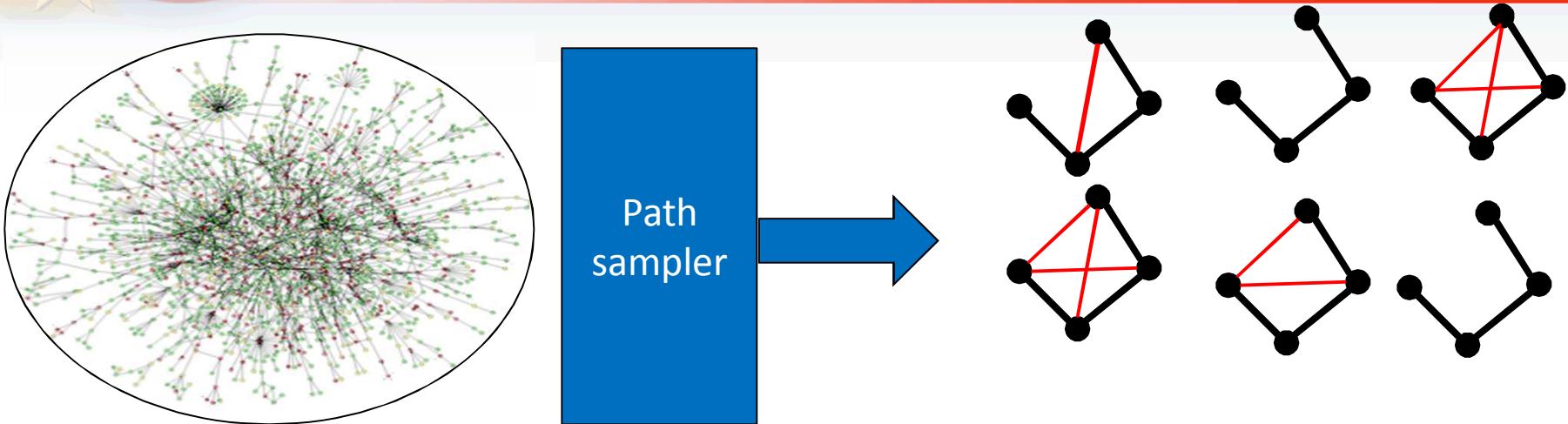


(vi) 4-clique



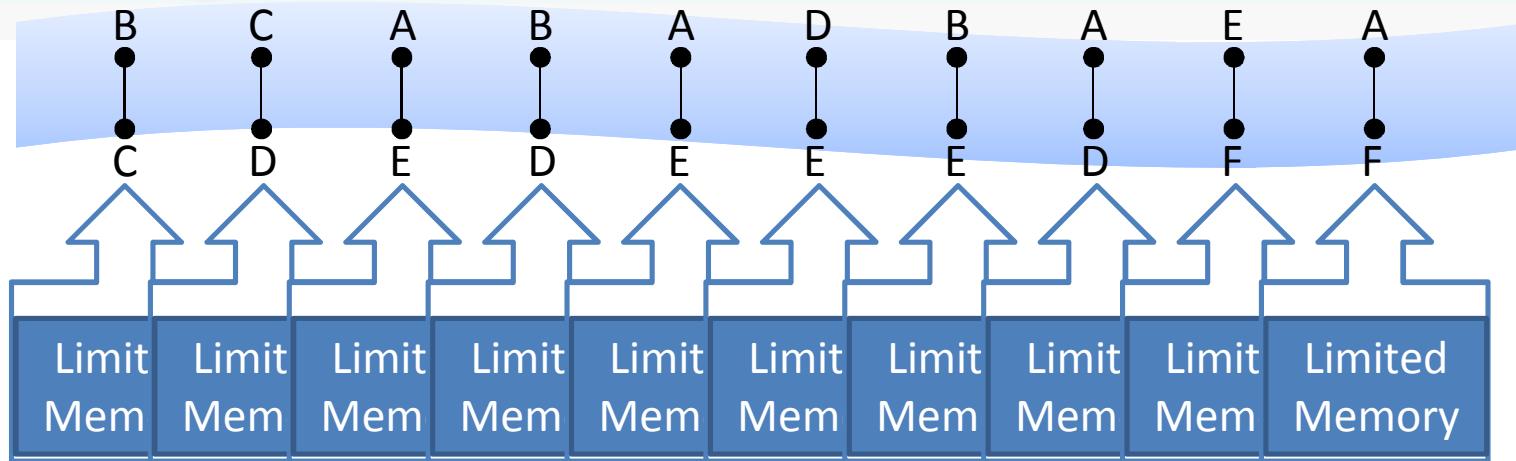
- Except for 3-stars, each pattern contains a 3-path
- Sample set of uniform random 3-path, check the vertices to see what pattern is induced
 - We do not need to generate a full list of 3-paths.
- Extrapolate these counts to get estimates

The big picture



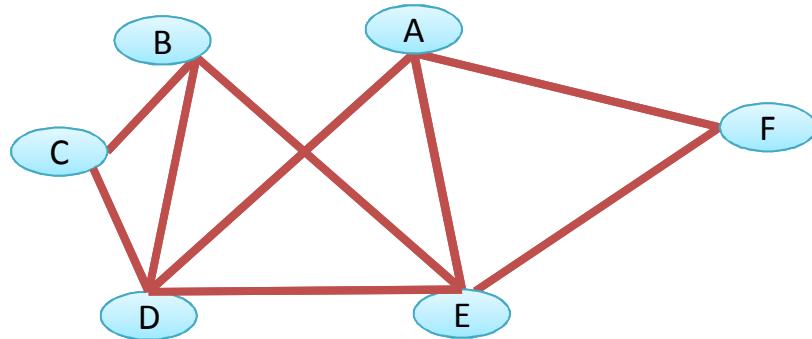
- Use pattern counts from samples to estimate true count
- Not hard to argue that our output is unbiased estimator of true count
- No assumption on graph, probability over randomness of algorithm
- **How many samples needed to get accurate estimates?**
 - For better results, we sample “centered 3-paths”

Streaming Triangle Counting



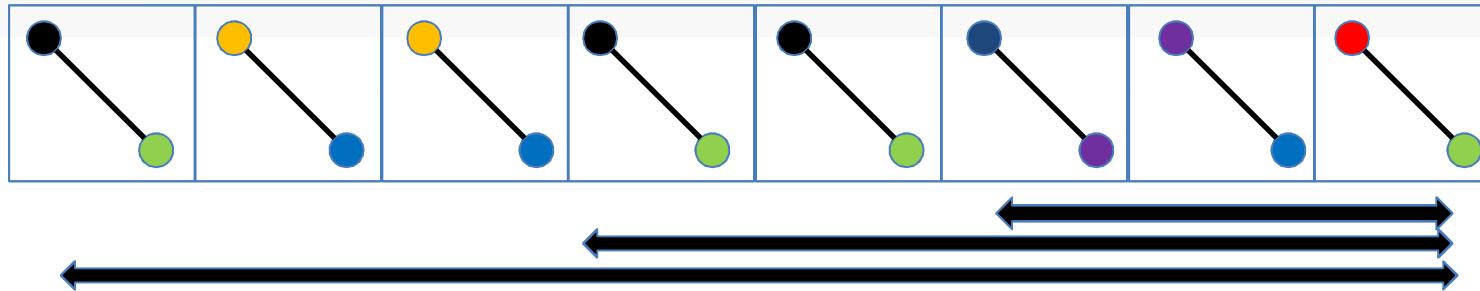
Triangles so far: 4

Graph seen so far:



- Data streams important for situational awareness
 - Streaming algorithms also useful for large data sets
- Algorithmically
 - See each edge only once
 - Either take action or lose that piece of information forever

