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OPTIMIZING AND QUANTIFYING CO: STORAGE RESOURCE IN SALINE FORMATIONS
AND HYDROCARBON RESERVOIRS

ABSTRACT

In an effort to reduce carbon dioxide (CO2) emissions from large stationary sources, carbon
capture and storage (CCS) is being investigated as one approach. This work assesses COz2 storage
resource estimation methods for deep saline formations (DSFs) and hydrocarbon reservoirs
undergoing COz2 enhanced oil recovery (EOR). Project activities were conducted using geologic
modeling and simulation to investigate CO: storage efficiency.

CO. storage rates and efficiencies in DSFs classified by interpreted depositional
environment were evaluated at the regional scale over a 100-year time frame. A focus was placed
on developing results applicable to future widespread commercial-scale CO2 storage operations in
which an array of injection wells may be used to optimize storage in saline formations. The results
of this work suggest future investigations of prospective storage resource in closed or semiclosed
formations need not have a detailed understanding of the depositional environment of the reservoir
to generate meaningful estimates. However, the results of this work also illustrate the relative
importance of depositional environment, formation depth, structural geometry, and boundary
conditions on the rate of COz storage in these types of systems.

CO2 EOR occupies an important place in the realm of geologic storage of CO2, as it is likely
to be the primary means of geologic CO: storage during the early stages of commercial
implementation, given the lack of a national policy and the viability of the current business case.
This work estimates COz storage efficiency factors using a unique industry database of CO2 EOR
sites and 18 different reservoir simulation models capturing fluvial clastic and shallow shelf
carbonate depositional environments for reservoir depths of 1219 and 2438 meters (4000 and
8000 feet) and 7.6-, 20-, and 64-meter (25-, 66,- and 209-foot) pay zones. The results of this work
provide practical information that can be used to quantify CO:z storage resource estimates in oil
reservoirs during CO2 EOR operations (as opposed to storage following depletion) and the
uncertainty associated with those estimates.



TABLE OF CONTENTS

LIST OF FIGURES ...ttt sttt ettt et st e bt et e e st e nbeentesaeentesanens i
LIST OF TABLES ...ttt sttt ettt ettt ettt e bt et e eneenbeensesaeas il
EXECUTIVE SUMMARY ..ottt ettt sbe s v
INTRODUCTION ...ttt ettt ettt ettt et st e st e e satesbe e tesstesaeenbeeneesbeensesnnans 1
BACKGROUND ...ttt sttt ettt ettt e seestesseesseenaesseenseessenseenseessesseensennnans 1
Deep Saline FOrMAtIONS .........ceciieiiieiiieiieeiieite et ettt e eveesteeebeesseesnseessaeesseessseensaessseens 1
Hydrocarbon RESEIVOITS......c...iiiiiiiiiiieiie ettt sttt ens 2
DEEP SALINE FORMATION ASSESSMENT ..ottt 2
Geologic Model CONSLIUCION .....cc..eruiiiiriiriieteeterteee ettt ettt s 3
Facies and Petrophysical Property Modeling ............cccoecvvevieeiienieniieiieeieeieeeee e 5

WEIL PIACEMENLS .....ooueiiiiieiieeieeiee ettt et e e e ea 12

DSF Numerical STmMUIation ..........coouiiiiiiiiiiieeeeeeie et 14

Data ANALYSIS ...eeeieiiietie ettt ettt ettt ettt e et et et e e bt e enbeeneeas 15
ReSults and DiSCUSSION.......ccueiuieriiiiiriieieeie ettt sttt sttt et e eatesbeenees 17
Effect of Porosity—Permeability Distribution on Storage Efficiency and Rates........ 19

Evaluating CO: Storage Rates Across Depositional Environments................c........ 21
Comparisons t0 IEAGHG (2014) c...ooiiiiiiieeeeeee et 26
HYDROCARBON RESERVOIR ASSESSMENT ......oooiiiiiiiiieiteeneeeee e 26
Geologic Model CONSIIUCHION .....cc.uiruiiriiiiiriieteeteeit ettt sttt 29
Industry Data Set and Performance MEtIiCs ........ccooveriieriieriiieniieeieeeeeie e 31
Hydrocarbon Reservoir Numerical SImulation............ccoceeveeviriinienenncnicnecneneceeeeeanen 33
Statistical MOAEIING ......c..eeiuiieiiiiieeie ettt ettt e beeseaeebeessneesaesaneans 34
Results and DiSCUSSION.......ccuiiiuiiiiiiiiiiiie sttt ettt e s 35
Numerical Simulation CO2 Storage Efficiency Factors ..........cccceecviviieniienienieenen. 39
Dimensionless CO2 Storage Efficiency Factors ...........ccoceeieeiiiiiiiniiiiiiniiiienes 39
Comparison to Esaline ESHMALES ......c.ooveriiiiiiiiniiiiiiiieieeeeseeeeeee e 44
CONCLUSITONS . ..ottt ettt ettt et esae e b e es e e sbeeseeeaeenseenteeseenseenseeseenseeneesseenseennas 45
REFERENCES ...ttt ettt et b e ettt et ea e b e e saeenee 47



10

11

12

13

14

LIST OF FIGURES

General relationship between cell size and COz2 injection rate ..........cccevveevervieneeneeniennne 4

Ilustrations of the eight lithofacies models representing ten different depositional
EIIVITONITICIIES ....vveeiiieeeitieeeiteeeetteeeetteeetseeesseessaseeasseeassaeeessseeassaeeassseassseeasseeessesesseessseennsenns 7

Crossplots of porosity and logio from EERC updated AGD showing the ten different
depositional environments modeled in this StUAY .........cccocceiiiiiiiiniiiii e, 9

Core plug-measured porosity and permeability data and a porosity histogram
from the same data set in comparison to upscaled porosity and permeability data
and an upscaled porosity hiStOZIram ..........ccceevuieeiiiiieiiieiiece et 10

[lustration of the 49-well array shown with the anticlinal grid and pinnacle reef ............. 13

Histograms CO: storage efficiency for the fluvial depositional environment
1219-meter (4000-foot) flat models and anticline models............cceeeeuiierciienciieeiieeeieeens 20

