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OPTIMIZING AND QUANTIFYING CO2 STORAGE RESOURCE IN SALINE FORMATIONS 
AND HYDROCARBON RESERVOIRS  

 
 
ABSTRACT 
 

In an effort to reduce carbon dioxide (CO2) emissions from large stationary sources, carbon 
capture and storage (CCS) is being investigated as one approach. This work assesses CO2 storage 
resource estimation methods for deep saline formations (DSFs) and hydrocarbon reservoirs 
undergoing CO2 enhanced oil recovery (EOR). Project activities were conducted using geologic 
modeling and simulation to investigate CO2 storage efficiency. 
 

CO2 storage rates and efficiencies in DSFs classified by interpreted depositional 
environment were evaluated at the regional scale over a 100-year time frame. A focus was placed 
on developing results applicable to future widespread commercial-scale CO2 storage operations in 
which an array of injection wells may be used to optimize storage in saline formations. The results 
of this work suggest future investigations of prospective storage resource in closed or semiclosed 
formations need not have a detailed understanding of the depositional environment of the reservoir 
to generate meaningful estimates. However, the results of this work also illustrate the relative 
importance of depositional environment, formation depth, structural geometry, and boundary 
conditions on the rate of CO2 storage in these types of systems. 
 

CO2 EOR occupies an important place in the realm of geologic storage of CO2, as it is likely 
to be the primary means of geologic CO2 storage during the early stages of commercial 
implementation, given the lack of a national policy and the viability of the current business case. 
This work estimates CO2 storage efficiency factors using a unique industry database of CO2 EOR 
sites and 18 different reservoir simulation models capturing fluvial clastic and shallow shelf 
carbonate depositional environments for reservoir depths of 1219 and 2438 meters (4000 and  
8000 feet) and 7.6-, 20-, and 64-meter (25-, 66,- and 209-foot) pay zones. The results of this work 
provide practical information that can be used to quantify CO2 storage resource estimates in oil 
reservoirs during CO2 EOR operations (as opposed to storage following depletion) and the 
uncertainty associated with those estimates. 
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OPTIMIZING AND QUANTIFYING CO2 STORAGE RESOURCE IN SALINE FORMATIONS 
AND HYDROCARBON RESERVOIRS  

 
 
EXECUTIVE SUMMARY 
 

This report describes the scope of work, methods, results, and conclusions of a multiyear 
project investigating carbon dioxide (CO2) storage resource assessments in geologic formations 
through modeling and simulation of deep saline formations (DSFs) and hydrocarbon reservoirs in 
association with CO2 enhanced oil recovery (CO2 EOR).  
 

This project report addresses Area of Interest 3 of U.S. Department of Energy (DOE) 
Funding Opportunity Announcement (FOA) DE-FOA-0000652, “Field Methods to Optimize 
Capacity and Ensure Storage Containment,” by developing and refining the methods used to 
quantify and optimize CO2 storage resource in major reservoir classes.  
 

DSF Assessment 
 

The goal of the DSF activities was to use regional-scale models to investigate and refine, as 
necessary, the method used to quantify CO2 storage resource estimates for a 100-year injection 
time frame. This study focused on developing results applicable to future widespread commercial-
scale CO2 storage operations in which an array of injection wells is used to optimize injection and 
storage. Two model structural frameworks were created, one flat (structureless) and one with 
anticlinal structure, each approximately 33.8 km2 (21 miles by 21 miles) with a thickness of  
91.4 meters (300 feet). Forty-nine CO2 injection wells were simulated with a spacing of 
approximately 4.8 km (3 miles). Two depths were investigated, 1219 and 2438 meters (4000 and 
8000 feet). Eight facies models were constructed representing ten different depositional 
environments, including seven clastic depositional environments—eolian, fluvial, deltaic, 
lacustrine, clastic shelf, clastic strand plain, and clastic slope—and three carbonate depositional 
environments—carbonate peritidal, carbonate shelf, and reef. Each modeled depositional 
environment was populated with porosity and permeability distributions based on the Energy & 
Environmental Research Center’s (EERC’s) Average Global Database (AGD) for that specific 
environment. Petrophysical data sets from the AGD used in this work are available on the DOE 
National Energy Technology Laboratory (NETL) Energy Data eXchange. 
 

This study used closed and semiclosed boundary conditions, as large-scale storage 
operations using an array of injection wells would cause pressure interference between wells, thus 
limiting injectivity through closed-system behavior. Storage efficiency values for 1219-meter 
(4000-foot) depths ranged from 0.29% for carbonate shelf to 0.58% for carbonate peritidal 
depositional environments, while storage efficiency values for 2438-meter (8000-foot) depths 
ranged from 0.56% for carbonate shelf to 1.32% for carbonate peritidal depositional environments. 
The narrow range in Esaline values across models, attributable to the closed or semiclosed system 
boundary conditions, did not distinguish significant differences among depositional environments 
at the end of 100 years of CO2 injection. This suggests future investigations of prospective storage 
resource in closed or semiclosed formations may focus less heavily on interpretation of 
depositional processes through which sedimentary reservoirs were created. However, the results 
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illustrate the relative importance of depositional environment, formation depth, structural 
geometry, and boundary conditions on the rate of CO2 storage in closed or semiclosed systems. 
 

Hydrocarbon Reservoir Assessment 
 

Estimates of CO2 storage efficiency factors were calculated for CO2 EOR operations using 
a unique industry database of CO2 EOR sites and 12 different reservoir simulation models. 
Continuous CO2 injection (CCI) and water alternating gas (WAG) EOR development strategies 
were considered. Twelve CCI cases were simulated: Cases 1–6 represented clastic fluvial 
reservoirs, and Cases 7–12 represented carbonate shelf reservoirs. Both clastic and carbonate 
models were simulated at two different depths (1219 and 2438 meters [4000 and 8000 feet], 
respectively). Three different reservoir thicknesses were considered at each depth (7.6, 20, and  
64 meters [25, 66, and 209 feet], respectively). Six of the twelve cases assessed using CCI 
simulation were also subjected to simulations of WAG injection. These WAG cases consisted of 
P50 simulations for Cases 1, 2, and 6 (clastic) and Cases 7, 8, and 12 (carbonate). Altogether, there 
were 18 simulation cases. In addition to these simulations, a novel statistical modeling technique 
incorporating the Michaelis–Menten function was used to generate empirical percentile estimates 
of CO2 storage efficiency factors.  
 

West Texas San Andres dolomite WAG flood performance data were used to derive P10, 
P50, and P90 CO2 storage efficiency factors of 0.76, 1.28, and 1.74 thousand standard cubic feet 
per stock tank barrel of original oil in place (Mscf/STB OOIP). Median CO2 storage efficiency 
factors, expressed on a dimensionless scale, for CCI injection following conventional waterflood 
varied from 15% to 61% and 8% to 40% for fluvial clastic and shallow shelf carbonate simulation 
models, respectively, while those from WAG injection varied from 14% to 42% and 8% to 31%, 
respectively. Variation in the CO2 storage efficiency factors was largely attributable to reservoir 
depth (a surrogate for reservoir pressure and temperature) and lithology (clastic vs. carbonate 
reservoirs). The results of this work provide practical information that can be used to quantify CO2 
storage resource estimates in oil reservoirs during CO2 EOR operations (as opposed to storage 
following depletion) and the uncertainty associated with those estimates. 
 

Discussion and Relevance 
 

The research activities for both DSFs and conventional hydrocarbon reservoirs associated 
with CO2 EOR supported the development of a best practices manual on optimizing and 
quantifying CO2 storage resources in these geologic settings. Using lessons learned from this work 
and other DOE-funded research, approaches outlined in the best practices manual guide the user 
through a series of decision points to more accurately estimate the CO2 storage resource potential 
in geologic formations.



1 

OPTIMIZING AND QUANTIFYING CO2 STORAGE RESOURCE IN SALINE FORMATIONS 
AND HYDROCARBON RESERVOIRS  

 
 
INTRODUCTION 
 

Geologic storage of carbon dioxide (CO2) is being considered as one approach to mitigate 
the increase in atmospheric concentrations of anthropogenic CO2 from large stationary sources. A 
thorough understanding of the available CO2 storage resource on a region- or country-wide level 
is key to the large-scale implementation of this technology. Over the past decade, methods have 
been developed to estimate CO2 storage resource in both deep saline formations (DSFs) and 
hydrocarbon reservoirs (U.S. Department of Energy National Energy Technology Laboratory, 
2012; Goodman and others, 2011, 2013). DSFs, as defined for CO2 storage, occur at depths 
generally greater than 800 meters (2625 feet) and have salinities greater than 10,000 ppm total 
dissolved solids (TDS). CO2 storage in hydrocarbon reservoirs is typically associated with CO2 
enhanced oil recovery (EOR), where CO2 is stored in pore space previously occupied by water and 
hydrocarbons. Both types of geologic CO2 storage require laterally extensive sealing units to 
contain injected CO2 within the zone(s) of interest. The combination of the reservoir and sealing 
units together is referred to as the “storage complex” (Canadian Standards Association, 2012). 
 

The aim of this Energy & Environmental Research (EERC) study was to 1) build and expand 
upon the work of Gorecki and others (2009) and the IEA Greenhouse Gas R&D Programme 
(IEAGHG) (2009) in refining established methods of storage resource estimation in DSFs on a 
limited time frame (i.e., 100-year injection period) and 2) increase understanding of the 
relationship between CO2 storage and EOR, and refine the analytical tools used to assess such 
operations. Modeling and numerical simulation activities were conducted for each of the two 
research efforts. Key factors such as depositional environment, structure, and heterogeneity were 
investigated to determine their impact on storage resource and efficiency. 

 
 

BACKGROUND 
 

Deep Saline Formations 
 

Previously developed methods for estimating CO2 storage in DSFs focused on providing 
ultimate storage estimates, that is, the amount of CO2 able to be stored in a geologic target at 
maximum efficiency, based on 1) storage efficiency coefficients specific to generic reservoir 
lithology classifications (clastics [sandstone], limestone, and dolomite [dolostone]) and 2) an 
assumption of boundary conditions (i.e., open or closed hydrogeologic systems) (Gorecki and 
others, 2009; U.S. Department of Energy National Energy Technology Laboratory, 2012; Peck 
and others, 2014, 2015). However, numerical simulations have shown that it may take hundreds 
to thousands of years to reach ultimate storage capacity for large-scale CO2 capture and storage 
(CCS) operations, which is beyond the time frame of interest for mitigating climate change in the 
next century (IEA Greenhouse Gas R&D Programme, 2014; Bachu, 2015).  
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Gorecki and others (2009) estimated CO2 storage efficiency coefficients for a variety of DSF 
depositional environments. Geologic properties of potential CO2 storage reservoirs (DSFs) 
classified by depositional environment vary less than those based on gross lithology, providing a 
better predictor of storage efficiency and more accurate estimates of CO2 storage. CO2 storage 
efficiency factors from Gorecki and others (2009) were created using small models (4 mi2) and 
simulation time frames of less than 5 years. The current project builds on this earlier work by 
determining CO2 storage efficiency for regional-scale DSFs using a 100-year time frame.  
 

Hydrocarbon Reservoirs 
 

Like DSFs, methods have been developed to calculate CO2 storage resource in hydrocarbon 
reservoirs (Bachu and others, 2007; U.S. Department of Energy National Energy Technology 
Laboratory, 2007). In general, these methods estimate a volume for the hydrocarbon trap and 
calculate the mass of CO2 that could be stored within that volume. These methods are limited, 
however, in their ability to incorporate site-specific operational factors (e.g., utilization factor, 
recovery factor). The oil and gas industry often uses a mass balance approach to estimate storage 
capacity in a reservoir, but this approach hinges on estimating the total volume of hydrocarbons 
extracted from the reservoir at the end of its operational life, a number that fluctuates depending 
on CO2 retention and sweep efficiency. This project expands on existing methods by integrating 
operational data from active CO2 EOR projects to develop CO2 storage efficiency factors for oil 
reservoirs that can be used at the beginning and throughout operations.  
 
 
DSF ASSESSMENT 
 

Over the past decade, several studies have developed methods to calculate CO2 storage 
resource in DSFs—generally deeper than 800 meters (2625 feet) and with salinity greater than  
10,000 mg/L—with the goal of providing reliable estimates of the overall CO2 storage resource 
potential available on a large scale. Previously developed methods have focused on providing 
storage efficiency estimates classified by a generic lithology (i.e., clastic [sandstone], limestone, 
and dolomite [dolostone]) and an assumption of hydrogeologic boundary conditions (i.e., open, 
closed, or semiclosed) (Bachu and others, 2007; Gorecki and others, 2009; Goodman and others, 
2011; U.S. Department of Energy National Energy Technology Laboratory, 2015; Peck and others, 
2014; Bachu, 2015). Although these methods are useful, storage efficiency values based on generic 
lithology classifications may not represent the amount of variability in each of these types of rocks, 
resulting in uncertainty in CO2 storage resource estimates for DSFs. This uncertainty stems from 
combining a variety of depositional environments into a single lithology classification. For 
example, fluvio-deltaic formations will likely have different petrophysical properties (e.g., 
porosity, connected pore volume, or preferential fluid flow patterns) than those deposited during 
eolian processes because of facies associations, sorting, and rounding. The different physical 
processes responsible for generating these sedimentary deposits create varying degrees of 
heterogeneity and, thus, potentially different CO2 storage efficiencies despite being broadly 
classified as “clastic sandstone formations.” Similarly, reef carbonates (limestone, dolostone) will 
likely have different petrophysical properties because of facies associations, subaerial exposure 
and karsting, and diagenesis, when compared with shallow marine shelf carbonates, despite both 
being broadly classified as “carbonate aquifers” (Koltermann and Gorelick, 1996; Henson and 
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others, 2002; Fitch and others, 2015). In light of this likely variability, a finer-scale approach to 
estimating CO2 storage efficiencies by subdividing and classifying saline formations according to 
their unique depositional settings, rather than broad, generic rock types (i.e., sandstone, limestone, 
and dolostone), may be warranted. 
 

