
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Recent and Upcoming
Enhancements to OpenMP

Stephen Olivier
Dept. 1423, Sandia National Laboratories, NM

Technical Seminar

Sandia Co-Design Working Group

November 12, 2014

SAND2014-19699PE

Outline

 Brief history of OpenMP

 OpenMP 4.0 features
 Focus on accelerator support

 Compiler support for 4.0

 Plans for 4.1 and beyond
 Specification

 OpenMP Tools Interface

Brief Summary of 4.0 Features

 Accelerator device support

 SIMD (loop vectorization)

 Thread affinity

 Task dependences and task groups

 User-defined reductions

 Cancellation of parallel regions, loops, and task groups

 Some Fortran 2003 support

 Examples now in separate document

Portable OpenMP for GPU/Phi/CPU

#pragma omp target teams distribute parallel for simd

 Yes, this is a lot to digest.

Portable OpenMP for GPU/Phi/CPU

#pragma omp target teams distribute parallel for simd

Portable OpenMP for GPU/Phi/CPU

#pragma omp target teams distribute parallel for simd

Alert compiler
to OpenMP

Portable OpenMP for GPU/Phi/CPU

#pragma omp target teams distribute parallel for simd

Execute
on a device

Alert compiler
to OpenMP

Portable OpenMP for GPU/Phi/CPU

#pragma omp target teams distribute parallel for simd

Inter-block
parallelism

Execute
on a device

Alert compiler
to OpenMP

Portable OpenMP for GPU/Phi/CPU

#pragma omp target teams distribute parallel for simd

Intra-block
parallelismInter-block

parallelism

Execute
on a device

Alert compiler
to OpenMP

Portable OpenMP for GPU/Phi/CPU

#pragma omp target teams distribute parallel for simd

Vector
parallelism

Intra-block
parallelismInter-block

parallelism

Execute
on a device

Alert compiler
to OpenMP

Resulting Device Parallelism

 Inter-block (teams distribute)
 Create a league of thread teams across the device (GPU or Phi)

 Distribute chunks of loop iterations among the teams

 Synchronization not allowed across teams

 Intra-block (parallel for)
 Each thread team executes on a GPU block or Phi core(s)

 Each thread executes sub-chunk(s) of its team’s total chunk

 Synchronization allowed within the team

 Vector-level (simd)
 Vectorize for GPU warp or Phi AVX

Host/Device Data Mapping

map(map-type: list)

 Clause on the target and target data constructs

 The map-type is one of

 to (map to device on entry)

 from (map from device on exit)

 tofrom (map to device on entry and back from device on exit)

 alloc (new uninitialized storage)

 The list specifies your variables to be moved

 Prefer to say “map” rather than “move”

 Movement may not always be required

Updating data mid-region

#pragma omp target update motion-clause

 Updates host / device data
 Only other guaranteed updates are at start and finish of target

and target data regions as specified in map clauses

 The motion-clause is one of
 to (map to device on entry)

 from (map from device on exit)

Example Code

#pragma omp target teams distribute parallel for simd \

map(to: x[0:N]) map(tofrom: y[0:N]) \

num_teams(nblocks) \

num_threads (nthreads)

for (int i = 0; I < n; ++i) {

y[i] = x[i] + y[i];

}

Functions on device

#pragma omp declare target

 Let compiler know that a function should exist on
the device

Functions for SIMD

#pragma omp declare simd

 Let compiler know that a function can be used inside
a vectorizable loop

 New clauses to specify

 Alignment

 Used in branching code or not

 Safe vector length

Thread Affinity (Example)

18

 Define a place list grouping by core:
 OMP_PLACES=“{0,1},{2,3},{4,5},{6,7},{8,9},{10,11},{12,13},{14,15}”

 Or OMP_PLACES=cores

 Or by socket:
 OMP_PLACES=“{0,1,2,3,4,5,6,7},{8,9,10,11,12,13,14,15}”

 Or OMP_PLACES=sockets

 Suppose we specify
 OMP_PLACES=“{0,1},{2,3},{4,5},{6,7},{8,9},{10,11},{12,13},{14,15}”

 And we want one thread per core
 PROC_BIND=“spread” NUM_THREADS=8

 Can use PROC_BIND=“close” to put threads close together

19

Thread Affinity (Example)

Task Dependences

 Express relationships between tasks based on data flow
 Flow dependence (read-after-write)