Time series plots for the fraction of COz2 stored over the 100-year injection period
for the different MOdEIS ........cooviiiieiie e e 22

Time series plots showing the inverse relationships between models’ average
porosity and average permeability characteristics and the time to inject 50% of

the total CO2 StOTAZE CAPACILY ...ecuverueeieriieiieiieie sttt ettt ettt e b ennes 23
Bar charts comparing the time to inject 50% of the total CO2 mass for the different

MOdE] COMDINATIONS ....c.veeiiiiiitiieetere ettt ettt ettt et ene e 25
64-meter (209-foot)-thick anticlinal model property distributions ...........ccccceevveeereennennen. 30

Porosity logio crossplots for fluvial clastic and shallow shelf carbonate data sets
FTOM the AGD ...ttt sttt ettt st e bt e e e eeas 31

Percentile estimates generated from multisite Michaelis—Menten model fits for CO2
storage efficiency versus cumulative CO2 + H20 injection for nine West Texas
San Andres dOlOMItE TESEIVOITS ......evueertiriiriieiieieeitenieete ettt sttt sttt et st e 39

Cumulative CO2 or injected versus COz2 storage efficiency for the fluvial clastic
and shallow shelf carbonate simulation models............cccceeviiiriiiiniiiiiiniicie e, 41

Contour plots of simulated Eoil for the CCI cases for fluvial clastic reservoirs and
shallow shelf carbonate reservoirs as a function of reservoir depth and thickness............. 44

i



10

LIST OF TABLES

Deep Saline Formation Models Developed in This Study ........cccccooveveiiiininiiiinicniiicne 6

Petrophysical Property Statistics from the EERC AGD for Each of the Depositional
Environments Considered in This Study.........ccceeviieriiiiiiiiiieiieeeeeee e 11

Esaline Results at 100 years of COz2 Injection Summarized by Depositional Environment
and Grid Structure for Closed and Semiclosed Boundary Simulations ..........c..cccceecvenneenee. 18

Comparison of Esaline Results from IEAGHG for the Minnelusa and
Qingshankou—Yaojia Systems to the Overall Model Esaline Results from the
CUITENE WOTK ...ttt sttt et sttt et sbe e 26

Porosity and Permeability Data Derived from the AGD for Fluvial Clastic and
Shallow Shelf Carbonate FacCies..........ccucoueviiriirininiriiiciciccesescees et 31

Matrix of Simulation Cases Showing the Different Lithofacies, Depth, Thickness,
Temperature, and PreSSUIE .......c.uiiiiiiiiiiieiiieiee ettt 33

Summary of Time in Years Since CO2 Injection as a Function of HCPV for the
12 CCI Simulation Cases, Six WAG Simulation Cases, and Median of Nine
West Texas Dolomite Reservoirs from the Industry Data Set ..........cccoceevenvininiininennne. 36

Summary of Incremental Oil Recovery in %OOIP and CO2 Net Utilization in

Mscf/STB as a Function of HCPV for the 12 CCI Simulation Cases, Six WAG

Simulation Cases, and Median of Nine West Texas Dolomite Reservoirs from

the INdUSLIY Data Set.......ccciiiiiiiiieiee et 37

Summary of CO: Storage Efficiency in Mscf/STB OOIP as a Function of HCPV

for the 12 CCI Simulation Cases, Six WAG Simulation Cases, and 10th Percentile,

50th Percentile, and 90th Percentile of Nine West Texas Dolomite Reservoirs from

the INAUSLIY Data SEt.......cooiiiiiiiiieiieeee et e e e et e e s ree e e beeeesseeenes 38

Summary of CO2 Storage Efficiency in Dimensionless Units as a Function of
HCPV for the 12 CCI Simulation Cases and Six WAG Simulation Cases.............cccu....... 42

il



OPTIMIZING AND QUANTIFYING CO: STORAGE RESOURCE IN SALINE FORMATIONS
AND HYDROCARBON RESERVOIRS

EXECUTIVE SUMMARY

This report describes the scope of work, methods, results, and conclusions of a multiyear
project investigating carbon dioxide (COz2) storage resource assessments in geologic formations
through modeling and simulation of deep saline formations (DSFs) and hydrocarbon reservoirs in
association with COz enhanced oil recovery (CO2 EOR).

This project report addresses Area of Interest 3 of U.S. Department of Energy (DOE)
Funding Opportunity Announcement (FOA) DE-FOA-0000652, “Field Methods to Optimize
Capacity and Ensure Storage Containment,” by developing and refining the methods used to
quantify and optimize COz storage resource in major reservoir classes.

DSF Assessment

The goal of the DSF activities was to use regional-scale models to investigate and refine, as
necessary, the method used to quantify CO2 storage resource estimates for a 100-year injection
time frame. This study focused on developing results applicable to future widespread commercial-
scale COz storage operations in which an array of injection wells is used to optimize injection and
storage. Two model structural frameworks were created, one flat (structureless) and one with
anticlinal structure, each approximately 33.8 km? (21 miles by 21 miles) with a thickness of
91.4 meters (300 feet). Forty-nine CO: injection wells were simulated with a spacing of
approximately 4.8 km (3 miles). Two depths were investigated, 1219 and 2438 meters (4000 and
8000 feet). Eight facies models were constructed representing ten different depositional
environments, including seven clastic depositional environments—eolian, fluvial, deltaic,
lacustrine, clastic shelf, clastic strand plain, and clastic slope—and three carbonate depositional
environments—carbonate peritidal, carbonate shelf, and reef. Each modeled depositional
environment was populated with porosity and permeability distributions based on the Energy &
Environmental Research Center’s (EERC’s) Average Global Database (AGD) for that specific
environment. Petrophysical data sets from the AGD used in this work are available on the DOE
National Energy Technology Laboratory (NETL) Energy Data eXchange.