Currently, CO2 storage operations in DSFs are largely subcommercial-scale and research-
oriented, employing a relatively small number of wells (e.g., one to two), and most focus primarily 
on testing technologies used to monitor injected CO2. The aim of this study, however, was to 
quantify the effects of depositional environment on CO2 storage efficiency and storage rates with 
relevance to future widespread commercial-scale CCS operations employing a relatively large 
number of wells. Such operations will likely be designed to maximize the CO2 storage capacity of 
entire DSFs or at least portions of such formations, meeting the requirements imposed by 
regulatory entities and sufficient depth to keep CO2 in the supercritical state (~800 meters [2625 
feet]). To achieve this goal, regional-scale models were developed representing ten different 
depositional environments. In this work, the term “depositional environment” implies a particular 
setting in which a set of physical, chemical, and biological processes operates to generate a certain 
kind of sedimentary deposit (Boggs, 2001). The petrophysical properties distributed within these 
models were derived from an updated version of the EERC’s Average Global Database (AGD), a 
diverse data set of porosity and permeability measurements collected from worldwide reservoirs 
and classified by depositional environment. The method used in this work was designed to produce 
models with generic properties reflecting real-world depositional settings, thereby producing 
globally relevant results for estimating CO2 storage resource potential. Numerical simulations 
were used to evaluate each geologic model for CO2 storage efficiency and storage rates over an 
injection time frame of 100 years, which was deemed to be a realistic timescale for operating CO2 
storage projects. The results may be used to inform CO2 storage resource estimates for the specific 
depositional environments examined in this study. 
 

Geologic Model Construction 
 

To meet the goal of producing results relevant to future widespread commercial-scale CCS 
operations, formation-scale geologic models were created. However, models at this scale require 
very large cell sizes to keep the total cell count low enough to allow even high-performance 
computing technology to complete simulations in a reasonable time frame. The large cell sizes of 
these models ultimately created intractable challenges in accurately replicating geologic 
heterogeneity.  
 

To resolve these challenges, a sensitivity analysis was conducted to determine the optimum 
cell size. The results were then used to inform a proper regional-scale model extent. A 3048 × 
3048 × 9.1-meter (10,000 × 10,000 × 30-foot) volume was gridded with multiple cellular 
resolutions, which included lateral cell dimensions of 15.2, 76.2, 152.4, 228.6, 304.8, 381, 457.2, 
533.4, and 609.6 meters (50, 250, 500, 750, 1000, 1250, 1500, 1750, and 2000 feet) and thicknesses 
of 1.5, 3, 4.6, and 9 meters (5, 10, 15, and 30 feet) (a total of 33 grids created with total cell counts 
ranging from 240,000 cells in the finest resolution to 25 cells in the coarsest). 
 

A base case grid of 15.2 × 15.2 × 1.5-meter (50 × 50 × 5-foot) cells was established as a 
starting point because this resolution was fine enough to capture realistic geologic heterogeneity 
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within each of the modeled depositional environments. Porosity and permeability properties were 
distributed in the base case grid and then upscaled (i.e., averaged) into each of the other coarsened 
model grids. Porosity was upscaled using an arithmetic mean algorithm, ensuring pore volume 
remained comparable between the cases. Permeability was upscaled using a geometric mean 
algorithm, as is appropriate for variables with logarithmic distribution. Each of the gridded 
volumes were subjected to a 1-year simulation with one CO2 injection well placed in the center of 
the model grid. An analysis of the simulation results (cumulative CO2 mass injected) indicate that 
an increase in cell size was accompanied by a decrease in CO2 injection rate (and total injected 
CO2 mass; Figure 1).  
 
 

 
 

Figure 1. General relationship between cell size and CO2 injection rate. 
 
 

The trend illustrated in Figure 1 is interpreted as an artifact of the simulation software’s 
calculation of CO2 saturation as a function of CO2 brine relative permeability. CO2 saturation in 
larger cells tends to build more slowly. CO2 permeability, calculated from CO2 brine relative 
permeability curves input to the simulation, was “held back” by slowed CO2 saturation buildup in 
the model grids composed of larger cells. 
 

This inverse relationship between cell size and simulated CO2 injection rate/mass is 
important for two reasons. The first reason is that, because the regional-scale models planned 
would be generic rather than based upon a specific location with production/injection data, there 
would be no history matching in numerical simulation efforts with which this effect could be 
compensated. If history matching were to be implemented, such an effect might be negated by 
adjusting the overall permeability distribution or the CO2 brine relative permeability curves. The 
second reason is that the CO2 injection simulation would be stopping short of achieving ultimate 
storage capacity. The ultimate storage capacity would likely be similar between each of the 
different cases, as the results would be closely related to rock compressibility, fluid 
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compressibility, pore volume, and pressure differential (between initial and final pressures), and 
each of these variables remained similar between the cases. The simulations planned for this 
investigation were designed to optimize CO2 storage in a 100-year time frame rather than 
achieving ultimate storage capacity, thus the relationship between cell size and CO2 injection 
rate/mass would still be a concern. 
 

Results of the cell size sensitivity analysis determined that a cell size of 152.4 × 152.4 ×  
3 meters (500 × 500 × 10 feet) was to be used in the models prepared for simulation. This size 
ensured that geologic heterogeneity could be accurately captured, yet allow for efficient 
computation time. This cell size was then used to calculate an appropriate model extent. An areal 
extent of 33.8 km2 (21 miles × 21 miles) and a thickness of 91.4 meters (300 feet) was chosen, 
yielding a total cell count of slightly more than 1.3 million cells. Two grids with these dimensions 
were created, one flat and a second with anticlinal structure based upon the actual structure of the 
Nesson Anticline within the Williston Basin. 
 

Facies and Petrophysical Property Modeling 
 

Generic facies distributions were achieved for each of the depositional environments 
considered in this study. Eight facies models were created (Table 1, Figure 2), each containing at 
least one reservoir and one poor-reservoir/nonreservoir facies.  
 

Petrophysical property modeling was conducted after the distribution of facies, involving 
upscaling of the input data themselves. A key consideration for petrophysical property modeling 
is the scale of the measurement serving as the basis for petrophysical properties, usually a  
2.5-centimeter (1-inch)-diameter core plug for routine porosity and permeability tests, and the 
scale of the cells to which the data are being applied, in this case cells with dimensions of 152.4 × 
152.4 × 3 meters (500 × 500 × 10 feet). 
 

Geologic heterogeneity takes place at different scales for different depositional 
environments. Cells with dimensions of 152.4 × 152.4 × 3 meters (500 × 500 × 10 feet) (or larger, 
for that matter) may not enable accurate replication of petrophysical characteristics, as variability 
in such characteristics may occur in a much shorter distance than 152.4 meters (500 feet). For 
example, an average fluvial channel width may be assumed as approximately 100 meters (330 feet; 
Gibling, 2006). An average width of this size would be challenging to replicate with larger cells, 
as any streams modeled would be forced to a larger width even if only one grid cell wide. The 
heterogeneity present in a realistic fluvial channel cross section, which may include levee, crevasse 
splay, channel/thalweg, channel margin/wing, and point bar deposits, would be averaged into a 
single numerical value for both porosity and permeability. However, there are no “hard” 
(measured) petrophysical data available for a rock volume equivalent to the desired cell size 
(potentially containing all of these types of deposits together), as it is impractical to extract an 
intact volume and accurately assess an average porosity or permeability. Statistical support, rather, 
is placed in creating smaller cells, distributing petrophysical properties informed by core plug 
measurements that accurately replicate geologic heterogeneity and upscaling/averaging the 
distributions into coarser cells.  
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Table 1. Deep Saline Formation Models Developed in This Study. The matrix illustrates the 
different combinations of depositional environments (model components), grid structure, depth, 
closed/semiclosed boundary systems, and P10/P50/P90 scenarios that were evaluated using 
numerical simulations of CO2 injection for 100 years. 

Model 
Name Model Components 

Grid 
Structure 

Depth, m/ft Closed Semi-Closed 
1219/
4000 

2938/
8000 P10 P50 P90 P10 P50 P90 

Eolian 
Eolian 

Flat X X X X X   X   Poor reservoir 
Nonreservoir – cap rock 

Fluvio-
Deltaic 

Fluvial 

Flat X X X X X   X   
Deltaic 

Poor reservoir 
Nonreservoir – cap rock 

Lacustrine 
Lacustrine 

Flat X X   X         Poor reservoir 
Nonreservoir – cap rock 

Clastic 
Shelf 

Clastic shelf 
Flat X X   X         Poor reservoir 

Nonreservoir – cap rock 

Strand 
Plain 

Strand plain 

Flat X X   X         
Fluvial 

Poor reservoir 
Nonreservoir – cap rock 

Clastic 
Slope 

Clastic slope 
Flat X X   X         Poor reservoir 

Nonreservoir – cap rock 

Carbonate 
Shelf-
Peritidal 

Carbonate shelf 

Flat X X   X         
Peritidal 

Poor reservoir 
Nonreservoir – cap rock 

Reef 

Reef 

Flat   X   X     X   
Carbonate shelf 
Poor reservoir 

Nonreservoir – cap rock 

Eolian 
Eolian 

Anticline X X X X X   X   Poor reservoir 
Nonreservoir – cap rock 

Fluvio-
Deltaic 

Fluvial 

Anticline X X X X X   X   
Deltaic 

Poor reservoir 
Nonreservoir – cap rock 

 
 

The preceding discussion provides the background needed to discuss upscaling of the input 
data specifically, which was undertaken to create petrophysical data sets valid for the desired cell 
size (152.4 × 152.4 × 3 meters [500 × 500 × 10 feet]). Two property-upscaling test grids were 
created, one with 1.52 × 1.52 × 1.5-meter (50 × 50 × 5-foot) cells and another with 152.4 ×  
152.4 × 3 meters (500 × 500 × 10 feet) cells. Facies models for each of the depositional 
environments involved in this study were created in the fine-scale grid with 1.52 × 1.52 ×  
1.5-meter (50 × 50 × 5-foot) cells.  
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Figure 2. Illustrations of the eight lithofacies models representing ten different depositional 
environments. The poor-reservoir components of the reef and clastic slope models are not shown 
to allow visibility of the models’ internal structure. Similarly, the caprock component of each of 
the models has not been shown. Each model is approximately 33.8 km2 (21 miles in length and 

width) and 91.4 meters (300 feet) in thickness. Vertical exaggerations is 50×. 
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Petrophysical properties were distributed in the fine-scale grid, the basis of which was the 
EERC’s AGD. Gorecki and others (2009) developed the AGD, which contains a variety of 
reservoir properties for the primary depositional environments considered in this study, 
encompassing over 20,000 data points (Figure 3). An important component of the database are 
porosity–permeability data. These data provide a better understanding of distribution, range, and 
relationship between these two properties for the depositional environments considered in this 
study, containing over 600 complete entries representing a variety of international reservoirs. Over 
25,000 pairs of porosity–permeability data points were used to geostatistically populate porosity 
and permeability within the models. The size of the petrophysical data sets used to populate the 
models did not allow their inclusion as an appendix in this report. However, they are available on 
the DOE National Energy Technology Laboratory (NETL) Energy Data eXchange. 
 

Variograms used to distribute porosity and permeability were derived from Gorecki and 
others (2009). The distributed properties were then upscaled into the grid with coarser cells  
(152.4 × 152.4 × 3 meters [500 × 500 × 10 feet]). The porosity and permeability values resulting 
from this upscaling process were used to create new porosity–permeability crossplots valid for the 
desired cell size. Through this process, there is a tendency to lose the extreme values on either end 
of the histogram, accompanied by a higher frequency of mean values (Figure 4). 
 

The upscaled porosity and permeability data sets were then used to guide petrophysical 
property distributions in the flat and anticlinal grids (33.8 km2 × 91.4 meters [21 miles × 21 miles 
× 300 feet]). Petrophysical property uncertainty analyses were conducted in this process, resulting 
in P10, P50, and P90 petrophysical property distributions. Temperature and pressure properties 
were also created, representing two different depths: 1219 and 2438 meters (4000 and 8000 feet). 
These parameters are summarized for each model in Table 2. 
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Figure 3. Crossplots of porosity (x-axis) and log10 [permeability] (y-axis) from EERC updated AGD showing the ten different 
depositional environments modeled in this study. Vertical reference lines at 15% porosity and horizontal reference lines at  

5 millidarcies (mD) permeability have been added as a visual aid.
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Figure 4. Core plug-measured porosity and permeability data (top left) and a porosity histogram 
from the same data set (lower left) in comparison to upscaled porosity and permeability data (top 

right) and an upscaled porosity histogram (lower right). As the degree of upscaling increases 
(larger grid cells), the data become more averaged, indicated by the higher frequency of 

midrange histogram values and narrowing of the histogram’s range. 
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Table 2. Petrophysical Property Statistics from the EERC AGD for Each of the Depositional Environments Considered in This 
Study 
 Porosity Statistics, vol/vol  Permeability Statistics, mD 
Depositional 
Environment Min. Max. 

Mean – 
P10 

Mean – 
P50 

Mean – 
P90 

St. 
Dev. Min. Max. 

GeoMean – 
P10 

GeoMean – 
P50 

GeoMean – 
P90 

St. 
Dev. 

