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Peridynamics

Plasticity model**

9 Generalization/extension of local Von Mises plasticity to
peridynamics
Continuum and ordinary-state constitutive model
Isotropic
Inherits all of the advantages for modeling fracture
Satisfies 2nd law of thermodynamics

Single step return algorithm for time integration
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Linearization of discrete return algorithm

f

Applicable to implicit/explicit peridynamics codes

**John A. Mitchell. A nonlocal, ordinary, state-based viscoelasticity
model for peridynamics. Sandia Report SAND2011-8064, 201 1.
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Talking points

©

Review ordinary LPS model
Summarize perfect plasticity model and discrete return algorithm

Introduce hardening

°

°

o Iterative return algorithm

o Simple numerical examples
°

PALS-like treatment for surface effects
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Ordinary and Non-ordinary Materials

Ordinary Non-ordinary

T(Y)[Q(-¢
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Ordinary Materials

Silling, Epton, Weckner, Xu, and Askari, 2007

Vector force state 7
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Ordinary Materials

Silling, Epton, Weckner, Xu, and Askari, 2007

Vector force state 7

Isotropic and elastic material

3k6
1Y) = ——ox+ awe’
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Ordinary Materials

Silling, Epton, Weckner, Xu, and Askari, 2007

Vector force state 7

Isotropic and elastic material

3k6
1Y) = ——ox+ awe’

Isotropic and elastic-plastic material

3k6
1Y) = —ox+ao (¢! —eP)
m N——

elastic
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Elastic-Plastic Constitutive Model

Summary of Governing Equations and Constraints
@ Additive decomposition of extension state: ¢ = e + ¢%
o Elastic force state relations: #(Y) = %2 ox + aw(e? — )

o Elastic force states domain defined by a yield surface/function
that depends upon the deviatoric force state:

£(0) = w(e) — yo < 0, where w(!) = I

@ Flow rule which describes rate of plastic deformation:
e = AViy

@ Loading/un-loading conditions (Kuhn-Tucker constraints):
A >0, f(19) <0, Af(t)=0

@ Consistency condition: Af(t?) =0
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Elastic-Plastic Constitutive Model

Implicit Time Integration of Model**

Exact Solution to Associated Backward Euler Approximation

@ Compute trial deviatoric force state: 17, , = at@(e? o~ eip )
o if f(12.,) <0, then step is elastic, Al = 0,and 14| =12,
o clse

Illtl d J— d 1 H rid. H
n+1 =V2¥% [ IH’ nil_e”p—i_a[\/ﬁ_l] n+1
Practical value** for yy
L1501 4
W= 3] e
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81 8
where E, is the shearing yield stress and 9§ is the horizon

**John A. Mitchell. A nonlocal, ordinary, state-based viscoelasticity
model for peridynamics. Sandia Report SAND2011-8064, 201 1.
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Outline of Newton Algorithm
Implicit Update of Plasticity State
Initialize yield function
Let f(AR) = § (AR = (yo+ HI B (%))
Newton steps for calculation of A4
while f(AA) >0 {
— Solve: 0 = f(AA) + Df(AAk)[u] for u
Df(Aki)[u] = —f (Ak)
— Increment: Aldj | =Ad+u
~ Evaluate: f(Ahet) = 368 Aen)” — (vo+ HI| B (A1) )

}
Where
Df(AA) is Fréchet derivative of f @ AL
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Elastic-Plastic Constitutive Model

— u(é) =vbi

Fixed Point
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What is the Dreaded Surface Effect?

Example: Isotropic-Ordinary Model (LPS)

12.0
— Expected E
e—e LPS (no surface correction)
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The following related aspects
contribute to mismatch.

@ Geometric surface effects
@ Nonlocal model kinematics
@ Nonlocal model properties

@ Discretization error
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Ordinary peridynamic models

Dreaded Surface Effect

Causes relate to material points near surface

% Mathematical models assume all points are in the bulk

+ Points near surface are missing bonds
* Missing bonds imply and induce incorrect material properties
+ In the bulk mathematical models are consistent

% Isotropic ordinary materials have a dilatation defect at the surface

Surface

In the bulk
e by Missing bonds
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Re-visit tensile test using PALS and LPS

Influence functions: ®° = ¢” = 1

/ Results
12.0f [ —  Expecte:
*—o ﬁPg (ﬂtO :uliface ccrrecticn) o PALS Sharply reduces error

* PALS

1)
5
S

8.0

6.0

Engineering Stress (G P

4.0

2.0

1 2 3 4 5 6 7 8
Engineering Strain (m/m)

N\ J Grip

G}' AN X eﬁ—e Gauge ..... D Gy

f bond: - \ Region

() sendia Natonal Laboratories John Mitchell

Numerical strain gauge




Elastic-Plastic Constitutive Model

e . A
9~ Perfect plasticity yield function: f(1¢) = @ — W
%~ Position sensitive yield (undesirable) but fixable using
PALS-like approach

()
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Elastic-Plastic Constitutive Model

%~ Plasticity w/hardening yield function

£y = 125 (yo+ H| B

% Position sensmve yield (undesirable) but fixable using
PALS-like approach
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Position Aware Yield Condition: Status

PALS-like correction for yield value yp
9 Artifact showing but confident this is fixable.

g psi_0
f 2.74e+06E

N
)
+
o

(ARERRREE

le+6

2.98e+05-

() sendia Natonal Laboratories John Mitchell




Brief Comparision (food for thought)

VonMises Model with Nonlocal Model

9 Both models principally apply to metals

% Plastic deformations volume preserving, independent of pressure

% Yield functions are quite different

O3
(o] O
Octahedral/deviatoric plane Schematic of bonds @ point
dy2

~ 1(0) =3k~ 0 = 1) =155

— Principal values 61,02, 03 — Neighborhood of a point

— Yield defined @ point — Yield defined @ point via collective
— Two-dimensional yield surface — Yielding occurs on bond

— Infinite dimensional aspect due to bonds

— Length scale is native to the model

o
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Closing remarks

Summary
% Presented non-local peridynamics plasticity model
9 Non-local equivalence to Von Mises model
94 Non-local model has far more information embedded

% PALS-like surface correction underway

THANK YOU
Questions?

() sendia Natonal Laboratories John Mitchell