This study used closed and semiclosed boundary conditions, as large-scale storage
operations using an array of injection wells would cause pressure interference between wells, thus
limiting injectivity through closed-system behavior. Storage efficiency values for 1219-meter
(4000-foot) depths ranged from 0.29% for carbonate shelf to 0.58% for carbonate peritidal
depositional environments, while storage efficiency values for 2438-meter (8000-foot) depths
ranged from 0.56% for carbonate shelf to 1.32% for carbonate peritidal depositional environments.
The narrow range in Esaine values across models, attributable to the closed or semiclosed system
boundary conditions, did not distinguish significant differences among depositional environments
at the end of 100 years of COz injection. This suggests future investigations of prospective storage
resource in closed or semiclosed formations may focus less heavily on interpretation of
depositional processes through which sedimentary reservoirs were created. However, the results
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illustrate the relative importance of depositional environment, formation depth, structural
geometry, and boundary conditions on the rate of CO: storage in closed or semiclosed systems.

Hydrocarbon Reservoir Assessment

Estimates of CO: storage efficiency factors were calculated for CO2 EOR operations using
a unique industry database of CO2 EOR sites and 12 different reservoir simulation models.
Continuous COz2 injection (CCI) and water alternating gas (WAG) EOR development strategies
were considered. Twelve CCI cases were simulated: Cases 1-6 represented clastic fluvial
reservoirs, and Cases 7—-12 represented carbonate shelf reservoirs. Both clastic and carbonate
models were simulated at two different depths (1219 and 2438 meters [4000 and 8000 feet],
respectively). Three different reservoir thicknesses were considered at each depth (7.6, 20, and
64 meters [25, 66, and 209 feet], respectively). Six of the twelve cases assessed using CCI
simulation were also subjected to simulations of WAG injection. These WAG cases consisted of
P50 simulations for Cases 1, 2, and 6 (clastic) and Cases 7, 8, and 12 (carbonate). Altogether, there
were 18 simulation cases. In addition to these simulations, a novel statistical modeling technique
incorporating the Michaelis—Menten function was used to generate empirical percentile estimates
of COz storage efficiency factors.

West Texas San Andres dolomite WAG flood performance data were used to derive P10,
P50, and P90 CO: storage efficiency factors of 0.76, 1.28, and 1.74 thousand standard cubic feet
per stock tank barrel of original oil in place (Mscf/STB OOIP). Median COz storage efficiency
factors, expressed on a dimensionless scale, for CCI injection following conventional waterflood
varied from 15% to 61% and 8% to 40% for fluvial clastic and shallow shelf carbonate simulation
models, respectively, while those from WAG injection varied from 14% to 42% and 8% to 31%,
respectively. Variation in the COz storage efficiency factors was largely attributable to reservoir
depth (a surrogate for reservoir pressure and temperature) and lithology (clastic vs. carbonate
reservoirs). The results of this work provide practical information that can be used to quantify CO2
storage resource estimates in oil reservoirs during CO2 EOR operations (as opposed to storage
following depletion) and the uncertainty associated with those estimates.

Discussion and Relevance

The research activities for both DSFs and conventional hydrocarbon reservoirs associated
with CO2 EOR supported the development of a best practices manual on optimizing and
quantifying COz storage resources in these geologic settings. Using lessons learned from this work
and other DOE-funded research, approaches outlined in the best practices manual guide the user
through a series of decision points to more accurately estimate the CO2 storage resource potential
in geologic formations.



OPTIMIZING AND QUANTIFYING CO: STORAGE RESOURCE IN SALINE FORMATIONS
AND HYDROCARBON RESERVOIRS

INTRODUCTION

Geologic storage of carbon dioxide (COz) is being considered as one approach to mitigate
the increase in atmospheric concentrations of anthropogenic CO2 from large stationary sources. A
thorough understanding of the available CO: storage resource on a region- or country-wide level
is key to the large-scale implementation of this technology. Over the past decade, methods have
been developed to estimate CO2 storage resource in both deep saline formations (DSFs) and
hydrocarbon reservoirs (U.S. Department of Energy National Energy Technology Laboratory,
2012; Goodman and others, 2011, 2013). DSFs, as defined for CO2 storage, occur at depths
generally greater than 800 meters (2625 feet) and have salinities greater than 10,000 ppm total
dissolved solids (TDS). CO: storage in hydrocarbon reservoirs is typically associated with CO2
enhanced oil recovery (EOR), where COz is stored in pore space previously occupied by water and
hydrocarbons. Both types of geologic CO: storage require laterally extensive sealing units to
contain injected CO2 within the zone(s) of interest. The combination of the reservoir and sealing
units together is referred to as the “storage complex” (Canadian Standards Association, 2012).

The aim of this Energy & Environmental Research (EERC) study was to 1) build and expand
upon the work of Gorecki and others (2009) and the IEA Greenhouse Gas R&D Programme
(IEAGHG) (2009) in refining established methods of storage resource estimation in DSFs on a
limited time frame (i.e., 100-year injection period) and 2) increase understanding of the
relationship between CO2 storage and EOR, and refine the analytical tools used to assess such
operations. Modeling and numerical simulation activities were conducted for each of the two
research efforts. Key factors such as depositional environment, structure, and heterogeneity were
investigated to determine their impact on storage resource and efficiency.

BACKGROUND
Deep Saline Formations

Previously developed methods for estimating CO: storage in DSFs focused on providing
ultimate storage estimates, that is, the amount of COz able to be stored in a geologic target at
maximum efficiency, based on 1) storage efficiency coefficients specific to generic reservoir
lithology classifications (clastics [sandstone], limestone, and dolomite [dolostone]) and 2) an
assumption of boundary conditions (i.e., open or closed hydrogeologic systems) (Gorecki and
others, 2009; U.S. Department of Energy National Energy Technology Laboratory, 2012; Peck
and others, 2014, 2015). However, numerical simulations have shown that it may take hundreds
to thousands of years to reach ultimate storage capacity for large-scale CO: capture and storage
(CCS) operations, which is beyond the time frame of interest for mitigating climate change in the
next century (IEA Greenhouse Gas R&D Programme, 2014; Bachu, 2015).



Gorecki and others (2009) estimated CO2 storage efficiency coefficients for a variety of DSF
depositional environments. Geologic properties of potential CO:z storage reservoirs (DSFs)
classified by depositional environment vary less than those based on gross lithology, providing a
better predictor of storage efficiency and more accurate estimates of CO: storage. CO2 storage
efficiency factors from Gorecki and others (2009) were created using small models (4 mi*) and
simulation time frames of less than 5 years. The current project builds on this earlier work by
determining COz storage efficiency for regional-scale DSFs using a 100-year time frame.