Carbonate 
Shallow Shelf 

0.01 0.41 0.08 0.16 0.25 0.07 0.01 6342 0.96 5.57 19.95 194.77

Reef 0.01 0.41 0.07 0.15 0.23 0.06 0.01 972 1.92 7.72 18.74 51.05
Carbonate 
Peritidal 

0.01 0.32 0.07 0.15 0.23 0.06 0.01 313 2.15 10.24 24.25 30.78

Clastic Slope 0.01 0.42 0.09 0.17 0.24 0.06 0.001 7336 0.43 3.64 42.76 359.28
Fluvial 0.04 0.34 0.13 0.2 0.26 0.05 0.01 1838 2.68 25.36 107.47 117.10
Eolian 0.04 0.27 0.1 0.14 0.18 0.03 0.03 702 1.97 7.59 24.58 44.87
Clastic Strand 
Plain 

0.02 0.28 0.08 0.13 0.18 0.04 0.008 878 1.08 4.58 18.95 51.17

Clastic Shelf 0.01 0.38 0.08 0.16 0.24 0.06 0.001 11,956 1.98 37.20 226.17 652.72
Deltaic 0.02 0.42 0.13 0.21 0.29 0.06 0.01 13,206 5.62 54.27 306.47 881.51
Lacustrine 0.01 0.33 0.06 0.13 0.2 0.05 0.0001 1698 0.37 3.86 22.73 84.49
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Well Placements 
 

Widespread commercial-scale CCS implementation may require a patterned network of 
injection wells. Thus a patterned approach to well placement was employed in this study. Previous 
simulation studies have shown that as CO2 is injected, a plateau is eventually reached where 1) 
native formation fluids cannot be displaced or compressed further, 2) the limits of reservoir rock 
compressibility have been reached under operating conditions, and 3) injection wells are shut in to 
avoid bottomhole pressures high enough to cause fractures (IEA Greenhouse Gas R&D 
Programme, 2014). The amount of time needed to reach this point depends upon several factors; 
however, two key factors include the number of wells and the CO2 injection rate. The goal for well 
placement in this study was to optimize CO2 injection operations over a 100-year time frame. A 
sensitivity analysis was performed to help determine optimal well spacing/density for the 
simulations. 
 

To conduct the sensitivity analysis, simulations were run with differing numbers of wells 
with a maximum injection rate constraint of 2 million tonnes of CO2 per year applied to all wells. 
Graphical displays of cumulative injected CO2 over time were scrutinized to find a configuration 
where a plateau was reached in a 100-year time frame. The results of the sensitivity analysis 
indicated an optimal well placement of 49 injection wells uniformly distributed with a spacing of 
approximately 4.8 km (3 miles). Although this placement would allow the option of brine 
production wells (to alleviate pressure buildup between wells), brine extraction was not considered 
in this study. The specific location for each of the 49 wells was fixed across all geologic models, 
with the exception of the reef model, to eliminate the variables of well density and placement and 
allow direct comparison of the simulation results. For the reef model, well placement was 
optimized to penetrate 49 individual pinnacle reefs. Figure 5 shows the 49-well array using 
examples with the anticlinal grid and pinnacle reef. 
 

The models included 28 layers to represent the storage portion of the DSF, and two caprock 
layers (30 layers total). Perforations were set along each wellbore for each of the 28 non-caprock 
layers. 
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Figure 5. Illustration of the 49-well array shown with the anticlinal grid (top) and pinnacle reef 
(bottom). Each model is approximately 33.8 km2 (21 miles in length and width) and 91.4 meters 
(300 feet) in thickness. Vertical exaggerations is 50×. For all but the pinnacle reef models, the 
specific location for each of the 49 wells was fixed and the well spacing was approximately  

4.8 km (3 miles). In the pinnacle reef models, the 49 well locations were optimized to penetrate 
the 49 largest reef structures, which were assessed by connected reservoir volume. 
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DSF Numerical Simulation 
 

Computer Modelling Group, Ltd. Builder (CMG-Builder) was used to populate simulation 
model parameters and settings, and CMG’s GEM (Generalized Equation of State Model Reservoir 
Simulator) module was used to conduct the numerical simulations. 
 

Models were simulated using temperature and pressure settings representative of two 
different depths: 1219 and 2438 meters (4000 and 8000 feet). The anticlinal grid had average 
depths of 1219 and 2438 meters (4000 and 8000 feet), with the hinge and limbs of the structure 
ranging roughly ±152.4 meters (500 feet) above these depths. The temperature and pressure 
regimes for the simulation cases were as follows: 1219-meter (4000-foot) depths were 49°C and 
11.9 MPa (120°F and 1730 psi); 2438-meter (8000-foot) depths were 82°C and 23.9 MPa (180°F 
and 3465 psi). These pressure and temperature regimes reflect a linear pressure gradient of  
9.8 kPa/meter (0.433 psi/foot) and a linear temperature gradient of 0.027°C/meter (0.015°F/foot) 
(including a 15.5°C [60°F] surface offset). 
 

A literature review of rock (pore) compressibility values across the depositional 
environments in Table 1 determined that published estimates were within an order-of-magnitude 
of each other. Thus a constant value of 5.58E-10 Pa-1 (3.85E-06 psi-1) was used for all rock types 
in each model (Newman, 1973; Brady and Lee, 1998; Zhang and others, 2005; Steadman and 
others, 2010; Henninges and others, 2011; Thibeau and Mucha, 2011; Esken and others, 2012; 
IEA Greenhouse Gas R&D Programme, 2012; Liu and Li, 2013; Gao and others, 2014). 
 

Boundary conditions of the models were a significant factor in the design of this research 
and the results. Current storage efficiency estimates for deep saline formations focus on “open” 
systems (U.S. Department of Energy National Energy Technology Laboratory, 2015). In these 
systems, which are confined vertically but open laterally, pore space for the injected CO2 is created 
primarily by lateral displacement of formation water (Bachu, 2015). 
 

A closed system does not permit mass transfer across either vertical or lateral boundaries, 
and space for the injected CO2 is solely attributable to in situ fluid compressibility and pore dilation 
(the inverse of compressibility). Closed systems can occur in certain geologic situations where a 
storage basin is composed of a number of compartmentalized reservoirs laterally separated by low-
permeability zones or stratigraphic pinch-outs (Zhou and others, 2008). Storage efficiency and the 
resulting storage resource estimates based on closed systems represent a conservative end member; 
many geologic systems will be semiclosed or open and thus permit greater CO2 storage efficiency. 
In a semiclosed system, the formation does not permit mass transfer across lateral boundaries; 
however, some fraction of the displaced brine can migrate into and through the overlying sealing 
unit, which allows for some degree of pressure dissipation, in turn increasing the storage capacity 
for CO2. The cap rock will not allow CO2 flow because of permeability and capillary barriers 
(Zhou and others, 2008; Birkholzer and others, 2009; Cavanagh and Wildgust, 2011; Bachu, 
2015). The local effect of brine permeation within cap rock is minimal, but other researchers have 
shown that there may be substantial pressure dissipation due to brine permeation into the overlying 
cap rock over widespread areas and over long periods of injection (Birkholzer and Zhou, 2009; 
IEA Greenhouse Gas R&D Programme, 2014). 
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The simulations in this study focused on closed and semiclosed systems. This decision was 
made when considering the applicability of simulation results to future commercial-scale CO2 
storage operations. Simultaneous injection in an array of relatively closely spaced wells would 
invariably result in pressure buildup and interference between wells. Only wells along the margins 
of the well pattern would act in an open manner. Pressure interference between wells in the center 
of the pattern would cause these wells to experience closed or semiclosed conditions. As 
mentioned above, the regional-scale modeling approach used in this work can be considered a 
“unit cell” within a formation-scale CCS operation, bordered on all sides by other unit cells. 
Pressure buildup and interference between unit cells would cause each cell’s boundaries to act 
closed or semiclosed, affecting even the wells along the margin of the well pattern of the unit cell. 
 

Each of the P50 models were evaluated using closed lateral and vertical boundaries 
(designated as closed boundary simulation cases in Table 1). P10 and P90 cases for the eolian and 
fluvio-deltaic models were also simulated in closed-boundary simulations. Only these P10 and P90 
cases (eolian and fluvio-deltaic) were chosen because these models, exhibited nearly the worst and 
best overall model average permeability characteristics, respectively. Simulations were conducted 
on these end members to illustrate the range of storage efficiency due to petrophysical property 
uncertainty. In addition, P50 cases for all models were evaluated using semiclosed boundaries 
(closed lateral boundaries and a lateral confining layer that had non-zero permeability as the top 
boundary), referred to in Table 1 as the semiclosed boundary simulation cases. This was done to 
account for brine migration into the cap rock (shale), albeit at a very slow rate. The rate at which 
pressure can be dissipated (and CO2 injected) is highly sensitive to the shale permeability. The 
caprock permeability values used in the semiclosed simulations were consistent with those 
reported by Cavanaugh and Wildgust (2011), ranging from submillidarcy (10-17 m2) to 
subnanodarcy (10-22 m2). These low permeability values for the cap rock resulted in semiclosed 
systems that would be in the closed-range behavior based on prior work conducted by the IEA 
Greenhouse Gas R&D Programme (IEAGHG) (2014). 
 

A total of 43 CO2 injection simulation cases were run, encompassing the different 
combinations of depositional environments, depths, P10/P50/P90 scenarios, and closed/ 
semiclosed boundary systems (Table 1). Each simulation case was run for an injection period of 
100 years. Outputs from the numerical simulation models included the total pore volume from the 
static geologic model, average initial and final formation pressures within the target injection 
horizon, and the injected CO2 mass for each of the 49 wells at each simulated time step. These 
outputs were exported to Microsoft Excel for data analysis.  
 

Data Analysis 
 

The U.S. Department of Energy National Energy Technology Laboratory Atlas V (2015) 
method of calculating CO2 storage resource for saline formations is shown in Equation 1: 

 
஼ைమܩ  ൌ  ௦௔௟௜௡௘ [Eq. 1]ܧ	ߩ	߶௧௢௧	݄௚	௧ܣ
 
Where: 
 .஼ைమ  = CO2 storage resource mass estimate (tonnes)ܩ 
 .௧  = Total area (km)ܣ 
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 ݄௚  = Gross formation thickness (m). 
 ߶௧௢௧  = Total porosity (unitless). 
 .CO2 density (tonnes/m3) =  ߩ 
 .௦௔௟௜௡௘  = Fraction of the total pore volume that will be occupied by the injected CO2ܧ 
 

In this work, values for Esaline were derived for each model (overall efficiency) as well as for 
each depositional environment contained within the model. This was done by dividing the 
simulated mass of stored CO2 by the total potential mass of stored CO2 from the static geologic 
model associated with a specific depositional environment. The total potential mass of stored CO2 
was calculated by assessing the total pore volume (taking into account the expansion of pore 
volume due to pressure increase and rock compressibility/pore dilation) and assuming replacement 
of all native brine (all pore space) by CO2, the density of which was calculated with the simulated 
maximum injection pressure constraint (gradient) of 13.6 kPa/m (0.6 psi/ft) (the initial pore 
pressure gradient assumed was 9.8 kPa/m [0.433 psi/ft]). The Esaline coefficients were expressed as 
a percentage between 0 and 100: 
 

௦௔௟௜௡௘ܧ  ൌ
ୱ୲୭୰ୣୢ	େ୓మ୫ୟୱୱ	ሺ୤୰୭୫	୬୳୫ୣ୰୧ୡୟ୪	ୱ୧୫୳୪ୟ୲୧୭୬ୱሻ

୲୭୲ୟ୪	୮୭୲ୣ୬୲୧ୟ୪	୫ୟୱୱ	୭୤	ୱ୲୭୰ୣୢ	େ୓మ	ሺ୤୰୭୫	ୱ୲ୟ୲୧ୡ	୥ୣ୭୪୭୥୧ୡ	୫୭ୢୣ୪ሻ
ൈ 100 [Eq. 2] 

 
Overall model storage efficiency estimates (reservoir, poor-reservoir, and nonreservoir 

components together) as well as efficiency values for each individual depositional environment 
(reservoir components only) using the P50 simulation results were generated for all cases  
(Table 1). In addition, the P10 and P90 storage efficiency estimates from the closed-boundary 
simulation cases were used to assess uncertainty and derive a mean and standard deviation via the 
log-odds normal distribution (Devore, 2004; U.S. Department of Energy National Energy 
Technology Laboratory, 2015). Since the storage efficiencies may be represented as fractions 
between 0 and 1, the log-odds normal distribution is appropriate because of its ability to directly 
integrate the P10 and P90 ranges to derive the mean and standard deviation. As described in detail 
by DOE NETL (2015), the log-odds normal distribution transforms a fraction, p, by Equation 3 
and assumes that the transformed variable can be normally distributed: 
 

 ܺ ൌ ln	ቀ ௣

ଵି௣
ቁ [Eq. 3] 

 
where p in this case is the storage efficiency obtained according to Equation 2. 
 

The distribution is so named because the p/(1–p) term in Equation 3 is the “odds” for a 
fraction or probability p; therefore, ln[p/(1–p)] is the “log odds.” The transformed variable, X, is 
normally distributed. The X value is transformed back to the corresponding p value by  
Equation 4, which is the inversion of Equation 3 (U.S. Department of Energy National Energy 
Technology Laboratory, 2015): 
 

݌  ൌ ଵ

ଵା௘ష೉
 [Eq. 4] 

 
The log-odds approach thus transforms p values of a range into corresponding X values of a 

range. This allows the mean and standard deviation of X to be determined from the P10 and P90 
simulation results. The mean and standard deviation of X fully specify its normal distribution. The 
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mean (μ) and standard deviation (σ) are calculated from the X10 and X90 values using relationships 
between the percentiles and moments of a standard normal distribution (U.S. Department of 
Energy National Energy Technology Laboratory, 2015): 
 

ߪ  ൌ ௑వబି௑భబ
௓వబି௓భబ

 [Eq. 5] 

 
ߤ  ൌ ଵܺ଴ െ  ଵ଴ [Eq. 6]ܼߪ
 
where Z10 and Z90 are the Z-scores of the 10th and 90th percentiles, respectively, of the standard 
normal distribution. In this case, Z10 equals 1.28 and Z90 equals 1.28. It should be noted that the 
standard deviation is computed first using Equation 5, and this value is then used to compute the 
mean in Equation 6. Equations 2–6 were used to evaluate uncertainty for the eolian and fluvio-
deltaic closed-boundary flat and anticline simulation cases (Table 1). 
 