Real-world messiness



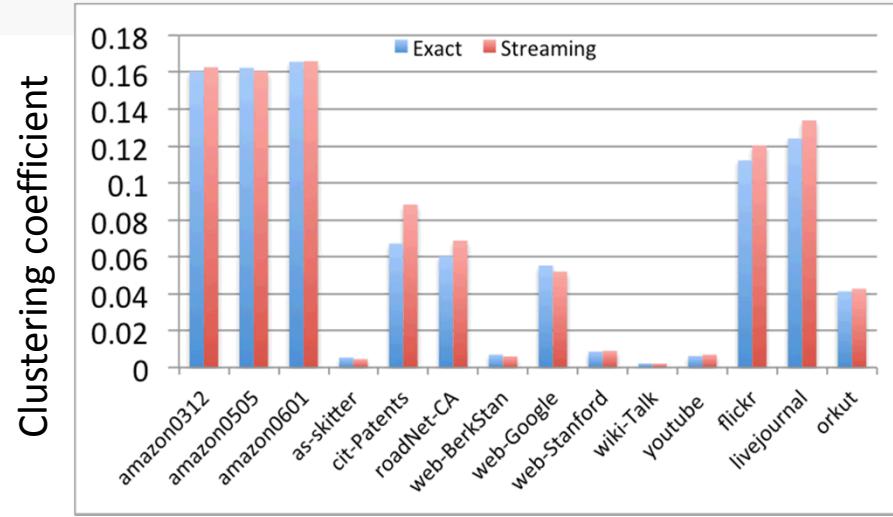
- Real-world streams are multigraphs: edges can be repeated
- There is no “true” graph. It depends on how you aggregate

Standard approaches and their drawbacks

- There are no repeats. Assume graph is simple
 - Removing repeated edges requires extra pass over edges
 - Assumption of no repeats is expensive to enforce
- Aggregate every edge seen. The “window” is all of history
 - Not clear how to store information of various time-windows simultaneously

We can analyze streams of edges

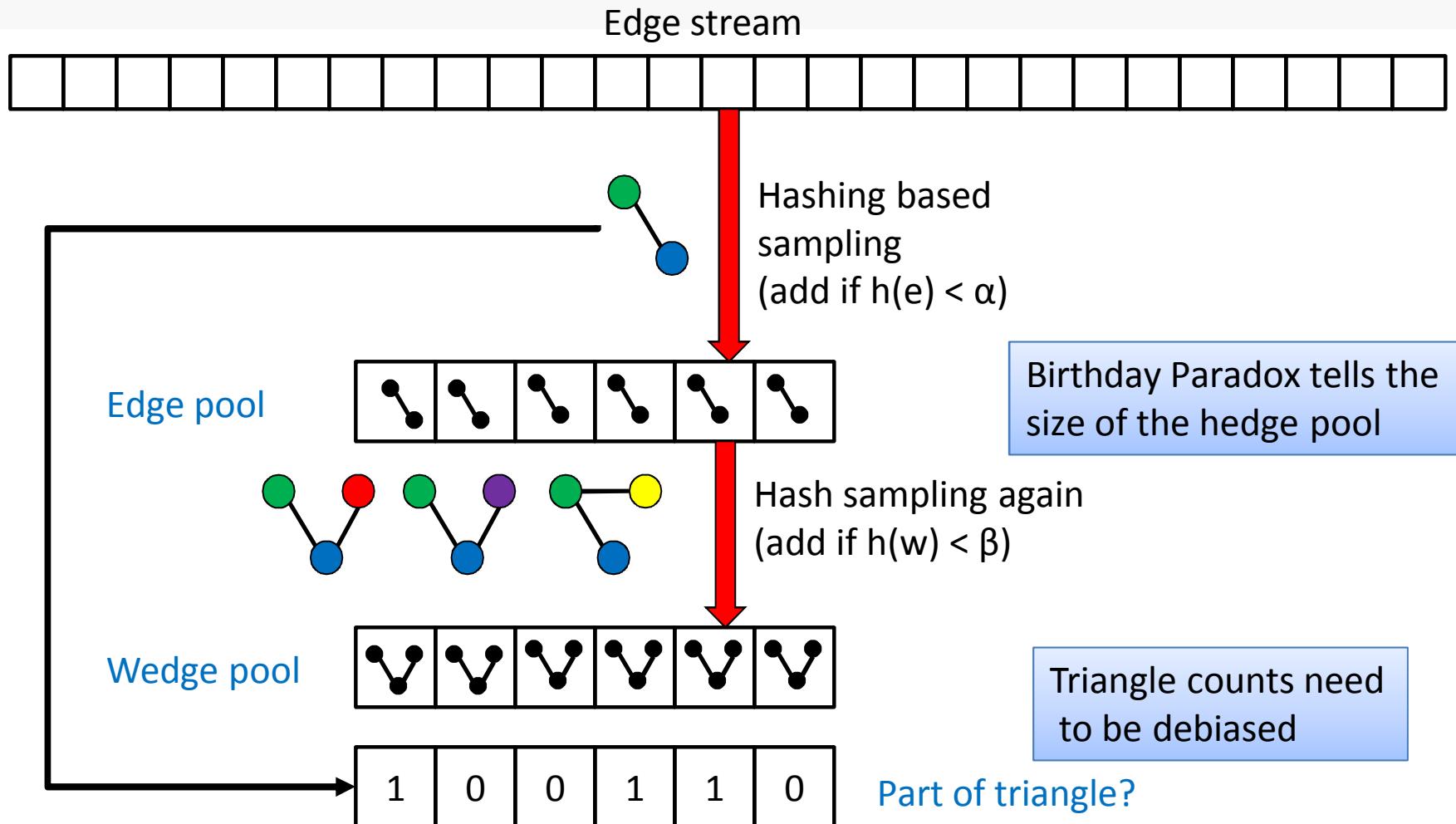
- Approximating triangle counts and transitivity in graph stream with repeated edges
 - No preprocessing.
Works with raw stream
- Information on multiple time windows with same data structures
 - Potential solution to the problem of how much data to store
- Provable bounds on accuracy, excellent empirical behavior
- Based on methods in [Jha-Seshadhri-Pinar13], but needs new ideas to overcome issues



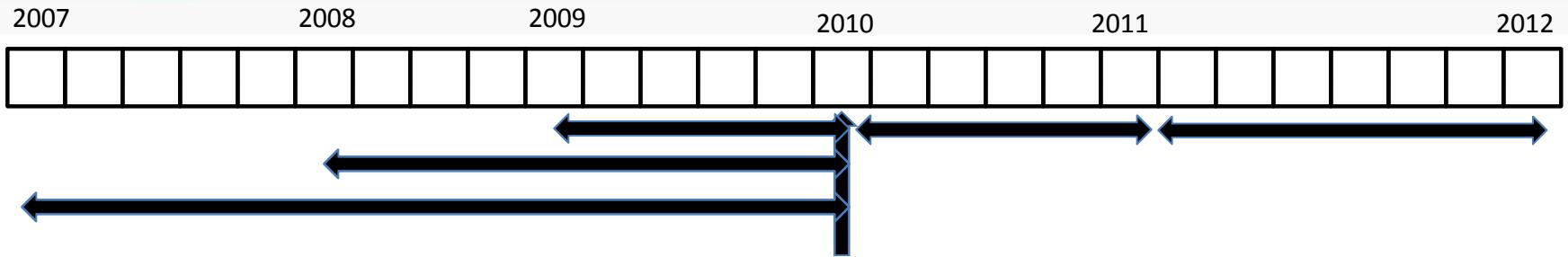
- Edge pool size: 20K; Wedges pool size is: 20K
- Jha, Seshadhri, P. KDD13, Best Student Paper award