Hydrocarbon Reservoirs

Like DSFs, methods have been developed to calculate CO: storage resource in hydrocarbon
reservoirs (Bachu and others, 2007; U.S. Department of Energy National Energy Technology
Laboratory, 2007). In general, these methods estimate a volume for the hydrocarbon trap and
calculate the mass of COz that could be stored within that volume. These methods are limited,
however, in their ability to incorporate site-specific operational factors (e.g., utilization factor,
recovery factor). The oil and gas industry often uses a mass balance approach to estimate storage
capacity in a reservoir, but this approach hinges on estimating the total volume of hydrocarbons
extracted from the reservoir at the end of its operational life, a number that fluctuates depending
on COz retention and sweep efficiency. This project expands on existing methods by integrating
operational data from active CO2 EOR projects to develop COz storage efficiency factors for oil
reservoirs that can be used at the beginning and throughout operations.

DSF ASSESSMENT

Over the past decade, several studies have developed methods to calculate CO: storage
resource in DSFs—generally deeper than 800 meters (2625 feet) and with salinity greater than
10,000 mg/L—with the goal of providing reliable estimates of the overall CO2 storage resource
potential available on a large scale. Previously developed methods have focused on providing
storage efficiency estimates classified by a generic lithology (i.e., clastic [sandstone], limestone,
and dolomite [dolostone]) and an assumption of hydrogeologic boundary conditions (i.e., open,
closed, or semiclosed) (Bachu and others, 2007; Gorecki and others, 2009; Goodman and others,
2011; U.S. Department of Energy National Energy Technology Laboratory, 2015; Peck and others,
2014; Bachu, 2015). Although these methods are useful, storage efficiency values based on generic
lithology classifications may not represent the amount of variability in each of these types of rocks,
resulting in uncertainty in COz storage resource estimates for DSFs. This uncertainty stems from
combining a variety of depositional environments into a single lithology classification. For
example, fluvio-deltaic formations will likely have different petrophysical properties (e.g.,
porosity, connected pore volume, or preferential fluid flow patterns) than those deposited during
eolian processes because of facies associations, sorting, and rounding. The different physical
processes responsible for generating these sedimentary deposits create varying degrees of
heterogeneity and, thus, potentially different CO: storage efficiencies despite being broadly
classified as “clastic sandstone formations.” Similarly, reef carbonates (limestone, dolostone) will
likely have different petrophysical properties because of facies associations, subaerial exposure
and karsting, and diagenesis, when compared with shallow marine shelf carbonates, despite both
being broadly classified as “carbonate aquifers” (Koltermann and Gorelick, 1996; Henson and



others, 2002; Fitch and others, 2015). In light of this likely variability, a finer-scale approach to
estimating COz storage efficiencies by subdividing and classifying saline formations according to
their unique depositional settings, rather than broad, generic rock types (i.e., sandstone, limestone,
and dolostone), may be warranted.

Currently, CO2 storage operations in DSFs are largely subcommercial-scale and research-
oriented, employing a relatively small number of wells (e.g., one to two), and most focus primarily
on testing technologies used to monitor injected CO2. The aim of this study, however, was to
quantify the effects of depositional environment on COz storage efficiency and storage rates with
relevance to future widespread commercial-scale CCS operations employing a relatively large
number of wells. Such operations will likely be designed to maximize the COz storage capacity of
entire DSFs or at least portions of such formations, meeting the requirements imposed by
regulatory entities and sufficient depth to keep CO2 in the supercritical state (~800 meters [2625
feet]). To achieve this goal, regional-scale models were developed representing ten different
depositional environments. In this work, the term “depositional environment” implies a particular
setting in which a set of physical, chemical, and biological processes operates to generate a certain
kind of sedimentary deposit (Boggs, 2001). The petrophysical properties distributed within these
models were derived from an updated version of the EERC’s Average Global Database (AGD), a
diverse data set of porosity and permeability measurements collected from worldwide reservoirs
and classified by depositional environment. The method used in this work was designed to produce
models with generic properties reflecting real-world depositional settings, thereby producing
globally relevant results for estimating CO: storage resource potential. Numerical simulations
were used to evaluate each geologic model for CO: storage efficiency and storage rates over an
injection time frame of 100 years, which was deemed to be a realistic timescale for operating CO2
storage projects. The results may be used to inform COz storage resource estimates for the specific
depositional environments examined in this study.

Geologic Model Construction

To meet the goal of producing results relevant to future widespread commercial-scale CCS
operations, formation-scale geologic models were created. However, models at this scale require
very large cell sizes to keep the total cell count low enough to allow even high-performance
computing technology to complete simulations in a reasonable time frame. The large cell sizes of
these models ultimately created intractable challenges in accurately replicating geologic
heterogeneity.

To resolve these challenges, a sensitivity analysis was conducted to determine the optimum
cell size. The results were then used to inform a proper regional-scale model extent. A 3048 x
3048 x 9.1-meter (10,000 x 10,000 x 30-foot) volume was gridded with multiple cellular
resolutions, which included lateral cell dimensions of 15.2, 76.2, 152.4, 228.6, 304.8, 381, 457.2,
533.4, and 609.6 meters (50, 250, 500, 750, 1000, 1250, 1500, 1750, and 2000 feet) and thicknesses
of 1.5, 3, 4.6, and 9 meters (5, 10, 15, and 30 feet) (a total of 33 grids created with total cell counts
ranging from 240,000 cells in the finest resolution to 25 cells in the coarsest).

A base case grid of 15.2 x 15.2 x 1.5-meter (50 x 50 x 5-foot) cells was established as a
starting point because this resolution was fine enough to capture realistic geologic heterogeneity



within each of the modeled depositional environments. Porosity and permeability properties were
distributed in the base case grid and then upscaled (i.e., averaged) into each of the other coarsened
model grids. Porosity was upscaled using an arithmetic mean algorithm, ensuring pore volume
remained comparable between the cases. Permeability was upscaled using a geometric mean
algorithm, as is appropriate for variables with logarithmic distribution. Each of the gridded
volumes were subjected to a 1-year simulation with one COz2 injection well placed in the center of
the model grid. An analysis of the simulation results (cumulative CO2 mass injected) indicate that
an increase in cell size was accompanied by a decrease in CO2 injection rate (and total injected
CO2 mass; Figure 1).

