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Outline )

= QOverview of the Battery Safety R&D Program
= Capabilities
= Battery Abuse Testing Laboratory (BATLab)
= R&D Interests and support

= Materials-level battery safety
= Battery calorimetry
= Nonflammable electrolytes
= System-Level battery safety
= |mproving control system architecture
= Vehicle crash modeling
= Failure propagation
= Battery fires



Batttery Calorimetry

Large Scale Testing Facilities
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Battery Abuse Testing Laboratory (BATLab) ([@)Es.

= Comprehensive abuse testing platforms for cells, batteries
and systems from mWh to kWh

=  Program support primarily from the ground vehicle sector
=  Mechanical abuse
= Penetration
= Crush
= Impact
= Immersion
= Thermal abuse
= QOver temperature
=  Flammability measurements
= Thermal propagation
= Calorimetry
= Electrical abuse
= Overvoltage/overcharge
= Short circuit

= Overdischarge/voltage reversal
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Understanding Battery Safety

Materials R&D

Non-flammable electrolytes
Electrolyte salts

Coated active materials
Thermally stable materials

Testing
Electrical, thermal, mechanical abuse testing
Failure propagation testing on batteries/systems
Large scale thermal and fire testing (TTC)
Development for DOE Vehicle Technologies and USABC

Simulations and Modeling

e Multi-scale models for understanding thermal runaway

e Validating vehicle crash and failure propagation models

* Fire Dynamics (FDS) and Fuego simulations to predict
the size, scope, and consequences of battery fires

Procedures, Policy, and Regulation

* USABC FreedomCAR Abuse Testing Manual

e SAE J2464, UL1642
Testing programs with NHTSA/DOT to influence
policies and requirements
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Materials-Level Battery Safety 1) .

ithium-ion Materials Issues:

Materials choices and interfacial chemistry can impact these safety challenges




Calorimetry of Lithium-ion Cells ) .

Understanding the Thermal Runaway Response of Materials in Cells
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Can high energy cathodes behave like LFP during thermal runaway?
Where do “beyond lithium-ion” technologies fit on this chart? 3




Characterizing Thermal Runaway @

Runaway Enthalpy (kJ/Ah)
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Data provide a quantitative measurement of the runaway free energy




Effect of Cell State of Charge (SOC) @E.
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also see Roth, E. P. et al. SAND2004-0584, March 2004; Roth, E. P. SAND2004-6721, March 2005



Electrolyte Flammability

Sulfonimide/Hydrofluoro ether (HFE) Electrolytes to improve thermal stability and flammability
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HFE electrolytes have conductivities on the order of 2 mS/cm

to LiPF /carbonate electrolytes

HFEs show comparable discharge capacity in NMC/Graphite cells compared

11

G. Nagasubramanian et al. J. Power Sources 196 (2011) 8604-8609



Electrolyte Flammability ) .

Sulfonimide/Hydrofluoro ether (HFE) Electrolytes to improve thermal stability and flammability
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= Autoignition measurements at ambient pressure are a more relevant measure
of battery electrolyte flammability than measurements at elevated pressure

= HFEs have significantly higher autoignition temperatures in air relative to
carbonate solvents

LABORATORY DIRECTED RESEARDH B DEVELDPVENT

C. J. Orendorff et al. SAND2012-9186, “Advanced Inactive Materials for Improved Lithium-lon Battery Safety”



Electrolyte Flammability ) 5.

Flammability measurements Cell Vent Flammabilit
Electrolyte Ignition (Y/N) ATime (vent-ignition)

= Conventional bulk liquid fuel
flammability measurements (e.g.
ASTM D56) do not accurately EC:

reflect flammability representative

I failure in a battery

5:95 v%)
3:7 wt%)

Tools can be applied to electrolyte development efforts to
evaluate electrolyte flammability performance

AT

DR Flammability tools developed under Sandia LDRD Program
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G. Nagasubramanian et al. J. Power Sources 196 (2011) 8604-8609




System-Level Battery Safety )i

Field failures could include:
= Latent manufacturing defects

" Internal short eirctits ——

Fisker incident in the wake of Super Storm Sandy , New Jersey, 2012
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Informing Battery Management Systems .

Development of a battery state-of-stability (SOS) diagnostic tool set

Rapid Impedance Measurement Tool

Battery management systems (BMS) b -
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control architecture for battery management
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USCAR Crash Safety ) .