Core Idea:

Wedge sampling on a stream

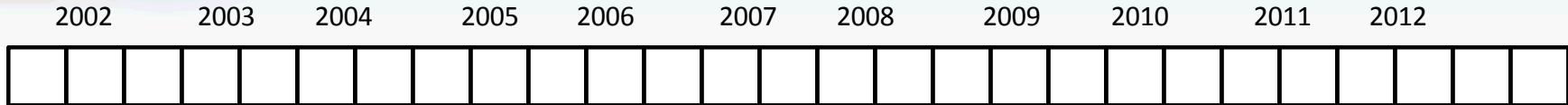
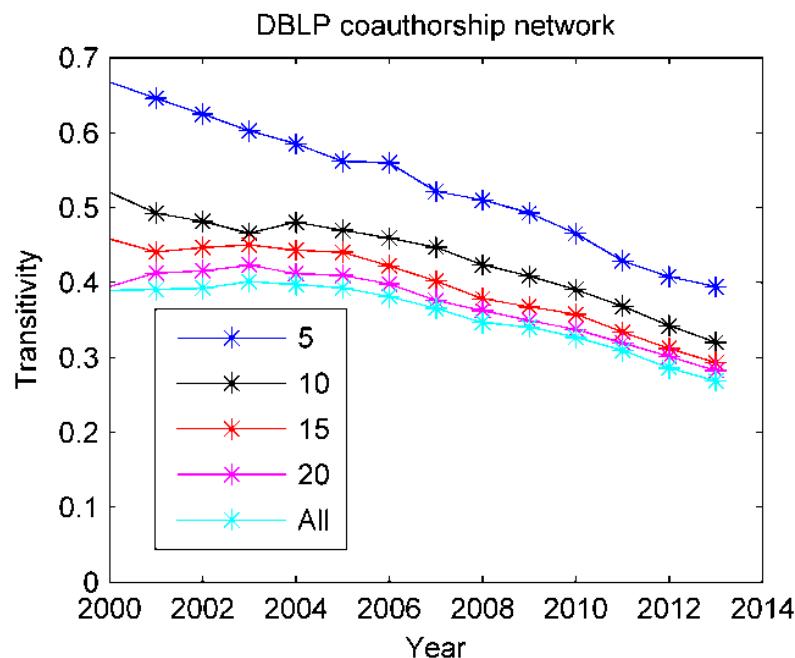
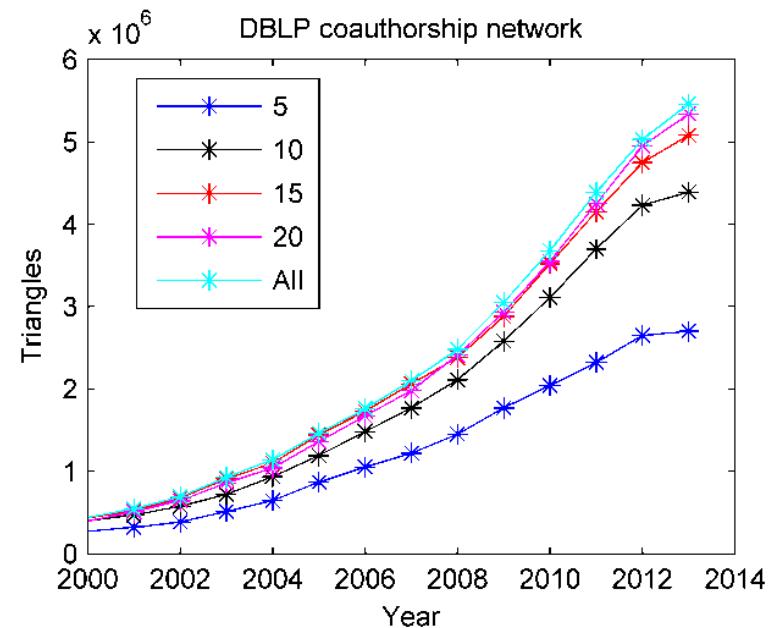


Case study: DBLP graph



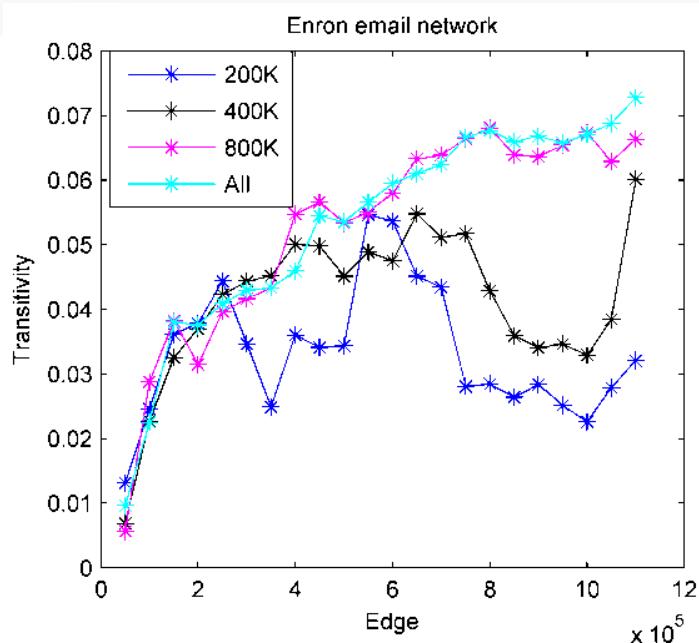
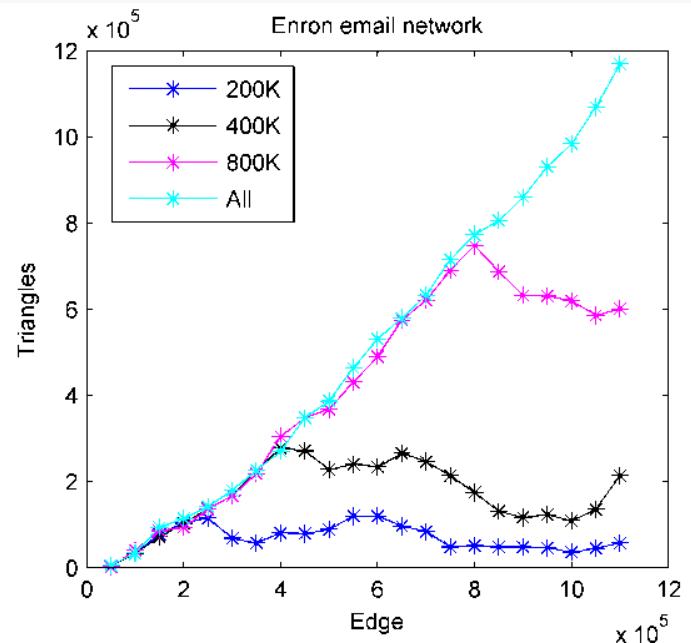
- DBLP co-authorship graph: all paper records over 50 years gives graph stream
 - Naturally repeated edges. Colleagues work together for many papers
 - Size = 3600K, non-repeated edges = 254K
- For graph $G[t:t+\Delta t]$, there is associated transitivity and triangle count
 - How does this vary with t and Δt ?

