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INTRODUCTION
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 The accurate knowledge of actinide solubilities that 
could be dissolved in natural brines is important to 
safe disposal of nuclear waste.

 Sulfate is a major species in natural brines:
 The sulfate concentrations in the Waste Isolation Pilot 

Plant (WIPP) brines

 Generic Weep Brine (GWB): 0.203 mol•kg–1 and 

 U.S. Energy Research and Development 
Administration Well 6 (ERDA-6): 0.187 mol•kg–1 [1] 

 In the low level and intermediate level radioactive 
sulfate liquid waste (LLW and ILW), they are very rich in 
Na2SO4 with SO4

2– concentrations up to 2.2 mol•kg–1

[2]. 

 However, solubilities of actinides in sulfate solutions 
are not well studied. 

__________
[1] Y.-L. Xiong, A.C. Lord, Experimental investigations of the reaction path 

in the MgO–CO2–H2O system in solutions with various ionic strengths, 
and their applications to nuclear waste isolation, Applied 
Geochemistry, Vol.23, p. 1634, 2008.

[2] A. Guerrero, S. Goni, M.-S. Hernandez, 2000.  Thermodynamic 
solubility constant of Ca(OH)2 in simulated radioactive sulfate liquid 
waste.  Journal of American Ceramics Society, Vol. 83, p. 882, 2000.
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INTRODUCTION (Continued)
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 In deep geological repositories, 
actinides are expected to be speciated 
as +III and +IV oxidation states [i.e., 
An(III) and An(IV)] because of the 
strongly reducing conditions.

 Rare earth elements (REE) in +III 
oxidation state, such as Nd(III), have 
been found to be good analogs to 
An(III).  
 The experimental data on Nd(III) as a 

function of ionic strength → Am(III)   

 There have been numerous studies 
concerning solubilities of Nd(OH)3(s) 
in NaCl and NaClO4 solutions.

 In this work, we investigate solubilities 
of Nd(OH)3(micro cr) in Na2SO4

solutions with a wide range of ionic 
strengths up to 5.4 mol•kg–1 under 

well-constrained conditions.
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Table 1.  Comparison of effective ionic radii of Nd(III) with those of actinides in +III oxidation state (data 
taken from [3])
Element Effective Ionic Radius for 6 Coordination 

Number in Å
Effective Ionic Radius for 8 Coordination 

Number in Å
Nd(III) 0.983 1.109
Am(III) 0.975 1.09
Cm(III) 0.97 -----
Pu(III) 1.00 -----



PURPOSE OF THIS STUDY
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 To measure solubility of Nd(OH)3(micro cr) in Na2SO4

solutions to high ionic strengths at 298.15 K in the long-
term experiments.

 To develop a Pitzer model to describe solubilities in 
solutions with high ionic strengths:
 Nd(OH)3(micro cr) from this work, and 

 Nd2(SO4)3•8H2O from literature

 Pitzer Model, using mean activity coefficient for NaCl as an 
example
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EXPERIMENTAL METHOD
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 Experimental Apparatus: All experiments are conducted in a glovebox 
under Ar + H2 atmosphere in which O2 and CO2 are excluded.

 Experimental conditions: T = 298.15 K

 Starting material: Synthetic Nd(OH)3(micro cr)

 Hydrogen ion concentrations (pHm, molal scale) of the experimental 
systems are controlled/buffered by solubility of Nd(OH)3(micro cr).

 pHm are determined by applying correction factors to pH readings 
obtained using a pH meter.
 pHm = pHob + Am = pHob + AM - log 

 Nd(III) concentrations are analyzed using ICP-MS.

 Na concentrations are analyzed using ICP-AES.

 Sulfate concentrations are analyzed using IC.

 Approaching equilibrium from undersaturation.

 Supporting solutions:  0.01 to 1.8  mol•kg–1 Na2SO4
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EXPERIMENTAL METHOD: Synthesis of 
Nd(OH)3(micro cr)
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 Having well-defined starting material with high purity is of 
fundamental importance to the successes in solubility experiments.

 High purity crystalline Nd(OH)3(micro cr) is synthesized according to the 
procedure described by Wood et al. [4]. 

 High purity Nd2O3 is first loaded with deaerated DI water into Paar® 
reaction vessels, and then the reaction vessels are sealed, in a glovebox 
under a positive pressure of the inert gas. 

 The reaction vessels are taken out from the glovebox, and are placed into 
a muffle furnace. 

 Nd(OH)3(micro cr) is synthesized by reacting high purity Nd2O3 with 
deaerated DI water at 473.15 K in Paar® reaction vessels for a period of 
two weeks.

___________________________________________________________
[4] S.A. Wood, D.A. Palmer, D.J. Wesolowski, and P. Bénézeth, In Hellmann, R. and Wood, 

S.A., ed., Special Publication 7, The Geochemical Society, pp. 229–256, 2002. 
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XRD Pattern and SEM Image
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Experimental Results: Hydrogen ion concentrations
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Experimental Results: mNd(III)
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Experimental Results: Ionic Strength Dependence
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WIPP THERMODYNAMIC MODEL: Am(III) MODEL
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From [5] Xiong, Y.-L., 2013. Extension of The WIPP Actinide Oxidation State Analog Models to Elevated
Temperatures under Reducing Conditions.  Sandia National Laboratories, Albuquerque, NM, SAND2013-8258c. 



WIPP THERMODYNAMIC MODEL: Am(III) MODEL, Pitzer 
Parameters
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From [6] Xiong, Leigh, Domski, 2016. WIPP Thermodynamic Database History and Recent Revisions.  
Sandia National Laboratories, Albuquerque, NM, SAND2016-1298PE. 



Comparison of Nd(OH)3(micro cr) Solubility in NaCl and Na2SO4
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Work in Progress
Develop a Pitzer model to describe the solubility 

behavior of Nd(OH)3(micro cr) in Na2SO4 solutions, 
and of Nd2(SO4)3•8H2O in H2SO4 solutions.

Applications:

Nuclear waste management

Recycling rare earth elements, including neodymium 
(Nd)
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Pitzer model of Nd2(SO4)3•8H2O in H2SO4: Preview
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[9] Wei, Y.-Z., Sato, N., Nanjo, M., 1989.  
The solubility of Sm2(SO4)3 and Nd2(SO4)3

in sulfate solutions: Fundamental study on 
the recycling of rare earth magnet (in 
Japanese with English abstract).  Journal of 
Japanese Resource and Materials Society, 
105, 965-970.



Summary
 Long-term solubility experiments concerning neodymium 

hydroxide [Nd(OH)3(micro cr)] have been conducted at 
Sandia National Laboratories Carlsbad Facility in 0.01 to 
1.8 mol•kg–1 Na2SO4 at 298.15 K.

 Nd(OH)3(micro cr) was synthesized hydrothermally under 
well-controlled conditions. 

 The pHm of the experimental systems are 
controlled/buffered by the solubility of Nd(OH)3(micro 
cr).

 Solubility of Nd(OH)3(micro cr) in Na2SO4 solutions is 
similar to that in NaCl solutions.

 Nd(OH)3(micro cr) is a stable phase, even in concentrated 
Na2SO4 solutions. 
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