In addition to evaluating Esaline, comparisons were made across depositional environments 
to assess the rates at which CO2 was stored. Dimensionless values were used for these comparisons 
to express the mass of CO2 as a fraction between 0 and 1 via the following equation: 
 

௧ܨ  ൌ
ெ೟

ெ೟೚೟ೌ೗
 [Eq. 7] 

 
Where: 
 Ft = The fraction of total CO2 stored at time “t” (unitless). 
 Mt = The mass of CO2 stored at time “t” (tonnes). 
 Mtotal = The total mass of CO2 stored at 100 years (tonnes). 
 

At time = 0 (the start of CO2 injection), Ft is equal to 0, and at time = 100 years (the end of 
CO2 injection) Ft is equal to 1. Therefore, Ft places all simulation results onto a common 
dimensionless scale to permit comparisons across depositional environments. 
 

Results and Discussion 
 

Across the closed-boundary simulation results, the P50 Esaline coefficients for the overall 
model (primary depositional environment, poor-reservoir, and caprock components together) for 
the 1219- and 2438-meter (4000- and 8000-foot) flat structure models were 0.42% ± 0.01% and 
0.83% ± 0.02%, respectively, with no significant differences among models. This narrow range in 
Esaline values across all models was observed because 1) each model had total pore volumes within 
the same order-of-magnitude; 2) the same native formation fluids were assumed for each model 
(similar fluid compressibility); 3) the same rock compressibility value was assumed for each 
model; 4) similar bottomhole pressure constraints were assumed for each model, resulting in 
similar Δp or change from initial to final formation pressure; and 5) closed lateral boundary 
conditions were assumed in each simulation. As previously described, space for the injected CO2 
in a closed system is solely attributable to water compressibility and pore dilation. As described in 
Zhou and others (2008): 
 
௦௔௟௜௡௘ܧ  ൌ ൫ߚ௣ ൅  [Eq. 8] ݌∆௪൯ߚ
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Where βp and βw are the pore and water compressibility, respectively, and Δp is the difference 
between initial and final pressure in the target injection horizon.  
 

Pore compressibility for all models was 3.85E-06 psi-1 (5.58E-10 Pa-1). The Δp for the 1219- 
and 2438-meter (4000- and 8000-foot) flat-structure models was 4.4 and 8.7 MPa (639 and  
1255 psi), respectively. Assuming a water compressibility of 4.0E-10 Pa-1 (2.8E-6 psi-1) 
(Birkholzer and others, 2009; Bachu, 2015), Equation 8 results in estimated Esaline values for the 
1219- and 2438-meter (4000- and 8000-foot) flat-structure models of 0.42% and 0.83%, 
respectively, which is consistent with the simulation results. 
 

As previously discussed, all models contained multiple facies (i.e., reservoir, poor-reservoir, 
and cap rock), with some models representing multiple depositional environments in the reservoir 
facies (e.g., fluvio-deltaic). Table 3 summarizes the CO2 storage efficiency values obtained for 
each depositional environment at 100 years of CO2 injection. When parsing the efficiencies of 
each model into contributions by individual depositional environments (e.g., fluvial efficiency 
separate from deltaic efficiency), more notable differences were seen. For example, storage 
efficiency values for 1219-meter (4000-foot) depths ranged from 0.29% for carbonate shelf to 
0.58% for carbonate peritidal depositional environments; while storage efficiency values for  
2438-meter (8000-foot) depths ranged from 0.56% for carbonate shelf to 1.32% for carbonate 
peritidal depositional environments (Table 3). 
 
 
Table 3. Esaline Results at 100 years of CO2 Injection Summarized by Depositional 
Environment and Grid Structure for Closed and Semiclosed Boundary Simulations. 
Simulation results were not generated for the reef depositional environment at 1219 meters  
(4000 feet) (N/A). 

Depositional 
Environment 

Grid 
Structure 

Esaline (%) at 100 Years 
1219-m (4000-ft) Depth 2438-m (8000-ft) Depth 
Closed Semiclosed Closed Semiclosed 

P10 P50 P90 P50 P10 P50 P90 P50 
Eolian Flat 0.49 0.50 0.49 0.56 0.97 0.98 0.97 1.17 
Fluvial Flat 0.31 0.35 0.36 0.38 0.68 0.76 0.75 0.86 
Deltaic Flat 0.57 0.53 0.50 0.58 1.11 1.00 0.96 1.13 
Lacustrine Flat   0.51       1.03     
Clastic Shelf Flat   0.54       1.06     
Strand Plain Flat   0.40       0.80     
Clastic Slope Flat   0.51       1.00     
Carbonate Shelf Flat   0.29       0.56     
Peritidal Flat   0.58       1.19     
Reef Flat   N/A       1.32   1.52 
Eolian Anticline 0.50 0.54 0.56 0.62 1.00 1.02 1.01 1.18 
Fluvial Anticline 0.36 0.46 0.47 0.50 0.70 0.87 0.88 0.96 
Deltaic Anticline 0.61 0.60 0.61 0.66 1.13 1.08 1.09 1.18 
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Formation depth, a proxy for pressure and temperature conditions, had a significant effect 
on storage efficiency. The deeper 2438-meter (8000-foot) models had roughly 100% greater 
storage efficiency across all depositional environments (Table 3). Since the pore volumes were 
roughly equivalent between the 1219- and 2438-meter (4000- and 8000-foot) models, this higher 
storage efficiency for deeper models is largely attributable to a greater change from initial to final 
pressure (greater Δp). The maximum injection pressure constraint (gradient) was 13.6 kPa/m  
(0.6 psi/ft); therefore, the deeper models permitted greater CO2 injection rates and volumes over 
the 100-year period.  
 

The anticline models resulted in greater storage efficiency than the flat-model counterparts. 
For example, the P50 Esaline coefficients for the 1219- and 2438-meter (4000- and 8000-foot) 
anticline eolian models were 0.54% and 1.02%, respectively, which was an increase of 8% and 
4% over their flat-model counterparts. This structural geometry effect was greatest for the fluvial 
depositional environments. The P50 Esaline coefficients for the 1219- and 2438-meter (4000- and 
8000-foot) anticline fluvial depositional environments were 0.46% and 0.87%, respectively, which 
was an increase of 31% and 14% over their flat-model counterparts (Table 3). This structural 
geometry effect for anticline models is likely attributable to 1) greater Δp along the deeper limbs 
of the anticline allowing a greater amount of CO2 to be injected and 2) buoyancy and the tendency 
of CO2 to rise within the injection horizon into the crest (hinge) of the anticline, which resulted in 
the available pore space more efficiently filling with CO2 over the injection period. 
 

The additional storage from pressure dissipation in the semiclosed models resulted in slightly 
greater storage efficiency than their closed-model counterparts. For example, the P50 Esaline 
coefficients for the 1219-meter (4000-foot) flat eolian, fluvial, and deltaic depositional 
environments for closed-boundary models were 0.50%, 0.35%, and 0.53%, respectively. However, 
the P50 Esaline coefficients for the semiclosed models for these three environments were 0.56%, 
0.38%, and 0.58%, respectively, for an increase of approximately 12%, 9%, and 9%, respectively. 
Similar magnitudes of the semiclosed boundary effect were observed for the 2438-meter  
(8000-foot) models and for the anticline models (Table 3). The magnitudes of change in storage 
efficiency between the closed and semiclosed models were small because, as previously discussed, 
the caprock permeability values used in the semiclosed simulations were in the submillidarcy  
(10-17 m2) to subnanodarcy (10-22 m2) range, resulting in semiclosed systems which behaved 
similarly to closed-boundary systems. 
 

Effect of Porosity–Permeability Distribution on Storage Efficiency and Rates 
 

Figure 4 shows histograms of CO2 storage efficiency at 100 years of CO2 injection for the 
fluvial depositional environment of the 1219-meter (4000-foot) depth flat and anticline models. 
Similar results were observed for the 2438-meter (8000-foot) models (figures not shown). These 
histograms were generated from the P10 and P90 outputs from Table 3 and the log-odds method 
using Equations 4, 5, and 6, and Monte Carlo simulation. As described above, the porosity–
permeability distribution has a large effect on the connected volumes and overall pore volume, 
with the P10 case having less primary storage facies and less total pore volume and the P90 case 
containing more of the primary storage facies and greater pore volume. Consequently, uncertainty 
in the porosity–permeability distribution has an effect on the simulated CO2 storage efficiency. As 
shown in Figure 6, the range in CO2 storage efficiency (minimum to maximum) was approximately 
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0.25% to 0.40% for the flat structural model and 0.30% to 0.55% for the anticline structural model. 
This variability in the simulated CO2 storage efficiency coefficient reflects the uncertainty in the 
underlying porosity–permeability distribution, which in this case was modeled using the 10 and 
90 percent probability range from AGD for eolian, fluvial, and deltaic depositional environments. 

 
 

 
 

Figure 6. Histograms CO2 storage efficiency (percent, x-axis) for the fluvial depositional 
environment 1219-meter (4000-foot) flat models (top row) and anticline models (bottom row). 
These histograms were generated using the P10 and P90 outputs from Table 3 and the log-odds 

method using Monte Carlo simulation and Equations 4, 5, and 6. 
 
 

The uncertainty analysis illustrated in Figure 6 underscores the importance of geologic 
characterization, as variability in petrophysical properties may impact CO2 storage resource 
estimates. Different types of geologic formations contain varying degrees of heterogeneity, but all 
tend to have significant heterogeneity at the basin scale. A formation may encompass deposits 
from multiple depositional environments. For instance, a sandstone formation may contain 
elements of both fluvio-deltaic and nearshore deposition. In addition, close investigation into any 
two geologic formations interpreted as being genetically similar, for instance, carbonate shelf and 
peritidal sequences, will likely reveal significant differences in facies proportions. Other modes of 
heterogeneity may be due to any number of processes, such as change in water depth at the time 
of deposition, change in sediment composition and sedimentation rate, differential erosion, 
diagenesis, and structural complications. All of these factors create heterogeneity in storage 
resource quality and capacity. Therefore, thorough geologic characterization is needed to constrain 
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estimates of petrophysical properties within DSF and to map the distribution and extent of good 
and bad reservoir facies proportions within each specific depositional environment. 
 

Evaluating CO2 Storage Rates Across Depositional Environments 
 

Figure 7 shows time series plots for the fraction of CO2 stored over the 100-year injection 
period for the different depositional environments, structural geometries (flat or anticline), and 
boundary conditions (closed or semiclosed). Each of these curves exhibited a sigmoidal shape, 
with an initially slow increase in the fraction of CO2 stored followed by a period of rapid increase 
and finally tapering toward a fraction of 100%. Comparing results for flat models among 
depositional environments (top row in Figure 7) showed a consistent order for the time at which 
the fraction of CO2 increased. The clastic shelf curves increased at the earliest time (the curves 
farthest to the left), with the eolian and reef curves increasing at the latest time (the curves farthest 
to the right). The order, from fastest to slowest rate of fractional CO2 storage, was clastic shelf > 
fluvio-deltaic > clastic slope > carbonate peritidal > clastic strand plain > lacustrine > eolian > 
reef; however, the carbonate peritidal and clastic strand plain models were virtually 
indistinguishable, as were the eolian and reef models. These orders were preserved in the  
2438-meter (8000-foot) models; however, the effects were diminished (i.e., less separation 
between the different curves). 
 

The differences in CO2 storage rates are largely attributable to differences in the average 
porosity and permeability for the different depositional environments. As shown in Figure 8, the 
fluvio-deltaic and clastic shelf environments had the greatest porosity and permeability, and also 
the fastest time to store 50% of the total injected CO2. Because of their higher permeability and 
thus greater ability to convey injected CO2, these systems reached their Δpmax fastest. Thus an 
inverse relationship, albeit with weak correlation, was observed between petrophysical property 
characteristics and the rate with which CO2 injection occurred. As both porosity and permeability 
properties decreased, the amount of time needed to store 50% of the total CO2 mass increased. 
Injected CO2 must travel farther to find the necessary void volume for storage in a scenario with 
decreased pore volume in comparison to a scenario with greater pore volume, assuming similar 
amounts of CO2 being injected in both cases. This suggests a “tighter” (less permeable) formation 
may result in a CO2 plume of greater areal extent, instead of the low-permeability rock simply 
keeping the CO2 plume condensed through resistance to flow, and this process takes place more 
slowly than in formations with better petrophysical characteristics. 
 

In addition, a general trend of increasing CO2 injection rate was noted as depth increased. 
The deeper models, with more pressure space available during injection (greater Δp), received CO2 
at a higher rate simply because of injection could take place at higher pressures.  
 

As shown in Table 3 and described above, at the end of the 100-year CO2 injection period, 
the anticline models had greater storage efficiency than the flat-model counterparts. However, the 
anticline models had somewhat slower rates of CO2 storage than the flat models (i.e., the solid 
curves lie to the right of the dotted curves in the middle panels of Figure 7). This was especially 
true for the final 20% of CO2 stored (Ft = 0.8 to 1.0) in the fluvio-deltaic models. For example, the 
fluvio-deltaic 1219-meter (4000-foot) flat model took 0.8 years to reach Ft = 0.5, while the 
anticline model took 1.0 year, for an increase of a factor or 1.25. 
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Figure 7. Time series plots for the fraction of CO2 stored (Ft, y-axis) over the 100-year injection 
period (x-axis) for the different models. The left and right columns show results for the 1219- 

and 2438-meter (4000- and 8000-foot) models, respectively. The top panels show the P50 results 
for closed boundary flat models. Simulation results were not generated for the reef depositional 

environment at 1219 meters (4000 feet). The middle panels compare the P50 results for the 
closed boundary flat and anticline models. Lastly, the bottom panels compare the P50 results for 

the closed and semiclosed boundary flat models. 