Triangle trends in DBLP graph



- Size = 3600K, non-repeated edges = 254K
- Results obtained with storing 30K edges

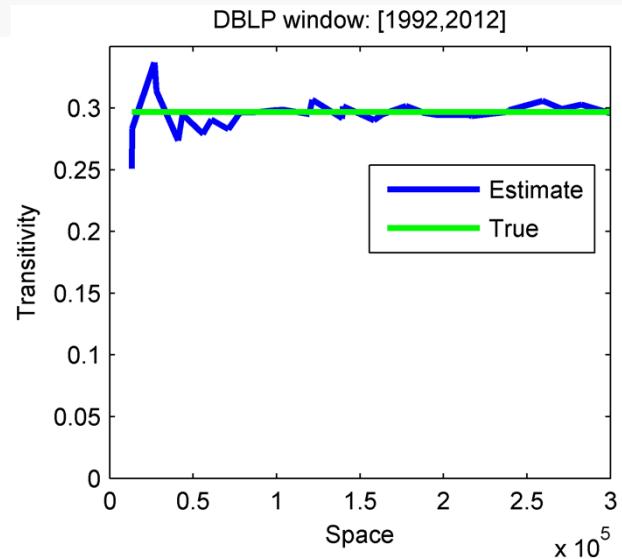
Triangle trends in Enron graph



- Enron email network: stream size 1100K, non-repeated 300K
- Storage used = 8K
- Trends “opposite” to DBLP graph

Streaming Algorithm Features

- Only two parameters α, β
 - No knowledge of graph required
- Provable guarantee on expectation
 - Provable variance bound (though not useful in practice)
- Space around 1% of total stream
- Accuracy always within 5%



Conclusions

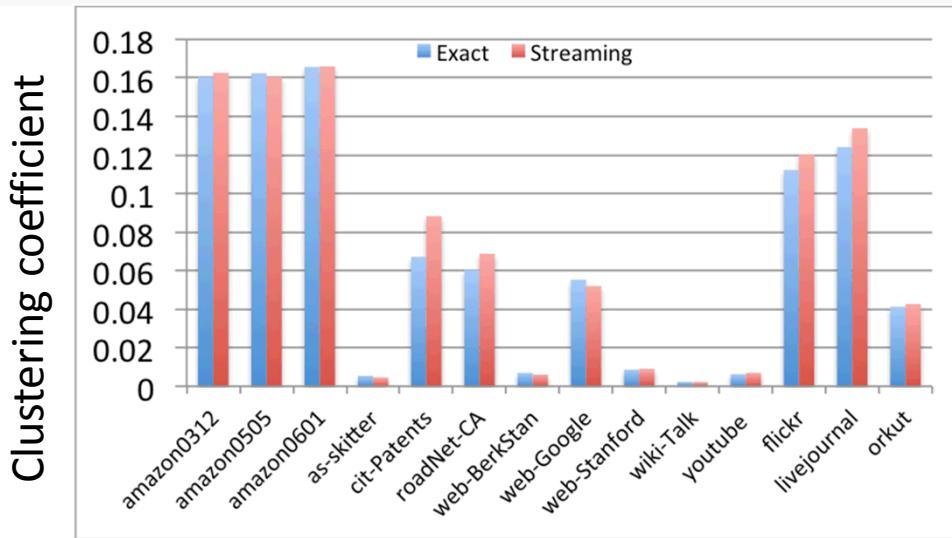
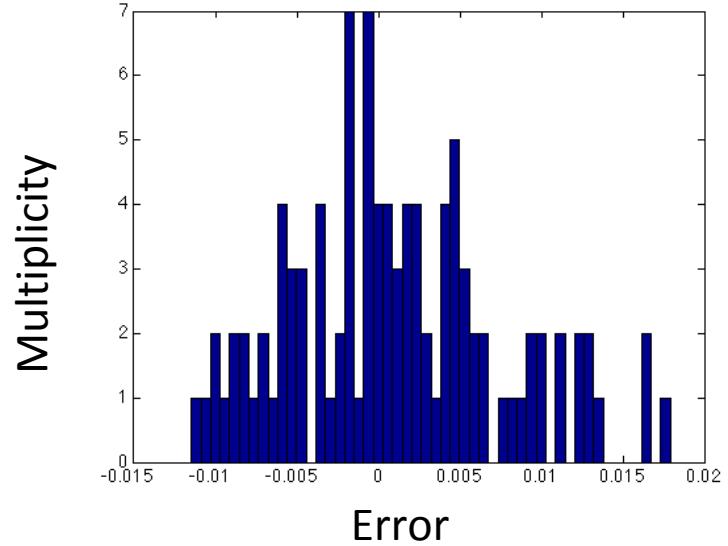
- If you need the *counts* of small patterns on a large graph, use sampling (streaming).
- If you need a list of small patterns,
 - If the output size is small, enumerate!
 - If not, the list should be an input to another process, and let's talk about the full process.
- Wedge sampling enables efficient computation of many triadic measures
 - Has provable error/confidence bounds
 - Amenable to handling distributed data
 - Extended to streaming analysis
 - Can handle repeated edges and different time windows
- Similar techniques can be used for 4-vertex patterns
 - Used 3-path sampling instead of wedge sampling

References

- **Wedge Sampling:** C. Seshadhri, A. Pinar and T. G. Kolda, ***Triadic Measures on Graphs: The Power of Wedge Sampling***, Proc. SIAM Intl. Conf. on Data Mining (SDM'13), Apr 2013 (preprint: [arXiv:1202.5230](https://arxiv.org/abs/1202.5230)).
- **Wedge Sampling MapReduce:** T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, and C. Task, ***Counting Triangles in Massive Graphs with MapReduce***, [arXiv:1301.5887](https://arxiv.org/abs/1301.5887), to appear SIAM Scientific Computing.
- **Wedge Sampling for directed patterns:** C. Seshadhri, A. Pinar and T. G. Kolda, ***Wedge Sampling for Computing Clustering Coefficients and Triangle counts for Large Graphs***, [arXiv:1309.3321](https://arxiv.org/abs/1309.3321), Stat. Analysis & Data Mining, 7(4), pages: 294–307.
- **Streaming Algorithm for triangles:** M. Jha, C. Seshadhri, and A. Pinar, ***A Space Efficient Streaming Algorithm for Triangle Counting using the Birthday Paradox***, Proc. ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (KDD'13) August 2013 (preprint: [arXiv:1212.2264](https://arxiv.org/abs/1212.2264)).
- **Streaming Algorithm for multigraphs:** M. Jha, A. Pinar, and C. Seshadhri, ***Counting Triangles in Real-World Graph Streams: Dealing with Repeated Edges and Time Windows***, [arXiv:1310.7665](https://arxiv.org/abs/1310.7665).
- **Counting 4-vertex patterns:** M. Jha, A. Pinar, and C. Seshadhri, ***Path Sampling: A Fast and Provable Method for Estimating 4-Vertex Subgraph Counts***, submitted for conference publication.

Questions

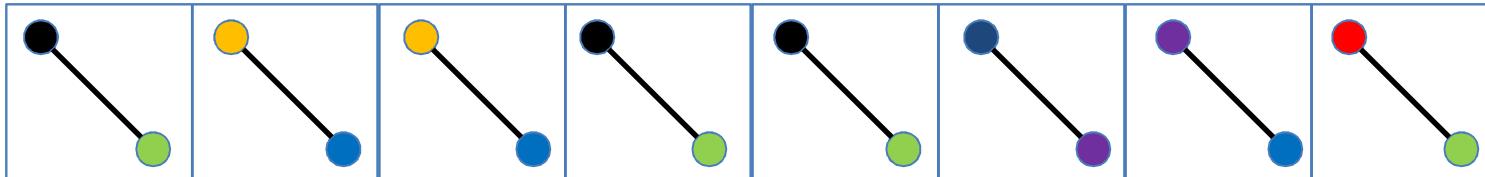
Streaming algorithm is effective in practice



- Experiments on public data sets
- Edge pool size: 20K; Wedges pool size is: 20K
 - Pool sizes are independent of the graph size.
- The estimates are accurate.
- The variance is small.