Cell Size vs. CO, Injection Rate

EERC LP53282.CDR

CO, Injection
Rate

* |ncreasing Grid Cell Size >

Figure 1. General relationship between cell size and CO2 injection rate.

The trend illustrated in Figure 1 is interpreted as an artifact of the simulation software’s
calculation of COz saturation as a function of COz brine relative permeability. COz saturation in
larger cells tends to build more slowly. CO2 permeability, calculated from CO: brine relative
permeability curves input to the simulation, was “held back” by slowed COz2 saturation buildup in
the model grids composed of larger cells.

This inverse relationship between cell size and simulated CO: injection rate/mass is
important for two reasons. The first reason is that, because the regional-scale models planned
would be generic rather than based upon a specific location with production/injection data, there
would be no history matching in numerical simulation efforts with which this effect could be
compensated. If history matching were to be implemented, such an effect might be negated by
adjusting the overall permeability distribution or the COz2 brine relative permeability curves. The
second reason is that the COz injection simulation would be stopping short of achieving ultimate
storage capacity. The ultimate storage capacity would likely be similar between each of the
different cases, as the results would be closely related to rock compressibility, fluid



compressibility, pore volume, and pressure differential (between initial and final pressures), and
each of these variables remained similar between the cases. The simulations planned for this
investigation were designed to optimize CO: storage in a 100-year time frame rather than
achieving ultimate storage capacity, thus the relationship between cell size and CO: injection
rate/mass would still be a concern.

Results of the cell size sensitivity analysis determined that a cell size of 152.4 x 152.4 x
3 meters (500 x 500 x 10 feet) was to be used in the models prepared for simulation. This size
ensured that geologic heterogeneity could be accurately captured, yet allow for efficient
computation time. This cell size was then used to calculate an appropriate model extent. An areal
extent of 33.8 km? (21 miles x 21 miles) and a thickness of 91.4 meters (300 feet) was chosen,
yielding a total cell count of slightly more than 1.3 million cells. Two grids with these dimensions
were created, one flat and a second with anticlinal structure based upon the actual structure of the
Nesson Anticline within the Williston Basin.

Facies and Petrophysical Property Modeling

Generic facies distributions were achieved for each of the depositional environments
considered in this study. Eight facies models were created (Table 1, Figure 2), each containing at
least one reservoir and one poor-reservoir/nonreservoir facies.

Petrophysical property modeling was conducted after the distribution of facies, involving
upscaling of the input data themselves. A key consideration for petrophysical property modeling
is the scale of the measurement serving as the basis for petrophysical properties, usually a
2.5-centimeter (1-inch)-diameter core plug for routine porosity and permeability tests, and the
scale of the cells to which the data are being applied, in this case cells with dimensions of 152.4 x
152.4 x 3 meters (500 x 500 x 10 feet).

Geologic heterogeneity takes place at different scales for different depositional
environments. Cells with dimensions of 152.4 x 152.4 x 3 meters (500 x 500 x 10 feet) (or larger,
for that matter) may not enable accurate replication of petrophysical characteristics, as variability
in such characteristics may occur in a much shorter distance than 152.4 meters (500 feet). For
example, an average fluvial channel width may be assumed as approximately 100 meters (330 feet;
Gibling, 2006). An average width of this size would be challenging to replicate with larger cells,
as any streams modeled would be forced to a larger width even if only one grid cell wide. The
heterogeneity present in a realistic fluvial channel cross section, which may include levee, crevasse
splay, channel/thalweg, channel margin/wing, and point bar deposits, would be averaged into a
single numerical value for both porosity and permeability. However, there are no ‘“hard”
(measured) petrophysical data available for a rock volume equivalent to the desired cell size
(potentially containing all of these types of deposits together), as it is impractical to extract an
intact volume and accurately assess an average porosity or permeability. Statistical support, rather,
is placed in creating smaller cells, distributing petrophysical properties informed by core plug
measurements that accurately replicate geologic heterogeneity and upscaling/averaging the
distributions into coarser cells.



Table 1. Deep Saline Formation Models Developed in This Study. The matrix illustrates the
different combinations of depositional environments (model components), grid structure, depth,
closed/semiclosed boundary systems, and P10/P50/P90 scenarios that were evaluated using
numerical simulations of COz injection for 100 years.

Depth, m/ft Closed Semi-Closed
Model Grid 1219/ | 2938/
Name Model Components Structure | 4000 | 8000 | P10 | PSO | P90 | P10 | PSO | P90
Eolian
Eolian Poor reservoir Flat X X X X X X
Nonreservoir — cap rock
Fluvial
Fluvio- Deltaic _ Flat X X | X | x| X X
Deltaic Poor reservoir
Nonreservoir — cap rock
Lacustrine
Lacustrine Poor reservoir Flat X X X
Nonreservoir — cap rock
Poor reservoir Flat X X X
Nonreservoir — cap rock
Strand plain
Strz.md Fluvial : Flat x x x
Plain Poor reservoir

Nonreservoir — cap rock
Clastic slope
Poor reservoir Flat X X X

Clastic
Slope

Nonreservoir — cap rock

Peritidal
Poor reservoir
Nonreservoir — cap rock
Reef

Flat X X X

Reef Flat X X X

Poor reservoir

Nonreservoir — cap rock
Eolian

Eolian Poor reservoir Anticline X X X X X X

Nonreservoir — cap rock
Fluvial

Fluvio- Deltaic

Deltaic Poor reservoir

Nonreservoir — cap rock

Anticline X X X X X X

The preceding discussion provides the background needed to discuss upscaling of the input
data specifically, which was undertaken to create petrophysical data sets valid for the desired cell
size (152.4 x 152.4 x 3 meters [500 x 500 x 10 feet]). Two property-upscaling test grids were
created, one with 1.52 x 1.52 x 1.5-meter (50 x 50 x 5-foot) cells and another with 152.4 x
152.4 x 3 meters (500 x 500 x 10 feet) cells. Facies models for each of the depositional
environments involved in this study were created in the fine-scale grid with 1.52 x 1.52 x
1.5-meter (50 x 50 x 5-foot) cells.
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Clastic Shelf

Carb. Shelf-Peritidal

Figure 2. Illustrations of the eight lithofacies models representing ten different depositional
environments. The poor-reservoir components of the reef and clastic slope models are not shown
to allow visibility of the models’ internal structure. Similarly, the caprock component of each of

the models has not been shown. Each model is approximately 33.8 km? (21 miles in length and
width) and 91.4 meters (300 feet) in thickness. Vertical exaggerations is 50x.