 

23 

 
 

Figure 8. Time series plots showing the inverse relationships between models’ average porosity 
(top) and average permeability (bottom) characteristics and the time to inject 50% of the total 

CO2 storage capacity. 
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The rates of CO2 storage were virtually indistinguishable between the closed and semiclosed 
boundary models within the same depositional environment for most of the CO2 injection period. 
Virtually no significant difference was noted in the time to reach Ft = 0.5 between closed and 
semiclosed models, regardless of formation depth, structural geometry, or depositional 
environment (Figure 9). However, the semiclosed models had marginally slower rates for the final 
10% of CO2 stored (Ft = 0.9 to 1.0) (i.e., the solid curves lie to the right of the dotted curves in the 
bottom panels of Figure 7 when the y-axis is greater than approximately Ft = 0.9). The pore 
volumes were equivalent between closed and semiclosed models of the same depositional 
environment. In addition, the cap rock (seal) in the semiclosed models did not allow CO2 flow 
because of permeability and capillary barriers and, therefore, only allowed pressure dissipation via 
brine displacement. Since bottomhole injection pressure was limited to the fracture pressure, the 
rates of CO2 storage were nearly identical between the closed and semiclosed boundary models 
for the majority of the CO2 injection period. However, the pressure dissipation provided by the 
semiclosed boundary resulted in additional storage and, therefore, slower rates for the final 10% 
of CO2 stored.  
 

Figure 9 shows bar charts of the time in years for each simulation to reach 50% of the total 
CO2 mass injected (Ft = 0.5). These comparisons elucidate the relative importance of depositional 
environment, formation depth, structural geometry, and boundary conditions on the rate of CO2 
storage. For example, among the 1219-meter (4000-foot) depth, flat models, it took 0.5 years for 
the clastic shelf model to reach Ft = 0.5, but it took the eolian model six years, or 12 times longer. 
Therefore, while the CO2 storage efficiency at the end of the 100-year injection period was nearly 
identical between these two depositional environments (0.43% vs. 0.42%), the rates at which these 
formations accepted their total mass of CO2 differed significantly. 
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Figure 9. Bar charts comparing the time to inject 50% of the total CO2 mass (x-axis) for the 
different model combinations. 
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Comparisons to IEAGHG (2014) 
 

In 2014, IEAGHG commissioned the EERC to develop storage coefficients for CO2 storage 
in DSFs. The project was cosponsored by DOE (IEA Greenhouse Gas R&D Programme, 2014). 
The IEAGHG (2014) approach compared volumetric and dynamic CO2 storage efficiencies in an 
open system, represented by the Minnelusa Formation, and a closed system represented by the 
Qingshankou and Yaojia Formations. The results provided low and high estimates as a function of 
time, from 50 years to 2000 years of CO2 injection. 
 

Table 4 compares the IEAGHG (2014) results to the overall model storage efficiencies from 
the current work. As shown in the table, the average storage efficiencies at 100 years for the  
1219-meter (4000-foot) models (0.42%) and 2438-meter (8000-foot) models (0.83%) from the 
current study were comparable to the dynamic storage efficiencies for the Minnelusa Formation at 
50 years and for the Qingshankou and Yaojia Formations at 500 years or more of CO2 injection. 
The open hydrogeologic systems of the Minnelusa Formation permitted greater storage efficiency 
over time (up to 18% at 2000 years of injection), which as previously described was a function of 
additional CO2 storage associated with lateral brine displacement, as opposed to being limited to 
the water compressibility and pore dilation. 
 
 
Table 4. Comparison of Esaline Results (percent) from IEAGHG (2014) for the Minnelusa 
and Qingshankou–Yaojia Systems to the Overall Model Esaline Results from the Current 
Work 

 
Minnelusa 

System 
Qingshankou–
Yaojia System 

Current Work 
Overall Model, m/ft 

Point of Comparison Low High Low High 1219/4000 2438/8000 
Volumetric Efficiency (closed system) 0.54% 0.54% 0.21% 0.21% NA NA 
Volumetric Efficiency (open system) 2.90% 11.00% 1.30% 10.00% NA NA 
Dynamic Efficiency (50 years of injection) 0.55% 1.70% 0.28% 0.40% NA NA 
Dynamic Efficiency (100 years of injection) NA NA NA NA 0.42% 0.83% 
Dynamic Efficiency (200 years of injection) 1.90% 4.30% 0.39% 0.52% NA NA 
Dynamic Efficiency (500 years of injection) 2.50% 7.90% 0.45% 0.60% NA NA 
Dynamic Efficiency (2000 years of injection) 3.40% 18.00% 0.62% 0.72% NA NA 

 
 
HYDROCARBON RESERVOIR ASSESSMENT 
 
 Among hydrocarbon-bearing formations, one proven technology that both produces oil and, 
through the process, permanently stores CO2 in the subsurface is CO2 EOR. CO2 EOR refers to 
the process whereby an operator injects CO2 into the subsurface at an oil field, after which it mixes 
with the oil to swell it and reduce the oil viscosity, making it lighter and detaching it from the rock 
surfaces. These subsurface alterations cause the oil to flow more freely within the reservoir so that 
it will flow to production wells. During this process, approximately 50% of the total volume of 
injected CO2 (purchased plus recycled) is produced together with oil, separated, and reinjected, 
but nearly all (>95%) of the purchased CO2 delivered to the oil field remains securely trapped 
within the geologic formation (Melzer, 2012; Azzolina and others, 2015).  
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CO2 EOR occupies an important place in the realm of geologic CO2 storage, as it is likely to 
be the primary means of geologic CO2 storage during the early stages of commercial deployment 
because the value of the produced oil offsets some of the costs of CCS (Peridas, 2008; Leach and 
others, 2011). As of 2014, there were 136 active CO2 EOR projects identified in the United States 
(Koottungal, 2014), with forecasts predicting strong future growth (Kuuskraa and Wallace, 2014). 
Besides the United States, China, Indonesia, and other countries have expressed strong interest in 
using CO2 EOR for climate change mitigation. CO2 storage resource estimates for new and 
ongoing CO2 EOR operations will help to quantify the amount of carbon storage potential available 
through this process. 
 
 The DOE methodology for estimating the CO2 storage resource in oil reservoirs uses a 
volumetric approach and the standard industry method to calculate original oil in place (OOIP) 
(Calhoun Jr., 1982; Lake, 1989). Equation 9 provides the general form of the volumetric equation 
to calculate the CO2 storage resource mass estimate (GCO2) for geologic storage in oil reservoirs 
(U.S. Department of Energy National Energy Technology Laboratory, 2012): 
 
஼ைଶܩ  ൌ ሺ1	߶௘	௡݄	ܣ	 െ ܵ௪௜ሻ	ܤ	ܧ௢௜௟	ߩ஼ைଶ	 [Eq. 9] 
 
Where (M = mass; L = length): 
 GCO2  = Mass estimate of oil and gas reservoir CO2 storage resource (M). 

 A  = Reservoir area (L2). 
 hn  = Net thickness (L). 
 ϕe  = Average effective porosity (L3/L3). 
 (1 – Swi)  = (1 – initial water saturation) ≡ original hydrocarbon saturation (L3/L3). 
 B  = Oil formation volume factor (stock tank barrel [STB]/reservoir barrel [RB])  
   (L3/L3). 

 Eoil  = CO2 storage efficiency factor (L3/L3). 
 ρCO2  = CO2 density (M/L3). 
 
 In Equation 9, the product of A, hn, ϕe, (1 – Swi), and B yield the OOIP (red-colored text in 
Equation 9. For the CO2 storage resource estimate at reservoir depletion, the factor Eoil is 
equivalent to the incremental oil recovery factor (RF), (Bachu and others, 2007). A critical insight, 
and a major component of the work presented in this study, is that in oilfield terms, the RF and the 
CO2 net utilization factor (UFnet) together represent the CO2 storage efficiency factor, Eoil, for CO2 
storage in CO2 EOR operations, as opposed to CO2 storage following reservoir depletion. Thus 
Equation 9 may be rewritten as: 
 
஼ைଶܩ  ൌ ܲܫܱܱ ൈ ܨܴ ൈ ௡௘௧ܨܷ ൈ  ஼ைଶ [Eq. 10]ߩ
 
Where: 
 OOIP  = Original oil in place (stock tank barrel [STB]). 
 RF  = Incremental oil recovery factor in CO2 EOR (%OOIP). 
 UFnet  = CO2 net utilization factor (Mscf [thousand standard cubic feet]/STB). 
 ρCO2  = CO2 density, with a conversion factor of 1 tonne CO2 per 19.25 Mscf at normal 

conditions (U.S. Department of Energy National Energy Technology  
Laboratory, 2010). 
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In Equation 10, the red- and blue-colored text identifies the common components with 
Equation 9. The form of Equation 10 provides a more tractable volumetric equation because OOIP, 
RF, and UFnet are common performance metrics. Incremental oil recovery in this work represents 
oil that is produced following the primary and secondary oil production, i.e., during tertiary 
recovery from the CO2 flood and, hence, incrementally adds to the entire oil production from the 
oil reservoir. Incremental oil recovery is expressed as a dimensionless variable, the incremental oil 
RF, which is expressed in units of %OOIP. Industry commonly expresses the CO2 net utilization 
factor (UFnet) as the amount of purchased CO2 used to recover a barrel of oil, in units of thousand 
standard cubic feet (Mscf)/STB. CO2 net utilization does not include the recycled CO2 component 
and, therefore, only incorporates the new, purchased CO2 volumes into the calculation. 
 

Among the parameters in Equation 10, RF is already normalized to the reservoir volume 
because it is expressed in units of %OOIP. Similarly, UFnet scales purchased CO2 use to barrels of 
oil produced and, therefore, the units of Mscf/STB are normalized to the same unit of measure as 
OOIP. However, it is difficult to assess CO2 storage mass, GCO2, across multiple CO2 EOR sites. 
For example, while the absolute value of CO2 stored in units of mass is critical to summing the 
total available CO2 storage mass across sites (e.g., for national inventories), it is not possible to 
make comparisons in CO2 storage resources between two reservoirs of different volume, as a larger 
volume allows greater storage mass. Therefore, Equation 2 can be taken one step further to express 
CO2 storage “normalized” to OOIP, as follows: 
 

Equation 11 provides the foundation for estimating CO2 storage efficiency factors from 
commonly reported metrics of OOIP, RF, and UFnet and plays a pivotal role in the current work. 

 

 
ீ಴ೀమ
ைைூ௉

ൌ ܨܴ ൈ ஼ைଶ	௡௘௧ܨܷ ൈ ஼ைଶߩ ൌ  ஼ைଶ [Eq. 11]ߩ	௢௜௟ܧ

 
Where GCO2/OOIP = specific CO2 storage resource (tonnes/STB OOIP) and represents the CO2 
stored per unit of incremental oil volume produced through CO2 EOR, and the RF and UFnet terms 
have been combined into a single term, Eoil (Mscf/STB OOIP). 
 

Industry experience and simulation studies both suggest that the amount of CO2 stored and, 
hence, the RF and UFnet are a function of both geologic and operational factors. Geologic factors 
are specific to the reservoir and include lithology, pore type/porosity, permeability, heterogeneity, 
and other physical features unique to the reservoir. Operational factors are specific to the design 
and operation of the CO2 flood, including injection pattern (the geometrical arrangement of 
injection and producing wells), pattern spacing (the distance between injection and producing 
wells), the volume of CO2 injected, and the ratio of injected water to injected CO2 (the WAG 
[water alternating gas] ratio). The interplay of geologic and operational factors leads to uncertainty 
in the amount of CO2 storage that occurs at an individual site. Analogously, these same factors 
affect the quantity of incremental oil that is produced (Advanced Resources International, Inc., 
and Melzer Consulting, 2010; Hill and others, 2013; van’t Veld and others, 2013, 2014; 
Ettehadtavakkol, 2014). An open research question is the degree to which these geologic and 
operational factors may be incorporated into approaches for CO2 storage resource estimates. 
 
 The primary objective of this work was to improve CO2 storage resource estimates for CO2 
EOR sites via integration of real-world reservoir performance data, numerical simulation studies, 
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and statistical models to develop representative CO2 storage efficiency factors for CO2 EOR 
operations in clastic and carbonate reservoirs. The results of this work provide practical tools that 
can be used to quantify CO2 storage resource estimates associated with CO2 EOR and the 
uncertainty inherent in those estimates. 
 

Geologic Model Construction 
 

A series of heterogeneous geologic models were created for the purpose of evaluating CO2 
utilization through numerical simulation of CO2 enhanced oil recovery operations. Model size and 
shape were based on simulations of heterogeneous reservoirs performed by Gorecki and others 
(2009). Models were generated with an anticlinal structural trap (6.4 km [4 miles] along the 
anticline axis and 3.2 km [2 miles] wide). A cylindrical anticline with an arbitrary closure of  
30.48 meters (100 feet) in thickness was chosen to represent the structure. 
 

Three different model thicknesses were created: 7.6, 20, and 64 meters (25, 66, and 209 feet). 
Therefore, three different gridding methods were used: 1) for the 7.6-meter (25-foot)-thickness 
cases, the gridding was 106 × 211 × 25 with a total of 559,150 blocks; 2) for the 20-meter  
(66-foot)-thickness cases, the gridding was 106 × 211 × 33 with a total of 738,078 blocks; and  
3) for the 64-meter (209-foot)-thickness cases, the gridding was 106 × 211 × 52 with a total 
1,163,032 blocks. Geologic properties were populated within each facies using geostatistical 
ranges and values from the AGD (Figures 10 and 11). Porosity was assigned using a truncated 
normal distribution and the mean and standard deviation from the EERC AGD. The bivariate 
relationship between porosity and permeability was measured from porosity log10 (permeability) 
crossplots, consisting of over 1600 paired data points collected from fluvial clastic reservoirs and 
over 9500 pairs from carbonate shallow shelf reservoirs. These relationships were used to 
distribute permeability values conditioned to the previously distributed porosity properties. 
Petrophysical property summary statistics for each model are shown in Table 5. 
 