 Anti-dependence (write-after-read)

 Output dependence (write-after-write)

 Express using in and out dependence clause lists

 Can use dummy variables to create arbitrary dependence
graphs as needed

Task Dependences (Example)

int x = 1;

#pragma omp parallel

#pragma omp single

{

#pragma omp task shared(x)

x = 2;

#pragma omp task shared(x)

printf ("x = %d\n", x);

}

// Could print “x = 1” or “x = 2”

Task Dependences (Example)

int x = 1;

#pragma omp parallel

#pragma omp single

{

#pragma omp task shared(x) depend(out: x)

x = 2;

#pragma omp task shared(x) depend(in: x)

printf ("x = %d\n", x);

}

// Will always print “x = 2”

User-defined Reductions

 Previously, reductions defined over particular set of operators
 Mathematical operators (+, -, *, &,|,ˆ,&&,and||)

 OpenMP 3.1 added min and max

 Now can define your own reductions
 Specify initializer and combiner functions

Cancellation

 Can prematurely stop execution
 Defined for Parallel regions, loops, task groups

 Support error conditions or terminating search when the
answer is found

 Some default cancellation points
 Others can be marked by user

 Part of a larger effort to define an error model for OpenMP
 (Currently none)

Compilers Supporting OpenMP 4.0

 GCC 4.9
 Device constructs will execute on host

 Intel 14.0
 Except user-defined reductions

 Clang/LLVM
 Not in trunk; available at http://clang-omp.github.io/

 Based on Intel open-source RTL

 Oracle 12.4
 Except SIMD and device constructs

http://clang-omp.github.io/
http://clang-omp.github.io/
http://clang-omp.github.io/
http://clang-omp.github.io/
http://clang-omp.github.io/

Process for Future of OpenMP

 OpenMP 4.1 to be released at SC15
 SC14 tech report shows progress so far

 OpenMP 5.0 tentatively released at SC17

 Separate examples document
 Allows updates off-cycle with new spec. versions

 Moving toward whole compilable, runnable programs

On deck for OpenMP 4.1

 Asynchronous accelerator execution

 Unstructured data mapping

 Array reductions

 DOACROSS (structured loop dependences)

 Task-generating loops

 More Fortran 2003

 Many corrections

Tech Report with preliminary 4.1 features to be released at SC14

OpenMP Tools (OMPT) Interface

 Released as tech report in March 2014
 http://openmp.org/mp-documents/ompt-tr2.pdf

 Not required of implementations to be compliant with OpenMP spec.

 Designed for minimal run time system overhead

 Tracks threads, parallel regions, and threads
 Unique identifiers for each

 Callbacks at begin and end of each

 Record thread states (idle, serial, parallel)

 Tracks waiting on barriers, locks, critical sections, child tasks

 Many optional events for instrumentation

http://openmp.org/mp-documents/ompt-tr2.pdf
http://openmp.org/mp-documents/ompt-tr2.pdf
http://openmp.org/mp-documents/ompt-tr2.pdf
http://openmp.org/mp-documents/ompt-tr2.pdf
http://openmp.org/mp-documents/ompt-tr2.pdf
http://openmp.org/mp-documents/ompt-tr2.pdf

OpenMP 5.0 and Beyond

 Multiple accelerator device types

 Memory placement / affinity

 Task-to-thread mapping and task reductions

 Interoperability / composability

 Tools support (in spec)

 Transactional memory

OpenMP Resources

 Main site, including the spec and examples document:
 http://www.openmp.org

 Excellent article on OpenMP 4.0 from Intel:
 https://software.intel.com/sites/default/files/managed/64/cc/parallel

_mag_issue16.pdf

 Book (unfortunately not updated for recent OpenMP spec.):
 http://mitpress.mit.edu/books/using-openmp

 SC BoF on Tuesday 5:30-7pm

 SC OpenMP booth (#2824)
 Booth talks Tuesday – Thursday

 Free snacks Tus

http://mitpress.mit.edu/books/using-openmp
http://mitpress.mit.edu/books/using-openmp
http://mitpress.mit.edu/books/using-openmp
https://software.intel.com/sites/default/files/managed/64/cc/parallel_mag_issue16.pdf
https://software.intel.com/sites/default/files/managed/64/cc/parallel_mag_issue16.pdf
https://software.intel.com/sites/default/files/managed/64/cc/parallel_mag_issue16.pdf
http://www.openmp.org

