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Motivation:  MagLIF

Preheat for Magnetized Liner Inertial Fusion
S.A. Slutz et al.:
Phys. Plasmas 17, 056303 (2010)

This session:

A.B. Sefkow: GO4.00005
S.A. Slutz: GO4.00007
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Penetrating the Laser-Entrance-Hole (LEH)

Considerations for efficient laser coupling

The Foil Aspect:
• High intensity improves ease of penetration.
• Thin LEH windows absorb less laser energy.
• Defocused laser beam exhibits strong hot spot features.
• SBS/SRS get worrisome for ‘large filaments’ (hot spots).

The Gas Aspect:
• Low intensity couples better into fuel.
• High density absorbs laser better, needs thicker 

LEH window.

The Computational Aspect:
• Experiments are guided by simulations.
• Beams with highly irregular features are hard or 

impossible to model.

SMOOTH
LASER 
BEAM!

SPOT SIZE
Compromise!
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Adaptive Smoothing

Smoothing a Laser Beam with Selectable Spot Size 
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Smoothing with 0.5 µm Foil
Pinhole Evidence

shadow from washer

Donut-shaped plasma
(“spatial filter pinhole”)
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Adaptive Smoothing
X-ray Pinhole Camera Images 12 mm Behind Focus

1mm

no smoother 100 nm parylene 500 nm mylar

Parylene-N Pre-pulse 
transmission

Main pulse
transmission

0 nm 100% 100%

100 nm 90% >90%

250 nm 50% >80%

500 nm* 9% >80%

250 nm parylene
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Adaptive Smoothing
Distance Variations (250 nm Parylene-N)
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Ideal Case: Phase Plate
Continuous Phase Plate with r=1.3 mm
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CPP:
Laser spot measurements:
95% of energy within r=1.3 mm
FWHM = 1.94mm
5th order SG
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Comparison Graphs
Summary of Results
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4 kJ laser pulse, smoothing

2kJ
??

2µm mylar

1µm mylar

0.5µm paryl.

Result was reproduced with HYDRA by A.B. Sefkow
using experimental observation of smoothing foil output!!



SUMMARY

• Thin polymer foils (< 250 nm) in best focus can efficiently smooth 
a transmitted laser beam with little energy loss.

• Smoothing foils can produce a continuously variable spot size.

• Smoothing foils are affordable (~$50 per shot).

• The plasma-pinhole smoothing process should eliminate all small 
scale modulations.

• Minimum spot size for smoothing foils in not yet determined.

• Smoothing foils are less likely to have a featureless ‘flat top’ profile.

• Phase Plates (RPP, CPP, DPP) are less flexible but have steeper slopes
and ‘flatter top’:  Less clipping and more evenly distributed intensity.

• Phase plates don’t require target modifications.



EXTRAS
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Heating Magnetized Fuel

Where we started

Z-Beamlet (ZBL) prior to MagLIF campaigns:
Operation with emphasis on Backlighting

• 1ns pulse width
• 1kJ pulse energy (plus pre-pulse of ~ 0.5 ns / 350 J)
• Multi-Frame option introduced some optics with

poor wave-front transmission.
• No beam smoothing techniques needed.
• No SBS suppression needed (i.e. phase modulation/high bandwidth)

ZBL for early MagLIF design and first campaign (2013):
• 2.5 ns
• 2.5 kJ pulse energy
• LEH with 3.5µm polyimide window
• Beam defocused to ~600µm diameter

Lesson learned:  Experiment does not reproduce 
LASNEX and HYDRA predictions for LEH transmission.  LPI!!



13

Comparison: Phase Plate
Continuous Phase Plate with r=1.3 mm

Ti-screen, Elas = 4 kJ

PTFE-screen, Elas = 2 kJ

CPP

0.25 µm
Parylene

Dist. = 12 mm
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CPP:
Laser spot measurements:
95% of energy within r=1.3 mm
FWHM = 1.94mm
5th order SG

X-ray screen image X-ray screen image
CPP Smoothing foil
3rd order SG 1st order SG (Gauss)
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