Petrophysical properties were distributed in the fine-scale grid, the basis of which was the
EERC’s AGD. Gorecki and others (2009) developed the AGD, which contains a variety of
reservoir properties for the primary depositional environments considered in this study,
encompassing over 20,000 data points (Figure 3). An important component of the database are
porosity—permeability data. These data provide a better understanding of distribution, range, and
relationship between these two properties for the depositional environments considered in this
study, containing over 600 complete entries representing a variety of international reservoirs. Over
25,000 pairs of porosity—permeability data points were used to geostatistically populate porosity
and permeability within the models. The size of the petrophysical data sets used to populate the
models did not allow their inclusion as an appendix in this report. However, they are available on
the DOE National Energy Technology Laboratory (NETL) Energy Data eXchange.

Variograms used to distribute porosity and permeability were derived from Gorecki and
others (2009). The distributed properties were then upscaled into the grid with coarser cells
(152.4 x 152.4 x 3 meters [500 x 500 x 10 feet]). The porosity and permeability values resulting
from this upscaling process were used to create new porosity—permeability crossplots valid for the
desired cell size. Through this process, there is a tendency to lose the extreme values on either end
of the histogram, accompanied by a higher frequency of mean values (Figure 4).

The upscaled porosity and permeability data sets were then used to guide petrophysical
property distributions in the flat and anticlinal grids (33.8 km? x 91.4 meters [21 miles x 21 miles
% 300 feet]). Petrophysical property uncertainty analyses were conducted in this process, resulting
in P10, P50, and P90 petrophysical property distributions. Temperature and pressure properties
were also created, representing two different depths: 1219 and 2438 meters (4000 and 8000 feet).
These parameters are summarized for each model in Table 2.
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Figure 3. Crossplots of porosity (x-axis) and logio [permeability] (y-axis) from EERC updated AGD showing the ten different
depositional environments modeled in this study. Vertical reference lines at 15% porosity and horizontal reference lines at
5 millidarcies (mD) permeability have been added as a visual aid.
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Figure 4. Core plug-measured porosity and permeability data (top left) and a porosity histogram
from the same data set (lower left) in comparison to upscaled porosity and permeability data (top
right) and an upscaled porosity histogram (lower right). As the degree of upscaling increases
(larger grid cells), the data become more averaged, indicated by the higher frequency of
midrange histogram values and narrowing of the histogram’s range.
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Table 2. Petrophysical Property Statistics from the EERC AGD for Each of the Depositional Environments Considered in This
Study

Porosity Statistics, vol/vol Permeability Statistics, mD

Depositional Mean — | Mean — | Mean — | St. GeoMean — | GeoMean — | GeoMean — |  St.

Environment Min. | Max. | P10 P50 P90 Dev. | Min. | Max. P10 P50 P90 Dev.

Carbonate 0.01 | 0.41 0.08 0.16 0.25 0.07 | 0.01 6342 0.96 5.57 19.95 194.77

Shallow Shelf

Reef 0.01 | 0.41 0.07 0.15 0.23 0.06 | 0.01 972 1.92 7.72 18.74 51.05

Carbonate 0.01 | 0.32 0.07 0.15 0.23 0.06 | 0.01 313 2.15 10.24 24.25 30.78

Peritidal

Clastic Slope 0.01 | 0.42 0.09 0.17 0.24 0.06 | 0.001 7336 0.43 3.64 42.76 359.28

Fluvial 0.04 1 0.34 | 0.13 0.2 0.26 0.05 ] 0.01 1838 2.68 25.36 107.47 117.10

Eolian 0.04 | 0.27 0.1 0.14 0.18 0.03 ] 0.03 702 1.97 7.59 24.58 44.87

Clastic Strand 0.02 | 0.28 0.08 0.13 0.18 0.04 | 0.008 878 1.08 4.58 18.95 51.17

Plain

Clastic Shelf 0.01 | 0.38 0.08 0.16 0.24 0.06 ] 0.001 |11,956 1.98 37.20 226.17 652.72
all Deltaic 0.02 | 0.42 0.13 0.21 0.29 0.06 | 0.01 13,206 5.62 54.27 306.47 881.51

Lacustrine 0.01 | 0.33 0.06 0.13 0.2 0.05 ] 0.0001 | 1698 0.37 3.86 22.73 84.49




Well Placements

Widespread commercial-scale CCS implementation may require a patterned network of
injection wells. Thus a patterned approach to well placement was employed in this study. Previous
simulation studies have shown that as COz is injected, a plateau is eventually reached where 1)
native formation fluids cannot be displaced or compressed further, 2) the limits of reservoir rock
compressibility have been reached under operating conditions, and 3) injection wells are shut in to
avoid bottomhole pressures high enough to cause fractures (IEA Greenhouse Gas R&D
Programme, 2014). The amount of time needed to reach this point depends upon several factors;
however, two key factors include the number of wells and the COz injection rate. The goal for well
placement in this study was to optimize CO2 injection operations over a 100-year time frame. A
sensitivity analysis was performed to help determine optimal well spacing/density for the
simulations.

