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CVFEM for Advection Diffusion

Advection-Diffusion Equation

−∇ · F (φ) = f in Ω

F (φ) = (ε∇φ− uφ) in Ω

φ = g on Γ

φh(x) =
X

pi∈P (Ω)

φiNi(x)

Integrate over control volumesZ
∂Ci

F (φh) · ndS =

Z
Ci

fdV ∀pi ∈ P (Ω)

Unstabilized CVFEM Correct Solution
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Stabilization
Multi-dimensional Scharfetter-Gummel Upwinding

Assume that Fij ≈ F (φ) · tij is constant
along eij

1-d boundary value problem for Fij

dFij

ds
= 0; Fij = εij

dφ

ds
− uijφ(s)

φ(0) = φi and φ(hij) = φj

Ci

vi

vj

eijKs

Edge flux

Fij =
hijuij

2

“
φj(coth(βij)− 1)− φi(coth(βij) + 1)

”
, βij =

uijhij

2εij

Expand into primary cell using H(curl)-conforming finite elements

bF (φh) =
X

eij∈E(Ω)

Fij
−→
W ij

Bochev, Peterson, Gao (2013) "A new control volume finite element method for the stable and accurate solution of
the drift-diffusion equations on general unstructured grids",CMAME 254, 126-145.
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Operator Matrix Assembly

Loop over primary cell elements

Compute edge flux Fnm = αnm
n φn + αnm

m φm

Compute control volume side normals (nq)

Compute
−→
W nm at integration points on

control volume sides (xq)

Fill element operator with φj coefficients

Contributions to Ci boundary integral from xq

Aii += αij
i

−→
W ij(xq) · nq + αli

i

−→
W li(xq) · nq

Aij += αij
j

−→
W ij(xq) · nq + αjk

j

−→
W jk(xq) · nq

Aik += αjk
k

−→
W jk(xq) · nq + αkl

k

−→
W kl(xq) · nq

Ail += αkl
l

−→
W kl(xq) · nq + αli

l

−→
W li(xq) · nq

Aij =

Z
Ci

bF (φj) · ndS

vi

vj

vl

vk

Ci

Cj

Cl

Ck

Ks

−→
W : Intrepid_HCURL_QUAD_I1

Note that edge flux expressions are independent of nodal basis.

Method works well, but is only 1st order accurate
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Stabilization
Second-order Scharfetter-Gummel Upwinding

Divide each element into four sub-elements

Assume that Fs ≈ F (φ) · ts = A + Bs

1-d boundary value problem along segment

Fs(s) = −usφ(s) + εs
dφ

ds
φ(0) = φi, φ(hs/2) = φt and φ(hs) = φj

Fit = Fs(hs/4) Ftj = Fs(3hs/4)

Edge flux

Fit = F 1st
it (φi, φt) + γit(φi, φt, φj)

Ftj = F 1st
tj (φt, φj) + γtj(φi, φt, φj)

φl

φi

φj

φl

φs

φt

φu

φv

φw

Ks

K1
s

K2
s

K3
s

K4
s

Expand into primary cell using H(curl)-conforming finite elements

bF (φh) =
X

eij∈E(Ω)

Fij
−→
W ij

Bochev, Peterson, Perego "A multi-scale control-volume finite element method for advection-diffusion
equations",IJNMF in review.
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Operator Matrix Assembly

Loop over macro elements

Compute edge flux nodal coefficients:
Fnm = αnm

n φn + αnm
m φm + αnm

p φp

Compute control volume side normals (nq)

Compute
−→
W nm at integration points on

control volume edges (xq)
Fill element operator with φj coefficients

Example contributions to Cw boundary integral from xq

Awi += αsi
i

−→
W si(xq) · nq + αls

i

−→
W ls(xq) · nq

+αit
i

−→
W it(xq) · nq + αtj

i

−→
W tj(xq) · nq

Aij =

Z
Ci

bF (φj) · ndS

φl

φi

φj

φk

φs

φt

φu

φv

φw

Ks

−→
W : Intrepid_HCURL_QUAD_I2

Edge flux expressions are independent of nodal basis.
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Assembly with Intrepid

Intrepid provides the following capabilities:
H(Curl)-conforming basis function
definitions

−→
W : Intrepid_HCURL_QUAD_I1−→
W : Intrepid_HCURL_QUAD_I2

Mappings from reference to physical
space
Routines to compute control volume
side normals
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Manufactured Solution

−∇ · F (φ) = f in Ω

F (φ) = (ε∇φ− uφ) in Ω

φ = g on Γ

φ(x, y) = x3 − y2

u = (− sin π/6, cos π/6)

CVFEM-MS CVFEM-SG FEM-SUPG
L2 error H1 error L2 error H1 error L2 error H1 error

Grid∗ ε = 1× 10−3

32 1.57e-3 6.05e-2 4.24e-3 7.48e-2 1.85e-4 3.61e-2
64 3.93e-4 2.89e-2 2.07e-3 4.91e-2 4.11e-5 1.80e-2

128 8.98e-5 1.24e-2 9.78e-4 3.07e-2 1.01e-5 9.02e-3
Rate 2.06 1.14 1.06 0.642 2.10 1.00
Grid ε = 1× 10−5

32 1.69e-3 6.60e-2 4.73e-3 7.90e-2 2.26e-4 3.61e-2
64 4.54e-4 3.45e-2 2.52e-3 5.48e-2 5.72e-5 1.80e-2

128 1.18e-4 1.76e-2 1.30e-3 3.83e-2 1.43e-5 9.02e-3
Rate 1.92 0.955 0.933 0.521 1.99 1.00
∗ For CVFEM-MS the size corresponds sub-elements rather than macro-elements.
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Skew Advection Test

−∇ · F (φ) = f in Ω

F (φ) = (ε∇φ− uφ) in Ω

φ = g on Γ

g =


0 on ΓL ∪ ΓT ∪ (ΓB ∩ {x ≤ 0.5})
1 on ΓR ∪ (ΓB ∩ {x > 0.5})

u = (− sin π/6, cos π/6) ε = 1.0× 10−5

CVFEM-MS CVFEM-SG SUPG

min = -0.0445 min = 0.00 min = -0.0471

max = 1.077 max = 1.004 max = 1.077
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Double Glazing Test

−∇ · F (φ) = f in Ω

F (φ) = (ε∇φ− uφ) in Ω

φ = g on Γ

ε = 1.0× 10−5

g =


0 on ΓL ∪ ΓT ∪ (ΓB ∩ {x ≤ 0.5})
1 on ΓR ∪ (ΓB ∩ {x > 0.5})

u =

„
2(2y − 1)(1− (2x− 1)2)

−2(2x− 1)(1− (2y − 1)2)

«

CVFEM-MS CVFEM-SG SUPG
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Conclusions

Multi-scale CVFEM offers a stable and robust method for solving
advection-diffusion equations

Stabilization uses 2nd-order Nedelec elements to lift 2nd-order edge
fluxes into element

Works on unstructured grids

Does not require heuristic stabilization parameters

Relatively straightforward to implement using tools in the Intrepid library
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