SAND2014- 19699P

Recent and Upcoming
Enhancements to OpenMP

Stephen Olivier

— _--m--ﬁ&;l'l!l“““':'- Dept. 1423, Sandia National Laboratories, NM
et n-ll-l: fd‘r“d wEs

Technical Seminar
Sandia Co-Design Working Group

Sandia
National
Laboratories November 12, 2014

Exceptional
service

in the

national

g’
NERGY #VLYS&

nal Laboratories is a multi-program laboratory managed and operated by Sandia Cor p ration, a wholly owned subsidiary of Lockheed
ration, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

interest

Outline

Brief history of OpenMP

OpenMP 4.0 features

= Focus on accelerator support

= Compiler support for 4.0

= Plans for 4.1 and beyond

= Specification

= OpenMP Tools Interface

Sandia
National
Laboratories

An OpenMP* Timeline i)

Laboratories

By Jim Cownie, OpenfP A i, Alejandro Duran
Klemm, [and Luke L

Vendaots predide similar but different selutions for loop paeatledism, cassing portability &nd maimenance proiems
Kuck and Assoclates, Inc. [KAL | 5G| Cray | 1BM | High Peroemancd Foctran (HPF) | Padallel Compunng Foram [PCF)

26 25
16 |22 |
i i i i |-i|ililililllﬁlllﬁlml ”

110 477 688 1020 1350 1330 1370 1800 1BED 2320 3IT00 4100 5370 GO0 SAT70
DthHF ARB Hemhershup Evolution . Permanent AR E Audtry ARD Members . OpenMP Google Schals Hit

Sandia

Brief Summary of 4.0 Features) e

= Accelerator device support

= SIMD (loop vectorization)

= Thread affinity

= Task dependences and task groups

= User-defined reductions

= Cancellation of parallel regions, loops, and task groups
= Some Fortran 2003 support

= Examples now in separate document

Portable OpenMP for GPU/Phi/CPU [@JE.

#pragma omp target teams distribute parallel for simd

= Yes, this is a lot to digest.

Portable OpenMP for GPU/Phi/CPU @E:.

#pragma omp target teams distribute parallel for simd

Portable OpenMP for GPU/Phi/CPU @E:.

#pragma omp target teams distribute parallel for simd

Alert compiler
to OpenMP

Portable OpenMP for GPU/Phi/CPU @E:.

#pragma omp target teams distribute parallel for simd

Execute
on a device

Alert compiler
to OpenMP

Sandia

Portable OpenMP for GPU/Phi/CPU @z

#pragma omp target teams distribute parallel for simd

Inter-block
parallelism

Execute
on a device

Alert compiler
to OpenMP

Sandia

Portable OpenMP for GPU/Phi/CPU @z

#pragma omp target teams distribute parallel for simd

L Intra-block

Inter-block parallelism
parallelism

Execute
on a device

Alert compiler
to OpenMP

Sandia

Portable OpenMP for GPU/Phi/CPU @z

#pragma omp target teams distribute parallel for simd

L» Vector
parallelism
Intra-block

Inter-block parallelism
parallelism

Execute
on a device

Alert compiler
to OpenMP

Resulting Device Parallelism) .

= |nter-block (teams distribute)
= Create a league of thread teams across the device (GPU or Phi)
= Distribute chunks of loop iterations among the teams
= Synchronization not allowed across teams

= |ntra-block (parallel for)
= Each thread team executes on a GPU block or Phi core(s)
= Each thread executes sub-chunk(s) of its team’s total chunk
= Synchronization allowed within the team

= Vector-level (simd)
= Vectorize for GPU warp or Phi AVX

Host/Device Data Mapping).
map(map-type: list)

= Clause on the target and target data constructs

= The map-type is one of
= to (map to device on entry)
= from (map from device on exit)
= tofrom (map to device on entry and back from device on exit)
= alloc (new uninitialized storage)

= The list specifies your variables to be moved

Prefer to say “map” rather than “move”
= Movement may not always be required

Updating data mid-region) .
#pragma omp target update motion-clause

= Updates host / device data

= Only other guaranteed updates are at start and finish of target
and target data regions as specified in map clauses

= The motion-clause is one of

= to (map to device on entry)

= from (map from device on exit)

Example Code

#pragma omp target teams distribute parallel for simd \
map(to: x[0:N]) map(tofrom: y[0:N]) \
num_teams(nblocks) \
num_threads (nthreads)

for (inti=0;1<n; ++i){
yli] = x[i] + y[i];

Sandia
National _
Laboratories

Sandia

Functions on device) e

#pragma omp declare target

= Let compiler know that a function should exist on
the device

Functions for SIMD)

#pragma omp declare simd

= Let compiler know that a function can be used inside
a vectorizable loop

= New clauses to specify
= Alignment
= Used in branching code or not
= Safe vector length

Thread Affinity (Example) 1) .

socket w/ physical core w/ 2
4 physical cores hardware threads
A
| |

A
0 A 22 B | o B

= Define a place list grouping by core:

= OMP_PLACES=“{0,1},{2,3},{4,5},{6,7},{8,9},{10,11},{12,13},{14,15}"
= Or OMP_PLACES=cores
= Or by socket:
= OMP_PLACES=“{0,1,2,3,4,5,6,7},{8,9,10,11,12,13,14,15}”
= Or OMP_PLACES=sockets