Jha, Seshadhri, P. KDD 2013, Best Student Paper award

Drawbacks of ignoring repeats

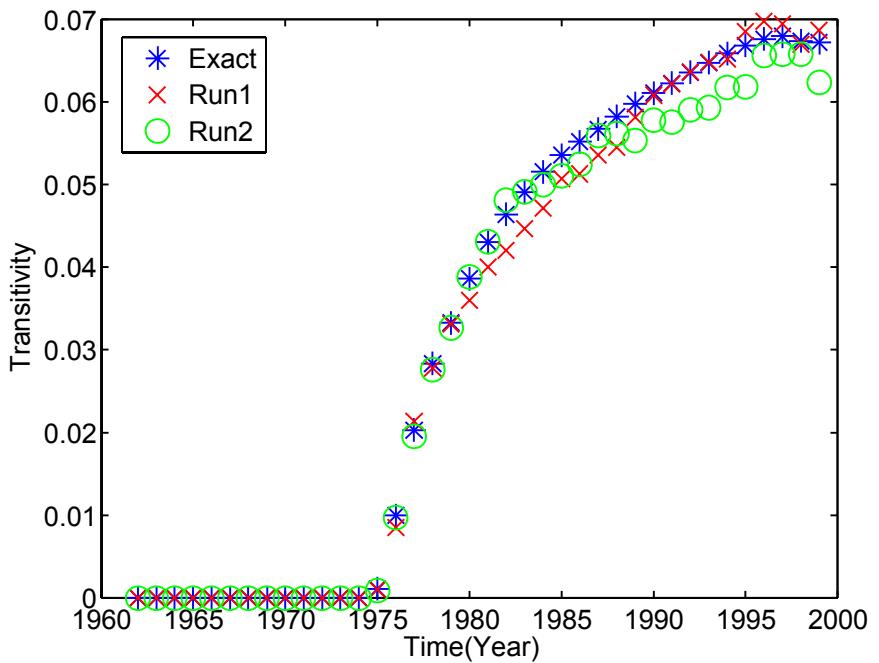
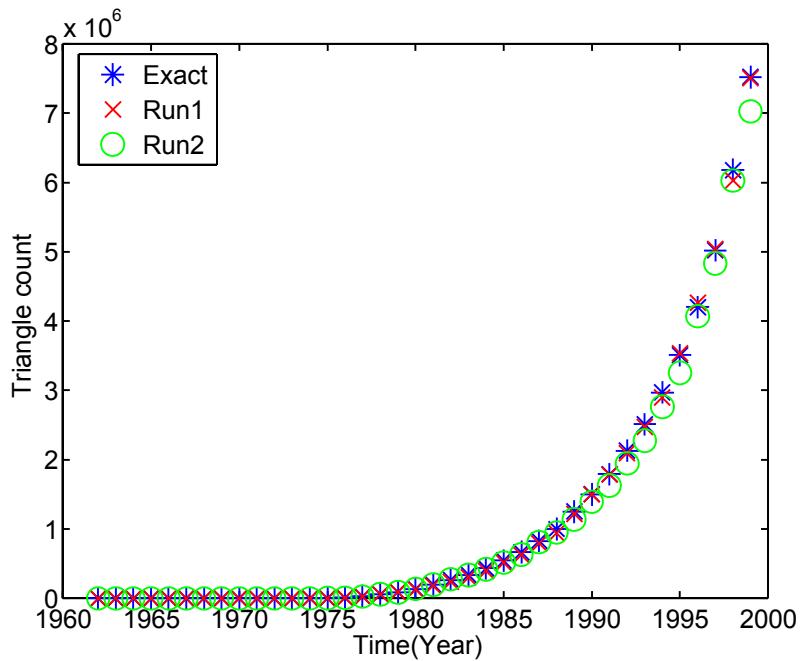


- Assumptions useful for algorithmic progress, but avoids real-world complexities
 - Algorithms cannot be deployed in “wild”
- **Removing repeated edges requires extra pass over edges**
 - Assumption of no repeats is expensive to enforce
- Not clear how to store information of various time-windows simultaneously

Take home lesson

- If you need the *counts* of small patterns on a large graph, use sampling.
- If you need a list of patterns, and
 - if the output size is small, enumerate.
 - If not, the list should be an input to another process, and let's talk about the full process.

Streaming algorithm provides a running estimate

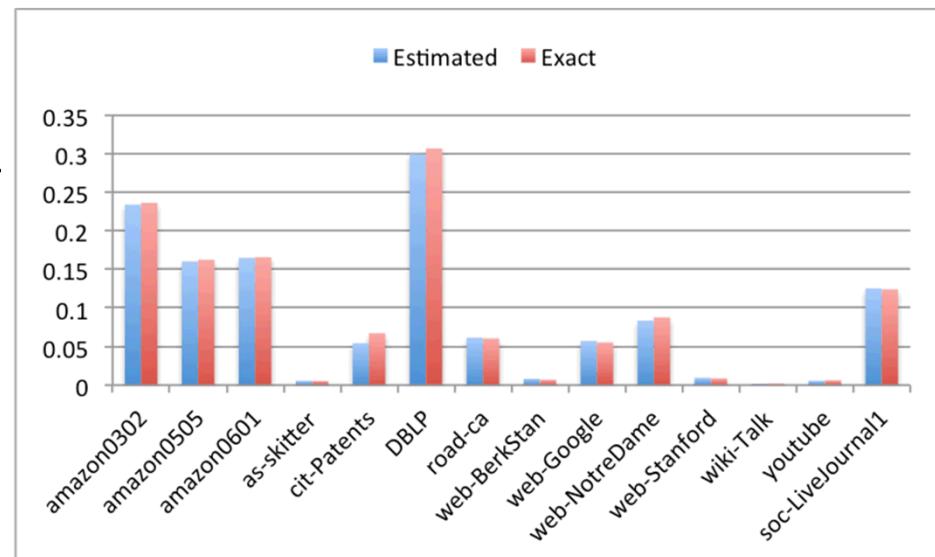


- Results on the patent citation network
 - 3.8M vertices, 16.5M edges.
- The algorithm provides accurate running estimates.

Next step: Streaming multigraphs

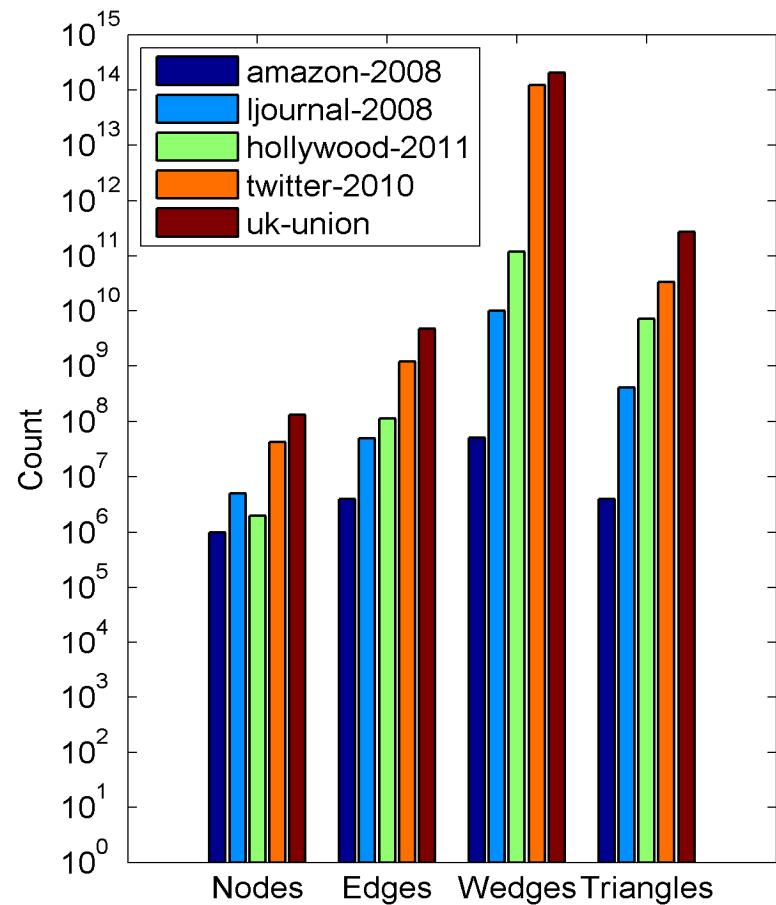
- Many graphs are a stream of *repeated* edges. (Emails, data transfers, co-authorship etc.)
- Generalized our algorithm for multigraphs.
 - Used random hashing to detect multiple instances.
 - Devised an unbiasing technique to avoid stream order sensitivity.
 - aaabbbccc vs. abcabcabc
- Processed the DBLP raw data
 - $|V|=1.2M$, $|E|=5.1M$,
9.0 repeated edges,
11.4M triangles transitivity= 0.174
 - Estimate with 30K edges
and 30K wedges
11.3M triangles transitivity= 0.173