Model depths of 1219 and 2438 meters (4000 and 8000 feet) were chosen to explore different 
temperature and pressure behaviors on the modeled system. These depths are also standards used 
by U.S. Energy Information Administration to calculate operating costs (U.S. Energy Information 
Administration, 2010). Temperature and pressure properties were based on depth properties, using 
a temperature gradient of 0.027°C/meter (0.015°F/foot) and a pressure gradient of 9.8 kPa/meter 
(0.433 psi/foot).  
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Figure 10. 64-meter (209-foot) thick anticlinal model property distributions. A single well 
trajectory is shown in each inset image (green vertical line). Fluvial model properties are shown 

in the left column, including facies, P50 porosity, and oil saturation (from top to bottom). 
Carbonate model properties are shown in the right column, including facies, P50 permeability 

(mD), and oil-in-place in barrels (from top to bottom). 
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Figure 11. Porosity log10 (permeability) crossplots for fluvial clastic (left) and shallow shelf 
carbonate (right) datasets from the AGD. These porosity–permeability crossplots were used to 

populate the geologic properties of the simulation models for reservoir (blue circles), 
nonreservoir (red squares), and shale (green diamonds) lithofacies. 

 
 

Table 5. Porosity and Permeability Data Derived from the AGD for Fluvial 
Clastic and Shallow Shelf Carbonate Facies 

 Fluvial Clastic Shallow Shelf Carbonate 

 Porosity, % Permeability, mD Porosity, % Permeability, mD

Minimum 0.31 0.00002 0.01 0.001 
P10 Mean 5.46 0.05 3.63 0.08 

P50 Mean 16.92 10.63 12.11 2.17 

P90 Mean 26.62 670.91 23.00 76.73 
Maximum 34.68 7983.77 54.42 7596.72 

Standard Deviation 7.68 715.83 7.81 347.92 
  
 

Industry Data Set and Performance Metrics 
 

Aside from the models constructed in these efforts, monthly reservoir performance data from 
31 CO2 EOR sites (hereafter referred to as the industry data set) were provided by Melzer 
Consulting in conjunction with a worldwide reservoir appraisal company to assist in the 
assessment of CO2 storage in hydrocarbon reservoirs. These data were originally used to compare 
flood performance between differing projects, develop petroleum reserve estimates for the 
operators of the field, and prepare annual petroleum reserve certifications for filers with the U.S. 
Securities and Exchange Commission. The industry data set was described in detail in a previous 
publication (Azzolina and others, 2015). The data include quantity of CO2 injected and produced, 
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incremental oil recovery, and water injected for each site. The sites in the industry data set reflect 
WAG CO2 floods – all within the continental United States and heavily dominated by the West 
Texas carbonate floods. Several CO2 floods outside of this region were also included (i.e., the 
Rocky Mountain region and the state of Oklahoma). 
 

Previous work by Azzolina and others (2015) focused on three factors that significantly 
influence the long-term performance and economic viability of CO2 EOR projects: CO2 retention, 
incremental oil recovery, and CO2 net utilization. The current work extends the previous study by 
also examining CO2 storage efficiency factors in accordance with Equation 11. Incremental oil 
recovery, CO2 net utilization, and CO2 storage are defined according to Equations 12–14, as shown 
below. 
 

ܨܴ  ൌ
ே೛
ே

 [Eq. 12] 

 
Where: 
 RF  = Incremental oil recovery factor (%OOIP). 
 Np  = Cumulative incremental oil production (STB). 
 N  = OOIP (STB). 
 

௡௘௧ܨܷ  ൌ
௏಴ೀమ,೛ೠೝ೎೓ೌೞ೐೏

ே೛
 [Eq. 13] 

 
Where: 
 UFnet  = CO2 net utilization factor (Mscf/STB). 
 VCO2,purchased  = Cumulative volume of purchased CO2 injected (Mscf). 
 Np  = Cumulative incremental oil production (STB). 
 
 COଶ	stored ൌ COଶ	injected െ COଶ	produced [Eq. 14] 
 
Where: 
 CO2 stored  = Volume of CO2 stored (Mscf). 
 CO2 injected  = Volume of CO2 injected (Mscf). 
 CO2 produced  = Volume of CO2 produced (Mscf). 
 
 The volumes of CO2 and water injected in the industry data set are expressed as 
dimensionless variables in units of hydrocarbon pore volume (HCPV), as opposed to a volume or 
mass measure. HCPV represents the pore volume of the reservoir that is occupied by 
hydrocarbons. One hundred percent HCPV (which is equivalently reported in the literature as  
1.0 HCPV) is equal to the OOIP. The amount of CO2 individually or CO2 plus water injected is 
not bounded between 0 and 1.0, as more than 1.0 HCPV may be injected into the reservoir over 
the life cycle of the CO2 flood because there is no perfect displacement, i.e., sweep efficiency, of 
the OOIP. We consider herein a threshold value of 3.0 HCPV as an estimate of the end of life for 
the CO2 EOR field, recognizing that some sites may exceed this value while others may not inject 
up to this amount. 
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The input parameters required to implement Equations 12–14 to derive CO2 storage 
efficiency factors were not available for all 31 sites in the industry data set. As a result, the focus 
of the measured reservoir performance data component of the current study is on nine sites from 
West Texas San Andres dolomite reservoirs. 
 

Hydrocarbon Reservoir Numerical Simulation 
 

Numerical simulations were conducted to examine CO2 storage behavior for different 
geologic and operational factors. The current work focused on two different CO2 EOR 
development strategies and two different geologic regimes, with variations in reservoir volume, 
pressure, and temperature among these models. Two different types of CO2 EOR development 
strategies were explored: continuous CO2 injection (CCI) and WAG. In the CCI simulations, the 
injected fluids into the reservoir consisted solely of CO2, whereas in the WAG simulations the 
ratio of injected water to injected CO2 (WAG ratio) was 1:1. The CCI simulations represented the 
base case against which all other simulations are compared. There were 12 different cases for the 
CCI simulations. Cases 1 to 6 represent fluvial/clastic reservoirs and Cases 7 to 12 represent 
shallow shelf carbonate reservoirs. As discussed above, each depositional environment was 
simulated using two different depths (1219 and 2438 meters [4000 and 8000 feet]) and each depth 
was run using three different reservoir thicknesses (7.6, 20, and 64 meters [25, 66, and 209 feet]). 
The 50th percentile (P50 or median) outcome was generated for all 12 cases. In addition, 10th and 
90th percentile (P10 and P90, respectively) outcomes were generated for a subset of four cases to 
assess uncertainty: Cases 2, 5, 8, and 11. Six of the 12 cases that were assessed using CCI 
simulation were also simulated using WAG injection. These WAG cases consisted of P50 
simulations for Cases 1, 2, 6, 7, 8, and 12. Altogether, there were 18 unique simulation models 
(Table 6). 
 
 
Table 6. Matrix of Simulation Cases Showing the Different Lithofacies (fluvial clastic or 
shallow shelf carbonate), Depth (1219 or 2438 m [4000 or 8000 feet]), Thickness (7.6, 20, or 
64 meters [25, 66 or 209 feet]), Temperature (48.9 or 82.2°C [120° or 180°F]), and Pressure 
(11.9 or 23.9 MPa [1730 or 3465 psi]). All 12 cases generated a median (P50) outcome for CCI 
floods; cases marked with an “X” were also evaluated for WAG simulations. 

Case No. Lithofacies 
Depth, Thickness, Temp., Pressure, 

WAG m/ft m/ft °C/°F MPa/psi 
1 Fluvial clastic 1219/4000 7.6/25 48.9/120 11.9/1730 X 
2 Fluvial clastic 1219/4000 20/66 48.9/120 11.9/1730 X 
3 Fluvial clastic 1219/4000 64/209 48.9/120 11.9/1730 
4 Fluvial clastic 2438/8000 7.6/25 82.2/180 23.9/3465 
5 Fluvial clastic 2438/8000 20/66 82.2/180 23.9/3465 
6 Fluvial clastic 2438/8000 64/209 82.2/180 23.9/3465 X 
7 Shallow shelf carbonate 1219/4000 7.6/25 48.9/120 11.9/1730 X 
8 Shallow shelf carbonate 1219/4000 20/66 48.9/120 11.9/1730 X 
9 Shallow shelf carbonate 1219/4000 64/209 48.9/120 11.9/1730 
10 Shallow shelf carbonate 2438/8000 7.6/25 82.2/180 23.9/3465 
11 Shallow shelf carbonate 2438/8000 20/66 82.2/180 23.9/3465 
12 Shallow shelf carbonate 2438/8000 64/209 82.2/180 23.9/3465 X 
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CMG-Builder was used to populate simulation model parameters and numerical settings. 
After setting up all the geologic properties, well placements, boundary conditions, initial 
conditions, fluid pressure–volume–temperature (PVT) information, rock types, and numerical 
parameters, the cases were sent to EERC’s cluster nodes for simulation. A total of 184 CPU cores 
distributed in eight cluster nodes were used for the simulations.  
 

The CO2 EOR phase for the CCI simulations was run up to 3.0 HCPV. In contrast, the WAG 
simulations were run for over a 30-year time frame. The HCPV injected was secondary, recorded 
through time rather than a targeted injection volume. 
 

Simulations were run using CMG’s GEM. GEM is an advanced compositional simulator 
that models the flow of three-phase, multicomponent fluids. GEM has the added benefit of being 
able to model recovery processes where effective fluid composition is important. 
 

Key outputs from the simulation modeling included the same metrics that were used to assess 
the industry data set: incremental oil recovery, CO2 net utilization, and CO2 storage. To permit 
comparisons between the simulation models and the industry data set, the simulations’ injection 
volumes were reported in units of HCPV. All simulation modeling outputs were exported to Excel 
for use in the following statistical modeling and data summary. 
 

Statistical Modeling 
 

A novel statistical modeling approach was used to evaluate CO2 storage efficiency factors 
throughout the injection life cycle from 0 to 3.0 HCPV for both the industry data set and the 
simulation cases. The CO2 storage efficiency curves during CO2 EOR follow similar patterns 
across the industry data set and simulation cases, namely a rapid increase in storage efficiency 
early in the CO2 flood followed by flattening, asymptotic-like behavior up to 3.0 HCPV. There are 
a number of nonlinear equations that describe processes that follow this pattern; however, based 
on previous experience in fitting these types of curves, this work explores a type of two-parameter 
function called Michaelis–Menten or saturation growth, which has the form (Michaelis and 
Menten, 1913): 
 
ݕ  ൌ ௔௫

ሺ௕ା௫ሻ
 [Eq. 15] 

 
Where: 

y  = Response variable, in this application CO2 storage efficiency. 
x  = Predictor variable, in this application cumulative CO2 or CO2 and water  

  injected (HCVP). 
a and b  = Empirical constants fit using regression analysis. 

 
One motivation for fitting an equation like Michaelis–Menten is to reduce the HCVP series 

data to two parameters, a and b, about which inferences can be made. For example, in the 
Michaelis–Menten formula, parameter a represents the maximum storage efficiency that would be 
possible at infinite CO2 or CO2 and water injection. The parameter b is the time at which CO2 
storage efficiency is half of the maximum value. In addition to allowing inferences, the fitted 
model may also be used to predict the CO2 storage efficiency factors out to 3.0 HCPV when the 
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observed data, either real-world reservoir performance data or simulation data, do not reach  
3.0 HCPV. 
 

The Michaelis–Menten equation has been used to describe substrate-limited growth. In the 
case of CO2 EOR, the substrate is the pore space available for CO2 to access. The mechanistic 
explanation for why the Michaelis–Menten equation may be applicable to CO2 EOR is as follows. 
During the initial CO2 flood, there is sufficient available pore space for the CO2 to occupy 
(consume) with oil or water mobilized from the same pore space. This results in the pore space 
“filling up” at a first-order rate, which is the period of rapid CO2 storage in early time. As 
increasing volumes of CO2 are injected, more of the accessible pore space is occupied by CO2 and 
the available pore space decreases (gets to substrate-limited conditions), so the rate at which the 
pore space fills up approaches a zero-order rate. This is the period of asymptote-like or near-
horizontal storage curve over time (Robert Dilmore, DOE NETL, personal communication). 
 

The fitted Michaelis–Menten functions across sites from the industry data set and simulation 
cases were used to generate empirical percentile estimates of CO2 storage efficiency factors. 
 

Results and Discussion 
 

For the industry data set, the median times to inject 1.0, 2.0, and 3.0 HCPV of total fluids 
(CO2 + water) were 17.3, 29.8, and 43.0 years, respectively (Table 7). The median RF and UFnet 
at 3.0 HCPV were 12.2% OOIP and 8.7 Mscf/STB, respectively (Table 8). Lastly, the median Eoil 
at 3.0 HCPV was 1.28 Mscf/STB OOIP (Table 9). 
 

The Michaelis–Menten model was fit to nine West Texas dolomite fields in the industry data 
set to generate statistical fits from 0 to 3.0 HCPV. Figure 2 shows the percentile estimates from 0 
to 3.0 HCPV. The dark gray-shaded area in Figure 12 represents the interquartile range (IQR) from 
the 25th to 75th percentiles (P25 to P75), or the region within which 50 percent of sites are likely 
to fall, while the light gray-shaded area represents the P10 to P90, or the region within which  
80 percent of sites are likely to fall. There is less uncertainty in the estimated CO2 storage 
efficiency factor early in the CO2 flood (small range between the P10 and P90) and greater 
uncertainty beyond 2.0 HCPV (larger range between the P10 and P90). For example, the P10, P50, 
and P90 estimates at 1.0, 2.0, and 3.0 HCPV were 0.63, 0.82, and 0.97; 0.74, 1.17, and 1.47; and 
0.76, 1.28, and 1.74 Mscf/STB OOIP, respectively. 
 