Analog “pole test” of a battery

Mechanical behavior under compression
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Determining baseline mechanical behavior of batteries during crush/impact testing
Testing support to validate mechanical models for batteries during a crash scenario 16




. Sandia
Crash Safety Modeling ) .
Computer Aided Engineering for Batteries (CAEBAT) DOE VTO and NREL

Battery Crush Experiment (SNL, USCAR) Cell-level Mechanical Model (MIT)

Current density
contour and vector

Integrated Thermoelectrochemical & Mechanical Model (NREL)

Thermal Cell-to-Cell Propagation Model Thermoelectrochemical Model

= Use battery crush data to validate the integrated model
= Develop a predictive capability for battery thermal runaway response to mechanical insult

17




Failure Propagation Testing )i

10S1P and 1510P configurations
2.2 Ah 18650 cell packs (92 Wh at 100% SOC)

Failures initiated by mechanical insult to the center cell (#6)
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10 pack series 18650 experimental wide view 061813.mp4

Limited propagation of the single point failure in the 10S1P pack 18




Failure Propagation Testing )i

10S1P and 1510P configurations
2.2 Ah 18650 cell packs (92 Wh at 100% SOC)
Failures initiated by mechanical insult to the center cell (#6)
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Complete propagation of a single point failure in the 1S10P pack 19




Understanding Battery Fires 1) .

= Heat Release Rate (HHR)
= Heat Flux

Physical Hazards —

V4
7
V4
y 4
y 4
y 4
y 4
y 4
y 4
V4

Environmental
Impact

ic gas species

Particulates released
u inogens

= Air emissions/air quality = Respirable fraction

= Particulate deposits
= ground/water




Experiments and Simulations )

10MeterOQutdoor.mpg fire 06 06 23 LQ.avi

=  While large scale testing capabilities exist, it is impractical to test every failure mode scenario
at every size scale

= Leverage the significant investments that the Department of Energy has made at SNL in
Advanced Scientific Computing (ASC) for Science-based Stockpile Stewardship, and adapt the
code to energy storage safety analysis

= Started this work focusing on modeling battery fires and their consequences (physical hazards,

health hazards, environmental impact) 71



Impact on Infrastructure ) .

Measured battery temperature
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= Scale up experiments to validate models (Wh - kWh = MWh)
= Feedback to design storage systems

= Inform fire suppression system design
= Provide to regulatory agencies (NFPA, NHTSA), utility companies, etc.




Health and Environmental Impact

EV and ICE vehicle fire emissions analysis:

Online FTIR
measurements :
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i~ Online gas analysis

2
-CO/CO
- smoke temperature
- flow rate
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Tested element ICE vehicle EV ICE vehicle
i manufacturer 1 manujfacturer 1 mamifacturer 2 manufacturer 2
Test Fire Fire Fire Fire
Nominal Voltage (V) 330v* - 355Vv* -
Capacity (4h) 50 Ah* - 66,6 Ah*® -
Energy (kWh) 16.5 kWh* - 23.5kWh* -
Mass (kg) 1122kg 1128kg 1501 kg 1404 kg
Lost mass (kg) 212 kg 192 kg 278.5kg 275kg
Lost mass (%) 19% 17% 18.6% 19.6%

cox (g 460 400 508 000 618 490 722 640
CO; (mgliostg) 2172 545 72208 7678
cog 10 400 12 040 11700 15 730
CO (mgllosig) 20 53 2 373
HF (9) 1540 621 1470 813
HF (mg/lost g) 7 32 53 3
Maximal HRR (M) 42 MW 48 MW 47 MW 6.1 MW
Heat ”fES}jb”’””” 6314 MJ 6 890 MJ 8 540 MJ 10 000 MJ
Heat of combustion/unit
e 29.8 MI/kg 35.9 MI/ke 30,7 MIke 36.4 MI/ks

A Mhavactavictiee af the hatterm nack of the TV

Multiple approaches used to analyze and model gas emissions from battery system fires
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Lecocq, A. et al. International Conference on Fires in Vehicles, FIVE 2012




Environmental Parameters i

Hydrocarbon fuel fire adjacent to battery rack (grid storage example)

No ventilation Sprinkler suppression

noVentilationFinal VR.avi suppressionMovie start.avi
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= Model predicts adjacent object surface temperature, interior temperature, internal
pressure in response to the fire

=  Example uses water as a suppressant, but others (CO,, Halon, etc.) can be incorporated

24




Lithium-lon Battery Challenges T .
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