To conduct the sensitivity analysis, simulations were run with differing numbers of wells
with a maximum injection rate constraint of 2 million tonnes of CO2 per year applied to all wells.
Graphical displays of cumulative injected CO2 over time were scrutinized to find a configuration
where a plateau was reached in a 100-year time frame. The results of the sensitivity analysis
indicated an optimal well placement of 49 injection wells uniformly distributed with a spacing of
approximately 4.8 km (3 miles). Although this placement would allow the option of brine
production wells (to alleviate pressure buildup between wells), brine extraction was not considered
in this study. The specific location for each of the 49 wells was fixed across all geologic models,
with the exception of the reef model, to eliminate the variables of well density and placement and
allow direct comparison of the simulation results. For the reef model, well placement was
optimized to penetrate 49 individual pinnacle reefs. Figure 5 shows the 49-well array using
examples with the anticlinal grid and pinnacle reef.

The models included 28 layers to represent the storage portion of the DSF, and two caprock

layers (30 layers total). Perforations were set along each wellbore for each of the 28 non-caprock
layers.
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Figure 5. Illustration of the 49-well array shown with the anticlinal grid (top) and pinnacle reef
(bottom). Each model is approximately 33.8 km? (21 miles in length and width) and 91.4 meters
(300 feet) in thickness. Vertical exaggerations is 50x. For all but the pinnacle reef models, the
specific location for each of the 49 wells was fixed and the well spacing was approximately
4.8 km (3 miles). In the pinnacle reef models, the 49 well locations were optimized to penetrate
the 49 largest reef structures, which were assessed by connected reservoir volume.
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DSF Numerical Simulation

Computer Modelling Group, Ltd. Builder (CMG-Builder) was used to populate simulation
model parameters and settings, and CMG’s GEM (Generalized Equation of State Model Reservoir
Simulator) module was used to conduct the numerical simulations.

Models were simulated using temperature and pressure settings representative of two
different depths: 1219 and 2438 meters (4000 and 8000 feet). The anticlinal grid had average
depths of 1219 and 2438 meters (4000 and 8000 feet), with the hinge and limbs of the structure
ranging roughly +152.4 meters (500 feet) above these depths. The temperature and pressure
regimes for the simulation cases were as follows: 1219-meter (4000-foot) depths were 49°C and
11.9 MPa (120°F and 1730 psi); 2438-meter (8000-foot) depths were 82°C and 23.9 MPa (180°F
and 3465 psi). These pressure and temperature regimes reflect a linear pressure gradient of
9.8 kPa/meter (0.433 psi/foot) and a linear temperature gradient of 0.027°C/meter (0.015°F/foot)
(including a 15.5°C [60°F] surface offset).

A literature review of rock (pore) compressibility values across the depositional
environments in Table 1 determined that published estimates were within an order-of-magnitude
of each other. Thus a constant value of 5.58E-10 Pa™! (3.85E-06 psi!) was used for all rock types
in each model (Newman, 1973; Brady and Lee, 1998; Zhang and others, 2005; Steadman and
others, 2010; Henninges and others, 2011; Thibeau and Mucha, 2011; Esken and others, 2012;
IEA Greenhouse Gas R&D Programme, 2012; Liu and Li, 2013; Gao and others, 2014).

Boundary conditions of the models were a significant factor in the design of this research
and the results. Current storage efficiency estimates for deep saline formations focus on “open”
systems (U.S. Department of Energy National Energy Technology Laboratory, 2015). In these
systems, which are confined vertically but open laterally, pore space for the injected COz is created
primarily by lateral displacement of formation water (Bachu, 2015).

A closed system does not permit mass transfer across either vertical or lateral boundaries,
and space for the injected COz is solely attributable to in situ fluid compressibility and pore dilation
(the inverse of compressibility). Closed systems can occur in certain geologic situations where a
storage basin is composed of a number of compartmentalized reservoirs laterally separated by low-
permeability zones or stratigraphic pinch-outs (Zhou and others, 2008). Storage efficiency and the
resulting storage resource estimates based on closed systems represent a conservative end member;
many geologic systems will be semiclosed or open and thus permit greater CO: storage efficiency.
In a semiclosed system, the formation does not permit mass transfer across lateral boundaries;
however, some fraction of the displaced brine can migrate into and through the overlying sealing
unit, which allows for some degree of pressure dissipation, in turn increasing the storage capacity
for COz. The cap rock will not allow CO: flow because of permeability and capillary barriers
(Zhou and others, 2008; Birkholzer and others, 2009; Cavanagh and Wildgust, 2011; Bachu,
2015). The local effect of brine permeation within cap rock is minimal, but other researchers have
shown that there may be substantial pressure dissipation due to brine permeation into the overlying
cap rock over widespread areas and over long periods of injection (Birkholzer and Zhou, 2009;
IEA Greenhouse Gas R&D Programme, 2014).
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The simulations in this study focused on closed and semiclosed systems. This decision was
made when considering the applicability of simulation results to future commercial-scale CO2
storage operations. Simultaneous injection in an array of relatively closely spaced wells would
invariably result in pressure buildup and interference between wells. Only wells along the margins
of the well pattern would act in an open manner. Pressure interference between wells in the center
of the pattern would cause these wells to experience closed or semiclosed conditions. As
mentioned above, the regional-scale modeling approach used in this work can be considered a
“unit cell” within a formation-scale CCS operation, bordered on all sides by other unit cells.
Pressure buildup and interference between unit cells would cause each cell’s boundaries to act
closed or semiclosed, affecting even the wells along the margin of the well pattern of the unit cell.

Each of the P50 models were evaluated using closed lateral and vertical boundaries
(designated as closed boundary simulation cases in Table 1). P10 and P90 cases for the eolian and
fluvio-deltaic models were also simulated in closed-boundary simulations. Only these P10 and P90
cases (eolian and fluvio-deltaic) were chosen because these models, exhibited nearly the worst and
best overall model average permeability characteristics, respectively. Simulations were conducted
on these end members to illustrate the range of storage efficiency due to petrophysical property
uncertainty. In addition, P50 cases for all models were evaluated using semiclosed boundaries
(closed lateral boundaries and a lateral confining layer that had non-zero permeability as the top
boundary), referred to in Table 1 as the semiclosed boundary simulation cases. This was done to
account for brine migration into the cap rock (shale), albeit at a very slow rate. The rate at which
pressure can be dissipated (and COz2 injected) is highly sensitive to the shale permeability. The
caprock permeability values used in the semiclosed simulations were consistent with those
reported by Cavanaugh and Wildgust (2011), ranging from submillidarcy (10'7 m?) to
subnanodarcy (1022 m?). These low permeability values for the cap rock resulted in semiclosed
systems that would be in the closed-range behavior based on prior work conducted by the IEA
Greenhouse Gas R&D Programme (IEAGHG) (2014).