These industry data set percentiles are used to compare the results of the simulation studies. 
An important distinction between the industry data set results and the simulation models is that the 
former is specific to West Texas carbonate geology, whereas the latter is conditioned on average 
petrophysical relationships from the EERC AGD for either fluvial clastic or shallow shelf 
carbonate depositional settings and pressure/temperature conditions specific to two different 
reservoir depths (Table 7). 
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Table 7. Summary of Time in Years Since CO2 Injection as a Function of HCPV for the  
12 CCI Simulation Cases, Six WAG Simulation Cases, and Median (P50) of Nine West 
Texas Dolomite Reservoirs from the Industry Data Set. Blank cells mean that no data were 
generated in the WAG simulation cases, which were run for a time of 30 years and the volume of 
HCPV injected was based on the volume injected up to that point in time, not an injection target. 

Case 
Time at HCPVI, years 

0.5 1.0 1.5 2.0 2.5 3.0 
1 1.2 2.4 3.6 4.7 5.9 7.1 
2 2.6 5.2 7.8 10.3 12.9 15.5 
3 5.2 10.4 15.5 20.7 25.9 31.1 
4 1.3 2.7 4.0 5.4 6.7 8.0 
5 2.5 5.1 7.6 10.1 12.7 15.1 
6 5.9 11.8 17.7 23.6 29.5 35.2 
7 2.4 4.2 6.0 7.6 9.2 10.8 
8 2.9 5.8 8.7 11.6 14.5 17.3 
9 6.9 13.6 20.2 26.8 33.2 39.7 
10 2.0 3.8 5.5 7.2 9.0 10.7 
11 3.1 6.2 9.2 12.3 15.4 18.4 
12 7.3 14.6 21.8 29.2 36.3 43.5 
WAG-1 3.5 6.7 10.0 13.5 16.8 20.0 
WAG-2 6.8 13.6 20.5 27.3   
WAG-6 9.1 18.2 27.4       
WAG-7 6.5 12.3 17.5 22.7 27.8   
WAG-8 8.2 16.4 24.5   
WAG-12 11.0 22.0         
Industry P50 7.6 17.3 22.3 29.8 35.7 43.0 
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Table 8. Summary of Incremental Oil Recovery in %OOIP (top) and CO2 Net Utilization in 
Mscf/STB (bottom) as a Function of HCPV for the 12 CCI Simulation Cases, Six WAG 
Simulation Cases, and Median (P50) of Nine West Texas Dolomite Reservoirs from the 
Industry Data Set. Blank cells mean that no data were generated. 

Case 
Incremental Oil Recovery Factor at HCPVI, % OOIP 

0.5 1.0 1.5 2.0 2.5 3.0 
1 3.0 7.0 9.3 11.0 12.4 13.5 
2 5.1 11.0 14.5 16.9 18.7 20.3 
3 5.5 11.0 14.6 17.2 19.2 20.8 
4 6.8 10.7 12.7 14.0 14.9 15.7 
5 9.2 13.8 16.0 17.4 18.5 19.2 
6 10.2 15.3 18.1 20.0 21.3 22.4 
7 4.3 7.3 9.8 11.8 13.7 15.3 
8 6.2 11.3 15.2 18.4 21.0 23.2 
9 5.4 9.2 12.2 14.5 16.4 18.1 
10 7.1 12.2 15.9 18.8 21.2 23.2 
11 9.5 15.2 18.9 21.6 23.5 25.0 
12 8.7 13.0 15.7 17.6 19.1 20.2 
WAG-1 5.4 7.7 9.1 10.2 11.0 11.7 
WAG-2 6.7 9.7 11.2 12.3   
WAG-6 7.2 10.7 12.4       
WAG-7 5.0 8.1 10.3 12.1 13.4   
WAG-8 6.8 10.7 13.1   
WAG-12 6.3 9.7         
Industry P50 2.7 7.3 10.3 11.7 12.0 12.2 

Case 
CO2 Net Utilization at HCPVI, Mscf/STB 

0.5 1.0 1.5 2.0 2.5 3.0 
1 39.2 23.1 19.7 17.9 16.8 16.0 
2 27.2 16.8 14.2 13.0 12.2 11.5 
3 22.0 15.2 13.3 12.2 11.6 11.1 
4 12.3 8.5 7.3 6.7 6.3 6.0 
5 9.3 6.6 5.7 5.3 5.0 4.8 
6 6.9 5.2 4.5 4.1 3.9 3.7 
7 14.8 12.0 10.7 9.9 9.3 8.9 
8 15.7 11.8 10.3 9.4 8.8 8.3 
9 10.5 8.2 7.2 6.6 6.2 5.9 
10 9.4 7.0 6.0 5.3 4.9 4.5 
11 5.8 4.3 3.7 3.4 3.2 3.0 
12 4.1 3.2 2.8 2.5 2.3 2.2 
WAG-1 15.1 12.3 10.9 10.0 9.4 8.9 
WAG-2 11.1 9.1 8.4 7.9   
WAG-6 5.2 4.0 3.5       
WAG-7 9.0 7.1 6.2 5.7 5.3   
WAG-8 8.7 6.7 5.8   

WAG-12 3.2 2.5         
Industry P50 13.8 10.6 9.8 9.4 8.9 8.7 
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Table 9. Summary of CO2 Storage Efficiency (Eoil) in Mscf/STB OOIP as a Function of 
HCPV for the 12 CCI Simulation Cases, Six WAG Simulation Cases, and 10th Percentile 
(P10), 50th Percentile (median or P50), and 90th Percentile (P90) of Nine West Texas 
Dolomite Reservoirs from the Industry Data Set. Yellow-shaded cells indicate where 
simulation data were not available and the Michaelis–Menten model fits were used to estimate 
Eoil at that specific HCPV. In the Michaelis–Menten model fits, Parameter a represents Eoil at 
infinite HCPV (the maximum Eoil value) and Parameter b represents the HCPV at which the 
system reaches one-half of its maximum value. 

Case 

Eoil at HCPVI, Mscf/STB OOIP Michaelis–Menten 

0.5 1.0 1.5 2.0 2.5 3.0 a = Eoil max. 
b = HCPV  

at 1/2 Eoil max. 
1 0.83 1.12 1.27 1.37 1.44 1.49 1.80 0.63 
2 0.81 1.08 1.21 1.28 1.33 1.37 1.59 0.49 
3 0.73 1.01 1.16 1.26 1.33 1.39 1.70 0.69 
4 0.58 0.63 0.64 0.64 0.65 0.65 0.67 0.08 
5 0.50 0.53 0.54 0.54 0.53 0.53 0.55 0.04 
6 0.43 0.48 0.49 0.50 0.50 0.50 0.52 0.10 
7 0.44 0.60 0.72 0.81 0.88 0.94 1.31 1.22 
8 0.57 0.78 0.91 1.00 1.07 1.13 1.44 0.85 
9 0.34 0.45 0.53 0.58 0.61 0.64 0.79 0.73 
10 0.46 0.59 0.65 0.69 0.71 0.72 0.83 0.40 
11 0.32 0.38 0.41 0.42 0.43 0.44 0.47 0.24 
12 0.21 0.25 0.26 0.26 0.27 0.27 0.29 0.16 
WAG-1 0.81 0.95 0.99 1.01 1.03 1.03 1.10 0.17 
WAG-2 0.74 0.88 0.94 0.97 1.00 1.01 1.09 0.23 
WAG-6 0.37 0.43 0.44 0.46 0.46 0.47 0.49 0.14 
WAG-7 0.45 0.58 0.64 0.68 0.71 0.72 0.83 0.42 
WAG-8 0.59 0.72 0.77 0.80 0.82 0.83 0.90 0.26 
WAG-12 0.20 0.24 0.25 0.26 0.26 0.26 0.28 0.19 
Industry P10 0.41 0.63 0.71 0.74 0.75 0.75     
Industry P50 0.56 0.82 1.08 1.17 1.23 1.28 1.66 0.89 
Industry P90 0.70 0.97 1.25 1.47 1.61 1.74     
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Figure 12. Percentile estimates generated from multisite Michaelis–Menten model fits for CO2 
storage efficiency (Mscf/STB OOIP) versus cumulative CO2 + H2O injection (HCPV) for nine 
West Texas San Andres dolomite reservoirs. The light gray-shaded regions bounded by dashed 
lines represent the 10th–90th percentiles, the dark gray-shaded regions bounded by dotted lines 
represent the 25th–75th percentiles (interquartile range), and the P50 estimate (solid black line) 

represents the central value of the distribution. 
 
 

Numerical Simulation CO2 Storage Efficiency Factors 
 

For the CCI simulation models, the time to inject 3.0 HCPV, incremental oil recovery factor, 
CO2 net utilization factor, and Eoil varied as a function of lithology and reservoir thickness. The 
time to inject 3.0 HCPV varied from a low of 7.1 years for Case 1 (clastic, 7.6-meter [25-foot] 
thickness) to a maximum of 43.5 years for Case 12 (carbonate, 64-meter [209-foot] thickness) 
(Table 7). The incremental oil recovery factor after injection of 3.0 HCPV ranged from a low of 
13.5 %OOIP for Case 1 to a high of 25.0 %OOIP for Case 11 (carbonate, 20-meter [66-foot] 
thickness) (Table 8). The CO2 net utilization factor after injection of 3.0 HCPV ranged from a low 
of 2.3 Mscf/STB for Case 12 to a high of 16.8 Mscf/STB for Case 1 (Table 8). Lastly, Eoil after 
injection of 3.0 HCPV ranged from a low of 0.27 Mscf/STB OOIP for Case 12 to a high of  
1.49 Mscf/STB OOIP for Case 1. 
 

The nine West Texas San Andres dolomite reservoirs in the industry data set had depth 
ranges from approximately 1494 to 1585 meters (4900 to 5200 feet) deep (average 1539 meters 
[5050 feet] deep) and thicknesses of 12 to 43 meters (40 to 140 feet) (average 27 meters [90 feet] 
thick), which are most similar to the physical conditions of the WAG Case 8 (1219 meters  
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[4000 feet] deep and 20 meters [66 feet] thick). As shown in Table 9, the simulation results after 
injection of 3.0 HCPV for WAG Case 8 (0.83 Mscf/STB OOIP) fell between the P10 (0.75 
Mscf/STB OOIP) and the P50 (1.28 Mscf/STB OOIP) of the industry data set. Direct comparison 
between the simulation results and the industry data set were complicated by two characteristics. 
First, as mentioned above, the industry data set was specific to West Texas carbonate geology (San 
Andres dolomite), whereas the simulation results were conditioned on average petrophysical 
relationships from the EERC AGD for shallow shelf carbonate depositional settings and 
pressure/temperature conditions specific to reservoir depths of 1219 and 2438 meters (4000 and 
8000 feet). Second, the industry data set represented a synopsis of historical operations for fields 
that operated since the early 1980s. The evolution of these fields, including the impact of infill 
drilling or changes to the CO2 flood plan over time, are not explicitly quantified by the statistical 
analyses provided in Azzolina and others (2015). 
 

Dimensionless CO2 Storage Efficiency Factors 
 

The statistical population of the geologic models using the average petrophysical 
relationships from the EERC’s AGD resulted in slightly different reservoir effective pore volumes 
across Cases 1–12. These differences confound drawing inferences about Eoil that are attributable 
to differences in reservoir depth (1219 and 2438 meters [4000 and 8000 feet]), thickness (7.6, 20, 
or 64 meters [25, 66, or 209 feet]), lithology (clastic or carbonate), or CO2 flood development 
strategy (CCI versus WAG). Moreover, work on DSFs expresses CO2 storage efficiency in 
dimensionless units, which are not directly comparable to the units shown in Table 9. Therefore, 
Table 10 expresses dimensionless Eoil values for the simulation cases using the following 
calculation approach. For the reservoir simulation models used in Cases 1–12, the total volume of 
CO2 stored and the reservoir effective pore volume were known explicitly. Therefore, the CO2 
storage efficiency can be expressed as the ratio of these values, which is the dimensionless Eoil 
value: 
 
 E୭୧୪ሺdimensionlessሻ ൌ

୚ిోమ
୚ದ౛౜౜

 [Eq. 16] 

 
Where: 

VCO2 = reservoir volume of CO2 stored 
Vϕeff = effective pore volume of the reservoir 

 
Figure 13 shows the dimensionless CO2 storage efficiency curves from simulation model 

outputs for both the fluvial clastic and shallow shelf carbonate simulations and their associated 
Michaelis–Menten model fits. 
 