Jha, Seshadhri, P., *arxiv 1310.7665*



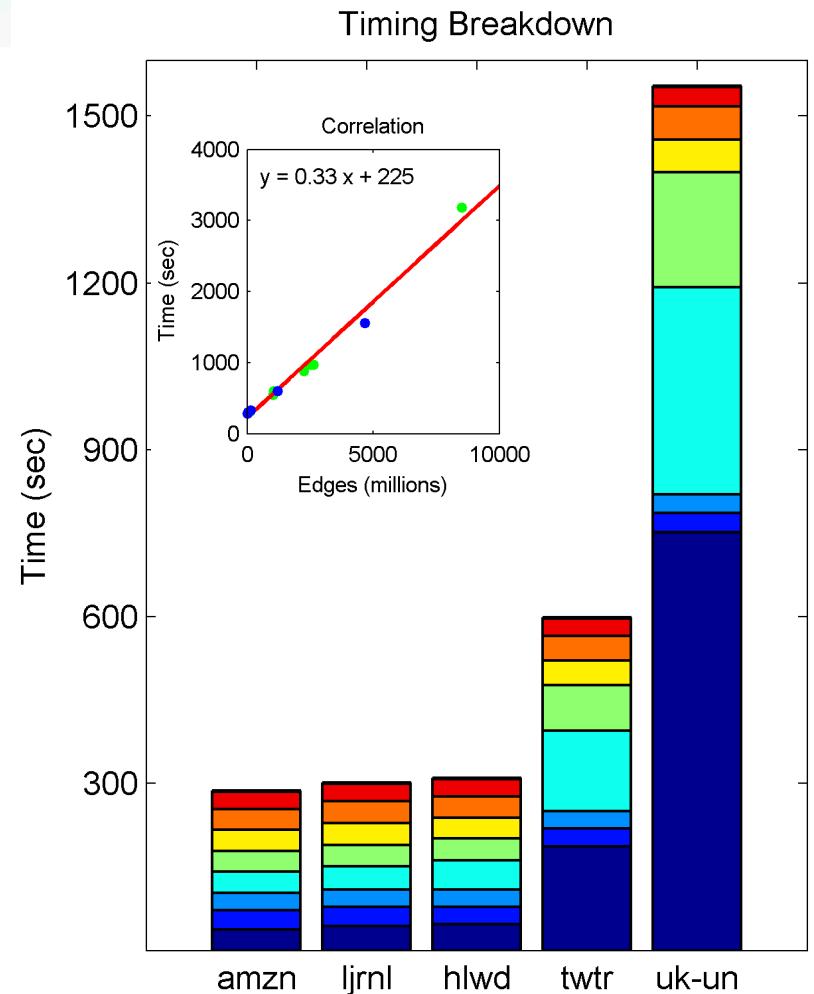
How about even bigger graphs?

- Wedge sampling can be executed when the data is distributed.
- We proposed a Hadoop implementation.
 - Key to success: data movement is minimal.
- 5 real-world networks
 - Source: Laboratory for Web Algorithms
 - Largest: 132M nodes, 4.6B edges
- Distributed Server: 32-Node Hadoop Cluster
 - 32 Intel 4-Core i7 930 2.8GHz CPU
 - 32 x 12GB = 384GB memory



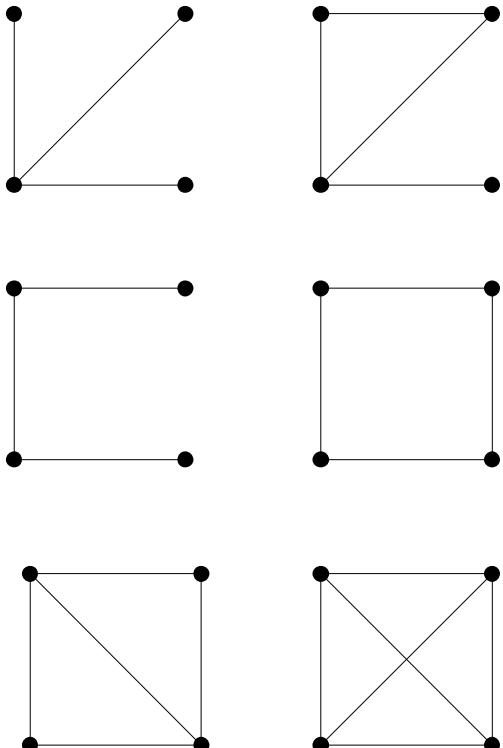
Wedge Sampling for BIG Graphs

- 32-node Hadoop cluster results using wedge sampling to compute degree wise clustering coefficients
 - Logarithmic bins; 2000 samples per bin
- Compare twitter times
 - Sampling: 10 mins on 32-node Hadoop cluster
 - Enumeration: 483 mins on 1636-node Hadoop cluster
 - Suri & Vassilvitskii, 2011
 - Enumeration: 180 mins on 32-core SGI, using 128GB RAM
 - by Jon Berry, 2013
- No comparisons for uk-union due to its size

