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Peridynamics

Plasticity model**

# Generalization/extension of local Von Mises plasticity to

peridynamics

# Continuum and ordinary-state constitutive model

# Isotropic

# Inherits all of the advantages for modeling fracture

# Satisfies 2nd law of thermodynamics

# Single step return algorithm for time integration

# Linearization of discrete return algorithm

# Applicable to implicit/explicit peridynamics codes

**John A. Mitchell. A nonlocal, ordinary, state-based viscoelasticity

model for peridynamics. Sandia Report SAND2011-8064, 2011.



Outline

Talking points

Review ordinary LPS model

Summarize perfect plasticity model and discrete return algorithm

Introduce hardening

Iterative return algorithm

Simple numerical examples

PALS-like treatment for surface effects



Ordinary and Non-ordinary Materials

Ordinary Non-ordinary



Ordinary Materials

Silling, Epton, Weckner, Xu, and Askari, 2007

Vector force state T:

T(Y) = t(Y)M(Y) where M(Y) =
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Ordinary Materials

Silling, Epton, Weckner, Xu, and Askari, 2007

Vector force state T:

T(Y) = t(Y)M(Y) where M(Y) =
Y

|Y|

Isotropic and elastic material

t(Y) =
3kθ

m
ωx+αωed

Isotropic and elastic-plastic material

t(Y) =
3kθ

m
ωx+αω (ed − edp)

︸ ︷︷ ︸

elastic



Elastic-Plastic Constitutive Model

Summary of Governing Equations and Constraints

Additive decomposition of extension state: ed = ede + edp

Elastic force state relations: t(Y) = 3kθ
m

ωx+αω(ed − edp)

Elastic force states domain defined by a yield surface/function

that depends upon the deviatoric force state:

f (td) = ψ(td)−ψ0 ≤ 0, where ψ(td) = ‖td‖2

2

Flow rule which describes rate of plastic deformation:

ėdp = λ∇dψ

Loading/un-loading conditions (Kuhn-Tucker constraints):

λ ≥ 0, f (td)≤ 0, λ f (td) = 0

Consistency condition: λ ḟ (td) = 0



Elastic-Plastic Constitutive Model

Implicit Time Integration of Model**

Exact Solution to Associated Backward Euler Approximation

Compute trial deviatoric force state: td
trial = αω(ed

n+1 − e
dp
n )

if f (td
trial)≤ 0, then step is elastic, ∆λ = 0, and td

n+1 = td
trial

else

td
n+1 =

√
2ψ0

tdtrial

‖tdtrial‖
, e

dp
n+1 = e

dp
n + 1

α

[
‖tdtrial‖√

2ψ0
−1

]

td
n+1

Practical value** for ψ0

ψ0 =
1

2

[
15µ

m

]2

‖ed‖2

=
75

8π

E2
y

δ 5

where Ey is the shearing yield stress and δ is the horizon

**John A. Mitchell. A nonlocal, ordinary, state-based viscoelasticity

model for peridynamics. Sandia Report SAND2011-8064, 2011.



Outline of Newton Algorithm

Implicit Update of Plasticity State

Initialize yield function

Let f (∆λk) =
1
2
‖td(∆λk)‖2 − (ψ0 +H‖β (∆λk)‖)

Newton steps for calculation of ∆λk

while f (∆λk)> 0 {

− Solve: 0 = f (∆λk)+Df (∆λk)[u] for u

Df (∆λk)[u] =−f (∆λk)

− Increment: ∆λk+1 = ∆λk +u

− Evaluate: f (∆λk+1) =
1
2
‖td(∆λk+1)‖2 − (ψ0 +H‖β (∆λk+1)‖)

}

Where

Df (∆λk) is Fréchet derivative of f @∆λk



Elastic-Plastic Constitutive Model



What is the Dreaded Surface Effect?

Example: Isotropic-Ordinary Model (LPS)
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The following related aspects

contribute to mismatch.

Geometric surface effects

Nonlocal model kinematics

Nonlocal model properties

Discretization error



Ordinary peridynamic models

Dreaded Surface Effect

Causes relate to material points near surface

# Mathematical models assume all points are in the bulk

∗ Points near surface are missing bonds

∗ Missing bonds imply and induce incorrect material properties

∗ In the bulk mathematical models are consistent

# Isotropic ordinary materials have a dilatation defect at the surface



Re-visit tensile test using PALS and LPS

Influence functions: ω0 = σ0 = 1
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Results

PALS sharply reduces error



Elastic-Plastic Constitutive Model

# Perfect plasticity yield function: f (td) = ‖td‖2

2
−ψ0

# Position sensitive yield (undesirable) but fixable using

PALS-like approach
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Elastic-Plastic Constitutive Model

# Plasticity w/hardening yield function

f (td) = ‖td‖2

2
− (ψ0 +H‖β‖)

# Position sensitive yield (undesirable) but fixable using

PALS-like approach
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Position Aware Yield Condition: Status

PALS-like correction for yield value ψ0

# Artifact showing but confident this is fixable.



Brief Comparision (food for thought)

VonMises Model with Nonlocal Model

# Both models principally apply to metals

# Plastic deformations volume preserving, independent of pressure

# Yield functions are quite different



Closing remarks

Summary

# Presented non-local peridynamics plasticity model

# Non-local equivalence to Von Mises model

# Non-local model has far more information embedded

# PALS-like surface correction underway

THANK YOU

Questions?