Thread Affinity (Example) 1) .

socket w/ physical core w/ 2
4 physical cores hardware threads
A
| |

A
0 A 22 B | o B

= Suppose we specify

= OMP_PLACES="{0,1},{2,3},{4,5},{6,7},{8,9},{10,11},{12,13},{14,15}"
= And we want one thread per core
= PROC_BIND=“spread” NUM_THREADS=8

= Can use PROC_BIND=“close” to put threads close together

Task Dependences)

= Express relationships between tasks based on data flow
= Flow dependence (read-after-write)
= Anti-dependence (write-after-read)
= Qutput dependence (write-after-write)

= Express using in and out dependence clause lists

= Can use dummy variables to create arbitrary dependence
graphs as needed

Task Dependences (Example)

intx=1;
#pragma omp parallel
#pragma omp single

{
#pragma omp task shared(x)
X=2;
#pragma omp task shared(x)
printf ("x = %d\n", x);
}

// Could print “x=1" or “x = 2”

Sandia
National _
Laboratories

Sandia

Task Dependences (Example)) e

intx=1;
#pragma omp parallel
#pragma omp single

{
#pragma omp task shared(x) depend(out: x)
X=2;
#pragma omp task shared(x) depend(in: x)
printf ("x = %d\n", x);
}

// Will always print “x = 2”

User-defined Reductions L

Sandia
National _
Laboratories

= Previously, reductions defined over particular set of operators

= Mathematical operators (+, -, *, &,|,”,&&,and| |)
= OpenMP 3.1 added min and max

= Now can define your own reductions

= Specify initializer and combiner functions

Cancellation)

= Can prematurely stop execution

= Defined for Parallel regions, loops, task groups

= Support error conditions or terminating search when the
answer is found

= Some default cancellation points

= QOthers can be marked by user

= Part of a larger effort to define an error model for OpenMP

= (Currently none)

Compilers Supporting OpenMP 4.0

GCC4.9

= Device constructs will execute on host

Intel 14.0

= Except user-defined reductions

Clang/LLVM
= Not in trunk; available at http://clang-omp.github.io/

= Based on Intel open-source RTL

Oracle 12.4

= Except SIMD and device constructs

Sandia
National _
Laboratories

http://clang-omp.github.io/
http://clang-omp.github.io/
http://clang-omp.github.io/
http://clang-omp.github.io/
http://clang-omp.github.io/

Process for Future of OpenMP).

= OpenMP 4.1 to be released at SC15

= SC14 tech report shows progress so far
= OpenMP 5.0 tentatively released at SC17

= Separate examples document

= Allows updates off-cycle with new spec. versions

= Moving toward whole compilable, runnable programs

On deck for OpenMP 4.1 .

= Asynchronous accelerator execution

= Unstructured data mapping

= Array reductions

= DOACROSS (structured loop dependences)
= Task-generating loops

= More Fortran 2003

= Many corrections

Tech Report with preliminary 4.1 features to be released at SC14

OpenMP Tools (OMPT) Interface @

= Released as tech report in March 2014
= http://openmp.org/mp-documents/ompt-tr2.pdf

= Not required of implementations to be compliant with OpenMP spec.

Designed for minimal run time system overhead

= Tracks threads, parallel regions, and threads
= Unique identifiers for each
= Callbacks at begin and end of each
= Record thread states (idle, serial, parallel)

= Tracks waiting on barriers, locks, critical sections, child tasks

= Many optional events for instrumentation

http://openmp.org/mp-documents/ompt-tr2.pdf
http://openmp.org/mp-documents/ompt-tr2.pdf
http://openmp.org/mp-documents/ompt-tr2.pdf
http://openmp.org/mp-documents/ompt-tr2.pdf
http://openmp.org/mp-documents/ompt-tr2.pdf
http://openmp.org/mp-documents/ompt-tr2.pdf

OpenMP 5.0 and Beyond) .

= Multiple accelerator device types

= Memory placement / affinity

= Task-to-thread mapping and task reductions
= |nteroperability / composability

= Tools support (in spec)

= Transactional memory

OpenMP Resources) .

= Main site, including the spec and examples document:

= http://www.openmp.org

Excellent article on OpenMP 4.0 from Intel:

= https://software.intel.com/sites/default/files/managed/64/cc/parallel
mag issuelb.pdf

Book (unfortunately not updated for recent OpenMP spec.):
» http://mitpress.mit.edu/books/using-openmp

SC BoF on Tuesday 5:30-7pm

= SC OpenMP booth (#2824)
= Booth talks Tuesday — Thursday

= Free snacks Tus

http://mitpress.mit.edu/books/using-openmp
http://mitpress.mit.edu/books/using-openmp
http://mitpress.mit.edu/books/using-openmp
https://software.intel.com/sites/default/files/managed/64/cc/parallel_mag_issue16.pdf
https://software.intel.com/sites/default/files/managed/64/cc/parallel_mag_issue16.pdf
https://software.intel.com/sites/default/files/managed/64/cc/parallel_mag_issue16.pdf
http://www.openmp.org