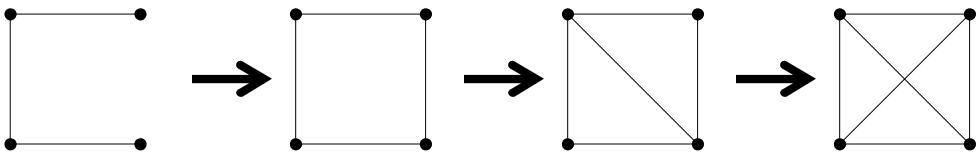


Kolda, P., Plantenga, Seshadhri, Task, arXiv:1301.5886, 2013 to appear in SISC

Counting 4-vertex patterns



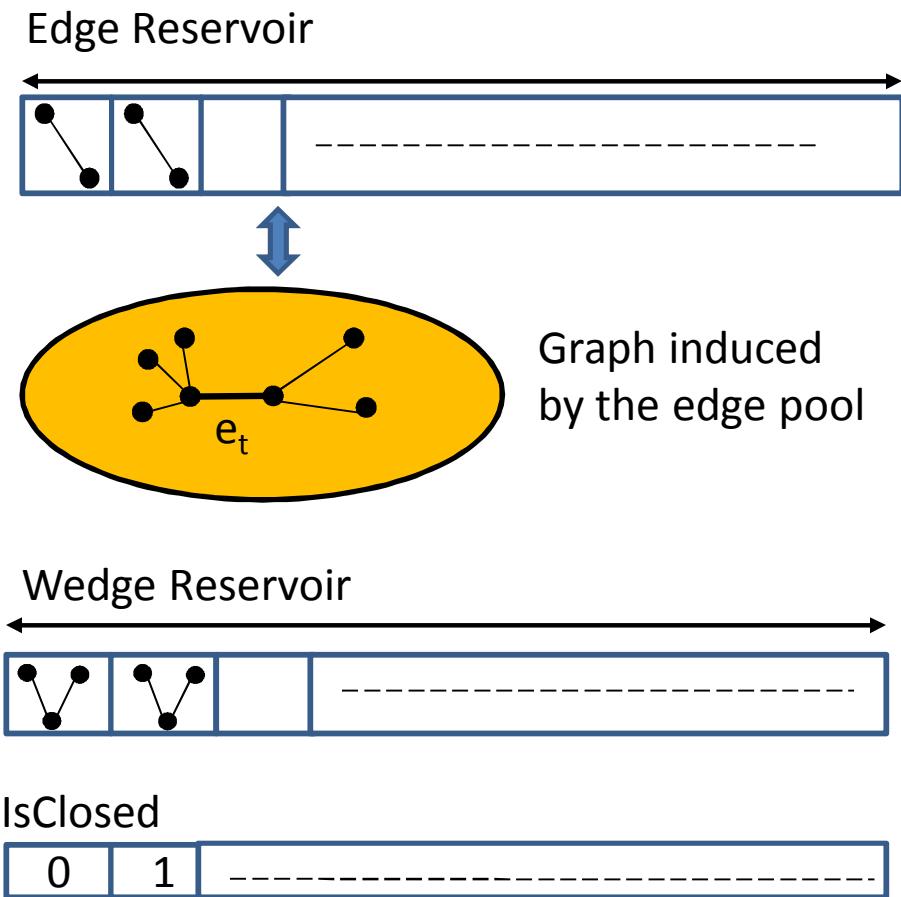
- Our sampling approach can be generalized to count 4- vertex patterns.
- Algorithm
 - Count the number of 3-paths
 - Sample 3-paths and count how many of them other patterns
- Experiments show >1K speedups, with <%1 error using 160K samples.



Jha, Seshadhri, P., coming soon

Wedge sampling in a streaming world

- Keep a random sample of the edges using the reservoir sampling.
- Keep a random sample of the wedges generated by the edges in the edge reservoir.
- Track whether the wedges are closed or not.
- The clustering coefficient is $3 * \text{ratio of closed wedges}$.



Jha, Seshadhri, P., *KDD 2013*, Best Student Paper award

Birthday paradox to the rescue

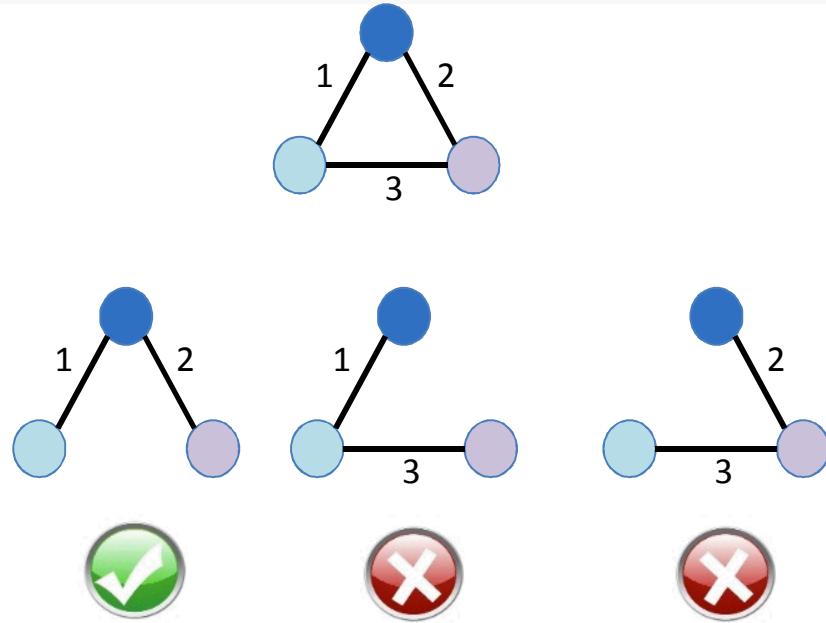
Edge reservoir

Wedge Reservoir

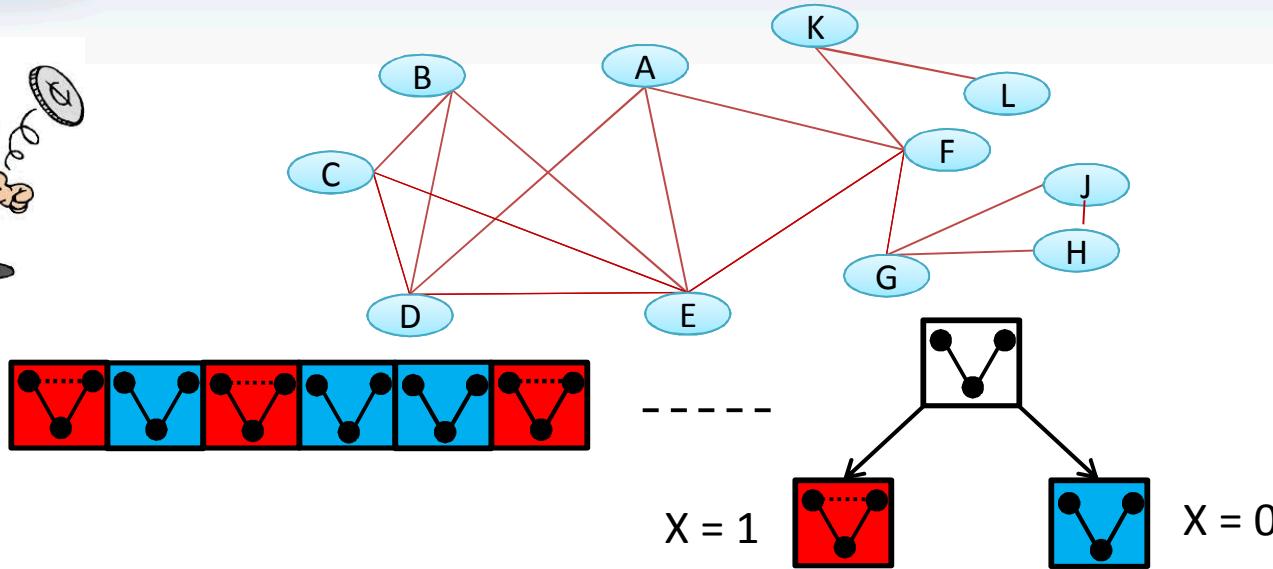
- A wedge is formed by two edge with the same birthday.
- Birthday paradox: $O(\sqrt{n})$ edges are sufficient to generate a wedge.
 - $O(k\sqrt{n})$ edges will produce $O(k^2)$ wedges.
- **Idealized algorithm:** Maintain a separate edge reservoir for each wedge
 - Needs $O(|S|\sqrt{n})$ storage for $|S|$ samples.
 - Has provable bounds; but not as effective in practice.
- **Practical algorithm:** Maintain a single and slightly bigger edge pool
 - Needs $O(\sqrt{(|S|n)})$ storage
 - Wedge samples are biased, but in practice so enough wedges are generated to unbias the sample.
 - Effective in practice

Making up for wedges closed by earlier edges

- Each triangle comprises of 3 wedges.
- In the original wedge sampling, we were able to detect any wedge as closed.
- In the streaming algorithm, we can only detect 1 of the 3 as closed.
- Since wedges are selected randomly, the expected closure rate is 3^* the closure rate of the wedge pool.

