Adaptive Beam Smoothing
with Plasma-Pinholes for
Laser-Entrance-Hole

Transmission Studies

Matthias Geissel,
T.J. Awe, E.M. Campbell, M.R. Gomez,
E. Harding, A.J. Harvey-Thompson,
C. Jennings, M.W. Kimmel, S.M. Lewis’,
R.D. McBride K. Peterson, M. Schollmeier,
A.B. Sefkow, J.E. Shores, D.B. Sinars,
S.A. Slutz, I.C. Smith, C.S. Speas, J.W. Stahoviak,
and J.L. Porter

SANDIA NATIONAL LABORATORIES

* UNIVERSITY OF TEXAS AT AUSTIN

@ENERGY NISAE

Exceptional service
in the national interest

yauu "
Laboratories

The American Physical Society’s
56" Division of Plasma Physics Meeting
New Orleans, October 28, 2014

G04.00011

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

SAND2014-.



LBacklighter Motivation: MagLIF

Preheat for Magnetized Liner Inertial Fusion

Magnetization Laser heating Compression
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Phys. Plasmas 17, 056303 (2010)
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Penetrating the Laser-Entrance-Hole (LEH) @&,
Considerations for efficient laser coupling

The Foil Aspect:

* High intensity improves ease of penetration. )

e Thin LEH windows absorb less laser energy.

Defocused laser beam exhibits strong hot spot features.
SBS/SRS get worrisome for ‘large filaments’ (hot spots).

SPOT SIZE
Compromise!

*

The Gas Aspect: .
Window
SMOOTH * Low intensity couples better into fuel. ) Thickness
LASER * High density absorbs laser better, needs thicker

BEAM! LEH window. Compromise

The Computational Aspect:

\‘- Experiments are guided by simulations.
* Beams with highly irregular features are hard or

impossible to model.
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Smoothing a Laser Beam with Selectable Spot Size

super-heated,
transmissive
center

poor beam smooth
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Pinhole Evidence

shadow from washer

Donut-shaped plasma
(“spatial filter pinhole”)
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Adaptive Smoothing

X-ray Pinhole Camera Images 12 mm Behind Focus
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Adaptive Smoothing

Distance Variations (250 nm Parylene-N)

Screen 4.5 mm from smoothing foil Screen 14 mm from smoothing foil




LBackiighter Ideal Case: Phase Plate =

Continuous Phase Plate with r=1.3 mm

CPP:

Laser spot measurements:

95% of energy within r=1.3 mm
FWHM = 1.94mm

5th order SG

Performance for 2.6mm phase plate
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Summary of Results
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* Thin polymer foils (< 250 nm) in best focus can efficiently smooth
a transmitted laser beam with little energy loss.

* Smoothing foils can produce a continuously variable spot size. Gy
(290

* Smoothing foils are affordable (~$50 per shot).
* The plasma-pinhole smoothing process should eliminate all small

scale modulations.

%,
* Minimum spot size for smoothing foils in not yet determined. ”04,,/)
* Smoothing foils are less likely to have a featureless ‘flat top’ profile.
1, “

* Phase Plates (RPP, CPP, DPP) are less flexible but have steeper slopes So

and ‘flatter top’: Less clipping and more evenly distributed intensity. 7 ooq,

* Phase plates don’t require target modifications.
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EXTRAS
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Heating Magnetized Fuel st
Where we started

Z-Beamlet (ZBL) prior to MagLIF campaigns:
Operation with emphasis on Backlighting
e 1ns pulse width
* 1kJ pulse energy (plus pre-pulse of ~ 0.5 ns / 350 J)
e Multi-Frame option introduced some optics with
poor wave-front transmission.
* No beam smoothing techniques needed.
* No SBS suppression needed (i.e. phase modulation/high bandwidth)

Calorimeter Measurements

ZBL for early MagLIF design and first campaign (2013): — T ]

Standard shots:

e 25ns j —

pre-pulse; 650 ps (~ 650))

* 2.5kl pulse energy - S pln: 200 4001
. . . & 1000 |
e LEH with 3.5um polyimide window P o
* Beam defocused to “600um diameter i
Lesson learned: Experiment does not reproduce o e e :,,, 3

focus diameter in um

LASNEX and HYDRA predictions for LEH transmission. LPI!!



£LBacklighter Comparison: Phase Plate h)

Continuous Phase Plate with r=1.3 mm

Ti-screen, E,,=4 kI
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