Figure 13 illustrates several interesting trends about the relative differences in CO2 storage 
efficiency across the different model cases. First, comparing clastic and carbonate models shows 
that for all but Cases 4 and 10 (left-most panel in the middle row), the clastic models have greater 
CO2 storage efficiency than the carbonate models under the same reservoir thickness and depth 
conditions (i.e., the solid black lines are above the solid blue lines in the different panels in  
Figure 13). These results are a by-product of the porosity–permeability distributions for clastic 
versus carbonate reservoirs – for a given porosity, the clastic models have greater permeability 
because of the greater slope of the porosity–permeability bivariate relationship (Figure 11). In  
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Figure 13. Cumulative CO2 or (CO2 + H2O) injected (HCPV) versus CO2 storage efficiency (Eoil, dimensionless units) for the fluvial 
clastic (black solid lines) and shallow shelf carbonate (blue solid lines) simulation models. The solid lines show the simulation model 
output and the dashed lines represents the fitted Michaelis–Menten model. The top six panels represent the CCI simulations and the 

bottom three panels represent WAG simulations. While the former were run to 3.0 HCPV, the latter were run for 30 years of injection 
and the HCPV injected was based on the amount injected over that period.
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addition, comparing CCI simulations to WAG simulations shows that the CCI development yields 
a higher CO2 storage efficiency. For example, the dimensionless Eoil values after injection of  
3.0 HCPV for CCI clastic Cases 1, 2, and 6 are 61%, 50%, and 15%, respectively. In contrast, the 
dimensionless Eoil values after injection of 3.0 HCPV for WAG clastic Cases 1, 2, and 6 are 42% 
(31% less), 37% (26% less), and 14% (7% less), respectively (Table 10). These trends are also true 
for carbonate models. The dimensionless Eoil values after injection of 3.0 HCPV for CCI carbonate 
Cases 7, 8, and 12 are 40%, 37%, and 8%, respectively. In contrast, the dimensionless Eoil values 
after injection of 3.0 HCPV for WAG carbonate Cases 7, 8, and 12 are 31% (23% less), 21% (27% 
less), and 8% (no change), respectively. The greater CO2 storage efficiency under the CCI 
development strategy is attributable to the fact that during WAG injection, water occupies pore 
space that might otherwise store CO2, hence WAG development results in lower Eoil. This is also 
reflected in the lower CO2 net utilization rates for the WAG cases, which were approximately 20% 
to 45% less than their CCI counterparts at a given HCPV of total fluids injected (Table 8). Lastly, 
the dimensionless Eoil values at a particular HCPV are greater in the 1219-meter (4000-foot) 
reservoirs (top row in Figure 3) than in the 2438-meter (8000-foot) reservoirs (middle row in 
Figure 13), which illustrates a dependency of Eoil on reservoir pressure and temperature conditions. 
 
 
Table 10. Summary of CO2 Storage Efficiency (Eoil) in Dimensionless Units (VCO2/VΦeff) as 
a Function of HCPV for the 12 CCI Simulation Cases and Six WAG Simulation Cases. 
Yellow-shaded cells indicate where simulation data were not available and the Michaelis–
Menten model fits were used to estimate Eoil at that specific HCPV. In the Michaelis–Menten 
model fits, parameter a represents Eoil at infinite HCPV (the maximum Eoil value) and parameter 
b represents the HCPV at which the system reaches one-half of its maximum value. 

Case 

Eoil at HCPVI, % Michaelis–Menten 

0.5 1.0 1.5 2.0 2.5 3.0 a = Eoil max. 
b = HCPV at 
1/2 Eoil max. 

1 33 46 52 55 58 61 73 0.63 
2 29 39 44 47 49 50 58 0.49 
3 24 33 38 42 44 46 56 0.69 
4 22 23 24 24 24 24 25 0.08 
5 15 16 16 16 16 16 16 0.04 
6 13 15 15 15 15 15 16 0.10 
7 19 26 31 35 38 40 56 1.22 
8 19 25 30 33 35 37 47 0.85 
9 11 15 17 19 20 21 26 0.73 
10 17 22 24 26 27 27 31 0.40 
11 9 11 12 12 12 13 14 0.24 
12 6 7 8 8 8 8 8 0.16 
WAG-1 33 38 40 41 42 42 45 0.17 
WAG-2 27 32 34 36 36 37 40 0.23 
WAG-6 11 13 13 14 14 14 15 0.14 
WAG-7 19 25 27 29 30 31 35 0.42 
WAG-8 19 23 25 26 27 27 29 0.26 
WAG-12 6 7 7 8 8 8 8 0.19 
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Figure 13 also shows that the Michaelis–Menten model accurately describes the overall 
shape of the CO2 storage efficiency curves for both the fluvial clastic and shallow shelf carbonate 
simulations. For the deeper clastic models (Cases 4, 5, and 6), which quickly reach their asymptote 
at approximately 0.5 HCPV, the Michaelis–Menten model overpredicts Eoil in the region between 
0 and 0.5 HCPV. Nevertheless, the Michaelis–Menten model provides a simple and effective tool 
for modeling Eoil as a function of HCPV using a single analytical expression. 
 

In aggregate, Figure 13 illustrates relationships between Eoil and lithofacies, reservoir 
thickness, reservoir depth (a surrogate for reservoir pressure and temperature), and CO2 flood 
development (CCI or WAG). As seen in Figure 13, the CO2 storage efficiency factors are more 
strongly influenced by depth and reservoir geology than by reservoir volume (thickness). Thus in 
terms of screening-level assessments for estimating the CO2 storage resource in CO2 EOR 
operations, reservoir depth (or pressure and temperature) and lithology may play a more significant 
role in estimating the CO2 storage efficiency factor than reservoir volume. 
 

Figure 14 shows contour plots of dimensionless Eoil for the CCI cases for clastic and 
carbonate reservoirs as a function of reservoir depth (y-axis) and thickness (x-axis). Figure 14, 
therefore, provides a response surface for dimensionless Eoil as a function of lithology, depth, and 
thickness. These plots not only illustrate the differences between clastic and carbonate, but also 
allow predictions of Eoil at future CO2 EOR sites. For example, a carbonate reservoir 1829 meters 
(6000 feet) deep and 30.5 meters (100 feet) thick would be expected to yield and Eoil of 
approximately 20%, while the same conditions for a clastic reservoir would be expected to yield 
an Eoil of approximately 0.3. 
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Figure 14. Contour plots of simulated Eoil for the CCI cases for fluvial clastic reservoirs (top) and 
shallow shelf carbonate reservoirs (bottom) as a function of reservoir depth (y-axis) and 

thickness (x-axis). 
 
 

Comparison to Esaline Estimates 
 

Several studies have focused on DOE methodology and CO2 storage efficiency factors for 
deep saline reservoirs, or Esaline. These works provide Esaline for displacement terms when EAn/At 
(ratio of net to total area), Ehn/hg (ratio of net to gross thickness), and Eϕe/ϕtot (ratio of effective to 
total porosity) values are known directly, which are the conditions of simulation Cases 1–12. 
Literature P10 and P90 estimates of Esaline for clastic, limestone, and dolomite reservoirs are 7.4 to 
24%, 10 to 21%, and 16 to 26%, respectively (Goodman and others, 2011; U.S. Department of 
Energy National Energy Technology Laboratory, 2012). As shown in Table 10, dimensionless Eoil 
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at 3.0 HCPV for the CCI development strategies in clastic and carbonate reservoirs ranged from 
46 to 61% and 21 to 40% for the 1219-meter (4000-foot) reservoirs and 12 to 24% and 8 to 27% 
for the 2438-meter (8000-foot) reservoirs, respectively. Thus, the dimensionless Eoil values in this 
study can be considerably higher than previous estimates of Esaline, depending on reservoir 
conditions and CO2 development strategy. A primary reason for the greater Eoil values is that these 
CO2 EOR fields are not only injecting CO2, but are also producing fluids (CO2, oil, and water) at 
the production wells. Therefore, the addition of fluid extraction creates additional pore space into 
which the CO2 can be permanently stored, thus increasing the overall CO2 storage efficiency. 
 
 
CONCLUSIONS 
 

The results of the DSF assessment described in this report provide general values and 
distributions for CO2 storage efficiency in closed and semiclosed hydrogeologic systems from 
eight different models representing ten depositional environments. Closed- and semiclosed 
boundary conditions were employed over a 100-year injection time frame to develop results 
relevant to future potential commercial-scale CCS operations using an array of injection wells. 
The regional-scale extent of the models constructed in these efforts were simulated as a unit cell 
within a formation-scale assessment, surrounded on all sides by other unit cells. The pressure 
interference between unit cells caused wells to experience closed or semiclosed boundary 
conditions.  
 

Storage efficiency values for 1219-meter (4000-foot) depths ranged from 0.29% for 
carbonate shelf to 0.58% for carbonate peritidal depositional environments, while storage 
efficiency values for 2438-meter (8000-foot) depths ranged from 0.56% for carbonate shelf to 
1.32% for carbonate peritidal depositional environments. The narrow range in Esaline values across 
models, attributable to the closed or semiclosed system boundary conditions of the simulations, 
did not distinguish significant differences among depositional environments at the end of 100 years 
of CO2 injection. This suggests that the effect of depositional environment on CO2 storage 
efficiency is negligible in a closed system. However, the results illustrate the relative importance 
of depositional environment, formation depth, structural geometry, and boundary conditions on 
the rate of CO2 storage in closed or semiclosed systems. The type of depositional environment 
responsible for generating a particular formation results in different degrees of lateral and vertical 
heterogeneity and ranges in petrophysical property characteristics, which together affect CO2 
injection rate by controlling fluid flow and pressure dispersion.  
 

The modeling and simulation showed the relative influence of reservoir depth, structure, and 
boundary conditions on CO2 storage efficiency. Reservoir depth plays an important role in 
controlling CO2 injection rate by constraining the amount of force (pressure) which may be used 
during injection. The maximum injection pressure constraint (gradient) was 13.6 kPa/m  
(0.6 psi/ft); therefore, the deeper models permitted greater CO2 injection rates over the 100-year 
period. Geologic structure exerts a similar influence on CO2 storage efficiency, as shown in this 
study by the greater CO2 storage efficiency in anticline models as compared to flat (structureless) 
models. The depth difference between the hinge and limbs of the anticline structures used in the 
current study was approximately 152.4 meters (500 feet), which resulted in greater Δp (change 
between initial and final reservoir pressure) along the deeper limbs of the anticline allowing a 
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greater amount of CO2 to be injected. Boundary conditions exert the greatest control on CO2 
injection rate by allowing or resisting pressure dispersion. In open systems, which are confined 
vertically but open laterally, pore space (and thus pressure dissipation) for the injected CO2 is 
created primarily by lateral displacement of formation water. Conversely, a closed system does 
not permit mass transfer across either vertical or lateral boundaries, and space for the injected CO2 
is solely attributable to in situ fluid compressibility and pore dilation (the inverse of 
compressibility). The closed-boundary systems modeled in this work showed lower CO2 storage 
efficiency values than prior work conducted on open systems. These closed-boundary estimates 
may be more representative of CO2 storage resource potential in commercial-scale fields using an 
array of injection wells over 100-year time frames.  
 

The fluvio-deltaic and clastic shelf environments of the DSF investigation exhibited the 
greatest CO2 storage rates among the environments considered in this study. This was largely due 
to a high frequency of desirable petrophysical characteristics contained within the EERC AGD. 
This suggests that these types of deposits may be of primary interest to future investigations of 
prospective storage resource and may serve to assist in CO2 storage complex screening. However, 
variability occurs within each depositional environment. Similar depositional processes may result 
in different ratios of reservoir and poor-reservoir/nonreservoir rock and different ranges of 
petrophysical characteristics. Location-specific data plays a key role in reducing uncertainty in 
CO2 storage resource assessment and should be given careful consideration in the movement 
toward successful commercial-scale CCS.  
 

The results of the hydrocarbon reservoir assessment provide useful statistical information to 
estimate CO2 storage efficiency in CO2 EOR operations. CO2 storage efficiency values derived 
from real-world reservoir performance data from the industry data set, all of which were WAG 
CO2 floods, resulted in P10, P50, and P90 estimates for CO2 storage efficiency factors in West 
Texas San Andres dolomite reservoirs of 0.76, 1.28, and 1.74 Mscf/STB OOIP. Across fluvial 
clastic and shallow shelf carbonate simulation models, median CO2 storage efficiency factors from 
CCI following conventional waterflood varied from 0.50 to 1.49 and 0.27 to 1.13 Mscf/STB OOIP, 
respectively. Median CO2 storage efficiency factors from WAG CO2 injection varied from 0.47 to 
1.03 and 0.26 to 0.83 Mscf/STB OOIP for fluvial clastic and shallow shelf carbonate reservoirs, 
respectively, demonstrating that WAG injection results in lower CO2 storage efficiency than CCI. 
 

When expressed on a dimensionless scale, median CO2 storage efficiency factors from CCI 
following conventional waterflood varied from 15% to 61% and 8% to 40% for fluvial clastic and 
shallow shelf carbonate simulation models, respectively. Median CO2 storage efficiency factors 
from WAG CO2 injection varied from 14% to 42% and 8% to 31% for fluvial clastic and shallow 
shelf carbonate reservoirs, respectively. These storage efficiency values are considerably higher 
than previous estimates of efficiency values for DSFs. This is primarily attributable to CO2 EOR 
fields both injecting CO2 and simultaneously producing fluids (CO2, oil, and water) at the 
production wells. Therefore, the addition of fluid extraction creates additional pore space into 
which the CO2 can be permanently stored, thus increasing the overall CO2 storage efficiency. 
Variation in the CO2 storage efficiency factors was largely attributable to reservoir depth (a 
surrogate for reservoir pressure and temperature) and lithology (clastic versus carbonate 
lithofacies). 
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For sites currently undergoing CO2 injection with total fluid injection volumes above  
1.0 HCPV, it may be possible to estimate the incremental oil recovery factor and CO2 net 
utilization separately and then apply the methods described in Azzolina and others (2015) to 
estimate CO2 storage. However, if there are no site-specific values available, then the CO2 storage 
efficiency values presented in this work may be used to estimate CO2 storage based solely on the 
reservoir OOIP. 
 

The research activities for both the DSFs and conventional hydrocarbon reservoirs 
associated with CO2 EOR supported the development of a best practices manual on optimizing 
and quantifying CO2 storage resources in these geologic settings. Using lessons learned from this 
work and other DOE-funded research, approaches outlined in the best practices manual present 
workflows that guide the user through a series of decision points that help determine which CO2 
storage resource-estimating method is best for a particular situation. The methodologies for the 
optimization and refinement of CO2 storage resource estimation that are presented in the best 
practices manual will enable stakeholders to more accurately estimate the CO2 storage resource 
potential in these geologic formations.  
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