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Verification ensures that the simulation mathematics and code are correctly
computing the solution to the model equations.

Validation is the assessment of the accuracy of a computational simulation by
comparison with experimental data.

Uncertainty Quantification assesses the statistical range by which a simulation
result differs from the true value.

Aleatoric and Epistemic Uncertainties
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Adapted from: Chernatynskiy, Phillpot,
and LeSar, Annu. Rev. Mater. Res., 43,
pp. 157-182, 2013.




Uncertainty Quantification (UQ) @

Propagation of
uncertainties
through the model

Uncertain inputs
to the model

Uncertain outputs
from the model

Environments 3
Geometry ’ —>
Initial conditions ——> System of PDE’s —>
Physical parameters —>| and sub-models, — System response
y P - including model guantities of interest
Boundary conditions ——> uncertainty I
_ System excitation ——» I
Scenarios

Classification of Uncertainty

= Aleatory — the inherent variation in a quantity that, given sufficient
samples of the stochastic process, can be characterized via a
probability density function

= Epistemic — uncertainty due to a lack of knowledge by the modelers,
analysts conducting the analysis, or experimentalists in validation

Roy and Oberkampf, Computational Methods in Applied Mechanics and Engineering, 200, pp. 2131-2144,
2011.
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Local hot spots very important in powder
explosives — need to know variability.

How does the microstructure affect the
uncertainty in thermal transport simulations for
heterogeneous materials?
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= Steady state simulations

T(x) =T (1 _ f)

L - v
o L o
= L=5.12cm, grid 512x512 N 1

elements, grid size is 0.01 cm =

= Material A: high density, high
thermal conductivity

= Material B: low density, low 05 | _LenTB - T_4 ateach X
thermal conductivity ol Iy

= Feature sizes varied from L/8 to
L/256, one log-normal mixture
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= Volume fractions varied from all
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Simulation Results
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Temperature and Standard ) B
Deviatimon
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Variation as a Function of Volume
Fraction and Feature Length Scale
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fa, Fraction of High Conductivity Material

Standard Deviation of T (K)
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Effective Medium Theory Expressions (M.

- (*A"2mix) (*8"Amix)
S t f + f =0
ymmetric A (}‘A+(d'1)7‘mix) B (}‘B+(d_1)7‘mix)
d d d
Asymmetric Cmix-*a) = (1-fa) (2g—2a)
Amix AB
d d d
Asymmetric Cmix-8) — (1-fg) (*a-2g)
Amix An
Parallel Amix = fala + feAg
Series Amix = !
fa/a+fp/2g




Effective Thermal Conductivity as a ) s
Function of Fraction of the Material A
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Effective Thermal Conductivity as a ) s
Function of Fraction of the Material A
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Effective Thermal Conductivity as a ) s
Function of Fraction of the Material A
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= Uncertainty quantification techniques suitable for multiscale
heat transfer simulations are needed.

= Steady state heat transfer simulations of a two component
provide insight into the aleatoric uncertainty inherent in
heterogeneous materials.

= A peakin the uncertainty was observed near the percolation
threshold of f, ~ 0.4 and decreased by a factor of 2 from the
peak for f,’s greater than 0.75 or less than 0.25.

= Uncertainties in max.-min. T's are around 30K for coarser
structures: L/8, L/16, and L/32, and as much as 10K for the
finest feature of L/256.

= Statistical representations are needed for the aleatoric
uncertainty in heterogeneous materials that can be retained
and passed between scales.
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Multiscale Modeling

ms

us

ns

Time Scale

PS

fs

A
System
Scale
Component
_ Scale
Particle
Scale
Interfacial
Transport
Atomic
~ Scale
Subatomic
Scale
>
pm nm um mm m

Length Scale

e



Transport in Heterogeneous ) i,
Powders

= -kASL
AST

9= hAL{T,~Tp)

Sz ov = fﬁ!clj,—:ljw + [
v ! () 3
HEAT GENERATION  INTERNAL ENERGY  HEAT LOSS TO
RATE INCREASE RATE SURROUNDINGS