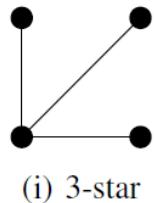
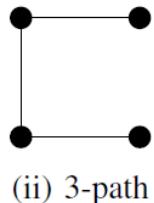
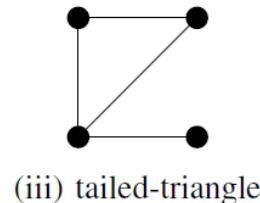
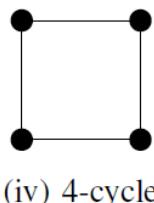
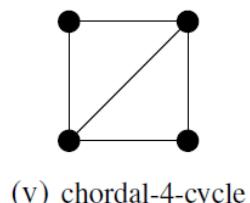
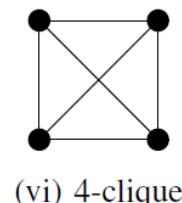
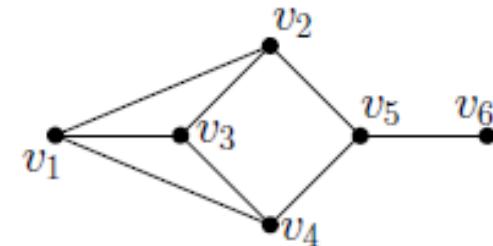


Wedge sampling for τ



- $C = 3T/W =$ fraction of closed wedges
- Consider list of all wedges, indexed with open/closed

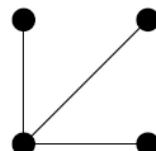
Induced vs non-induced



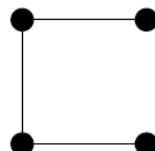
$$\begin{pmatrix} 1 & 0 & 1 & 0 & 2 & 4 \\ 0 & 1 & 2 & 4 & 6 & 12 \\ 0 & 0 & 1 & 0 & 4 & 12 \\ 0 & 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \end{pmatrix} = \begin{pmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \\ N_5 \\ N_6 \end{pmatrix}$$

- (Vanilla) subgraph: take subset of edges
- Induced subgraph: take subset of vertices, take all edges in them
- Let C_i is induced count of pattern i
 - Getting vanilla counts not hard

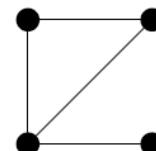
Past art does not scale either



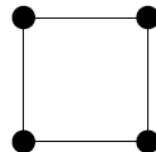
(i) 3-star



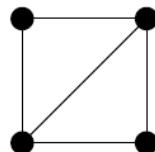
(ii) 3-path



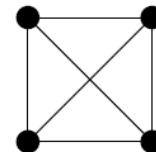
(iii) tailed-triangle



(iv) 4-cycle



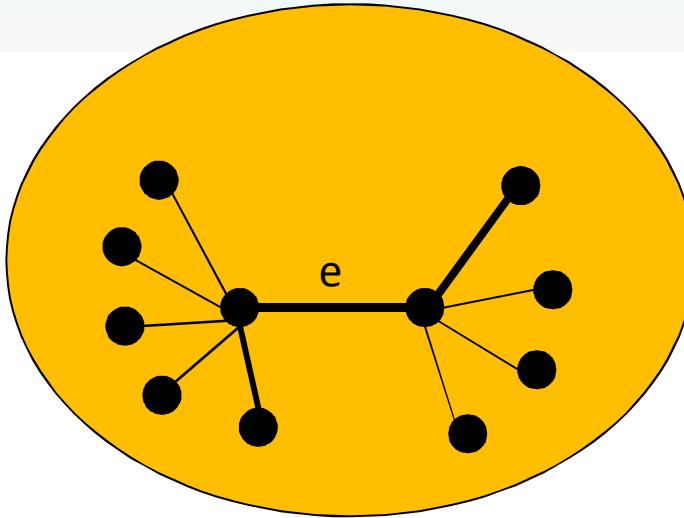
(v) chordal-4-cycle



(vi) 4-clique

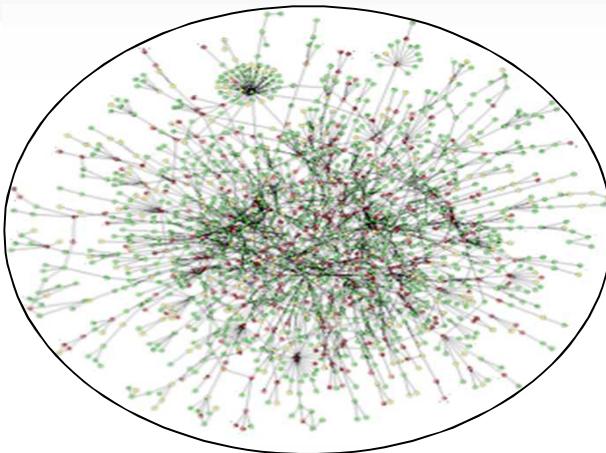
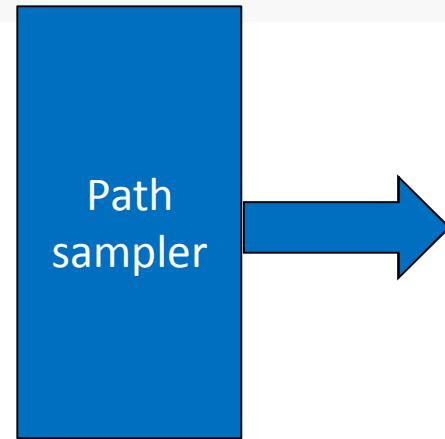
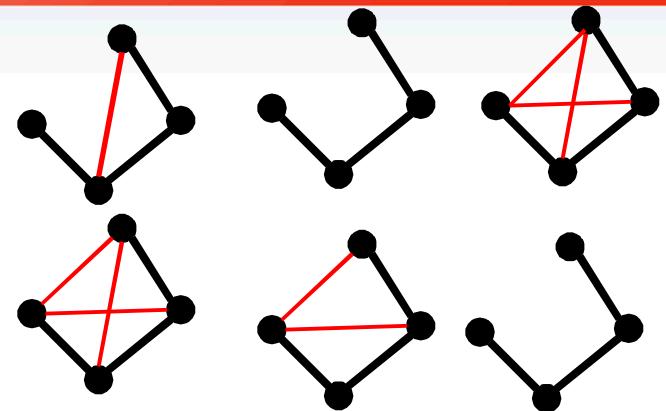
- MCMC methods, color coding, graph sparsification
- No provable methods, accuracies at best $\sim 10\%$, often need computer clusters
- Nothing tailored for 4 vertices
- No results for (say) 100M edges

Sampling random 3-paths



- First set for all edges, $W_{u,v} = (d_u - 1)(d_v - 1)$.
- Pick edge $e = (u,v)$ with probability prop. to $W_{u,v}$
- Pick uniform random neighbor of u and of v
- If output is 3-path, guaranteed to be uniform random

The devilish details



- Works, but (provable) accuracy is not great
- Design methods to reduce samples
- Can give provable bounds: “for s samples, with 99.9% confidence, the true count is within 1% of answer”

What if we observe the data as a stream of edges?

- Many data analysis problems deal with data streams.

- Situational awareness requires real time analysis.

- Streaming algorithms are also used to analyze large data sets with limited memory.

- Multiple passes may be feasible.

- Algorithmically

- We see each data point only once.
 - We either take action, or forever hold our peace.

- Not all problems are amenable to streaming analysis.

- We cannot find needle in a haystack
 - But we can count frequent items, such as triangles