A total of 43 CO: injection simulation cases were run, encompassing the different
combinations of depositional environments, depths, P10/P50/P90 scenarios, and closed/
semiclosed boundary systems (Table 1). Each simulation case was run for an injection period of
100 years. Outputs from the numerical simulation models included the total pore volume from the
static geologic model, average initial and final formation pressures within the target injection
horizon, and the injected CO2 mass for each of the 49 wells at each simulated time step. These
outputs were exported to Microsoft Excel for data analysis.

Data Analysis

The U.S. Department of Energy National Energy Technology Laboratory Atlas V (2015)
method of calculating CO: storage resource for saline formations is shown in Equation 1:

GCOZ = A, hg ®tot P Esatine [Eq. 1]

Where:
Geo, = CO:z storage resource mass estimate (tonnes).
A; = Total area (km).
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hg = Gross formation thickness (m).
Dtot = Total porosity (unitless).
p = CO2 density (tonnes/m?).

Esaiine = Fraction of the total pore volume that will be occupied by the injected COx.

In this work, values for Esaine were derived for each model (overall efficiency) as well as for
each depositional environment contained within the model. This was done by dividing the
simulated mass of stored CO2 by the total potential mass of stored CO2 from the static geologic
model associated with a specific depositional environment. The total potential mass of stored CO2
was calculated by assessing the total pore volume (taking into account the expansion of pore
volume due to pressure increase and rock compressibility/pore dilation) and assuming replacement
of all native brine (all pore space) by CO2, the density of which was calculated with the simulated
maximum injection pressure constraint (gradient) of 13.6 kPa/m (0.6 psi/ft) (the initial pore
pressure gradient assumed was 9.8 kPa/m [0.433 psi/ft]). The Esaine coefficients were expressed as
a percentage between 0 and 100:

stored CO,mass (from numerical simulations)

Esaline - total potential mass of stored CO, (from static geologic model) x 100 [Eq' 2]

Overall model storage efficiency estimates (reservoir, poor-reservoir, and nonreservoir
components together) as well as efficiency values for each individual depositional environment
(reservoir components only) using the P50 simulation results were generated for all cases
(Table 1). In addition, the P10 and P90 storage efficiency estimates from the closed-boundary
simulation cases were used to assess uncertainty and derive a mean and standard deviation via the
log-odds normal distribution (Devore, 2004; U.S. Department of Energy National Energy
Technology Laboratory, 2015). Since the storage efficiencies may be represented as fractions
between 0 and 1, the log-odds normal distribution is appropriate because of its ability to directly
integrate the P10 and P90 ranges to derive the mean and standard deviation. As described in detail
by DOE NETL (2015), the log-odds normal distribution transforms a fraction, p, by Equation 3
and assumes that the transformed variable can be normally distributed:

X =1In (L) [Eq. 3]

1-p
where p in this case is the storage efficiency obtained according to Equation 2.

The distribution is so named because the p/(1-p) term in Equation 3 is the “odds” for a
fraction or probability p; therefore, In[p/(1-p)] is the “log odds.” The transformed variable, X, is
normally distributed. The X value is transformed back to the corresponding p value by
Equation 4, which is the inversion of Equation 3 (U.S. Department of Energy National Energy
Technology Laboratory, 2015):

p=— [Eq. 4]

T 14e~X

The log-odds approach thus transforms p values of a range into corresponding X values of a
range. This allows the mean and standard deviation of X to be determined from the P10 and P90
simulation results. The mean and standard deviation of X fully specify its normal distribution. The
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mean (u) and standard deviation (o) are calculated from the X10 and Xoo values using relationships
between the percentiles and moments of a standard normal distribution (U.S. Department of
Energy National Energy Technology Laboratory, 2015):

X90—X10
== Eq.
d Z90—Z10 [ d ]
= X0 —0Zy9 [Eq. 6]

where Zi10 and Zoo are the Z-scores of the 10th and 90th percentiles, respectively, of the standard
normal distribution. In this case, Zio equals —1.28 and Zoo equals 1.28. It should be noted that the
standard deviation is computed first using Equation 5, and this value is then used to compute the
mean in Equation 6. Equations 2—6 were used to evaluate uncertainty for the eolian and fluvio-
deltaic closed-boundary flat and anticline simulation cases (Table 1).

In addition to evaluating Esaline, comparisons were made across depositional environments
to assess the rates at which CO2 was stored. Dimensionless values were used for these comparisons
to express the mass of CO: as a fraction between 0 and 1 via the following equation:

M
Fp=—— [Eq. 7]

M¢total

Where:
Fr =The fraction of total COz stored at time “t” (unitless).
M; = The mass of COz stored at time “t” (tonnes).
Mo = The total mass of COz stored at 100 years (tonnes).

At time = 0 (the start of CO: injection), F; is equal to 0, and at time = 100 years (the end of
CO2 injection) F; is equal to 1. Therefore, F places all simulation results onto a common
dimensionless scale to permit comparisons across depositional environments.

Results and Discussion

Across the closed-boundary simulation results, the P50 Esaine coefficients for the overall
model (primary depositional environment, poor-reservoir, and caprock components together) for
the 1219- and 2438-meter (4000- and 8000-foot) flat structure models were 0.42% = 0.01% and
0.83% = 0.02%, respectively, with no significant differences among models. This narrow range in
Eisaline values across all models was observed because 1) each model had total pore volumes within
the same order-of-magnitude; 2) the same native formation fluids were assumed for each model
(similar fluid compressibility); 3) the same rock compressibility value was assumed for each
model; 4) similar bottomhole pressure constraints were assumed for each model, resulting in
similar Ap or change from initial to final formation pressure; and 5) closed lateral boundary
conditions were assumed in each simulation. As previously described, space for the injected CO2
in a closed system is solely attributable to water compressibility and pore dilation. As described in
Zhou and others (2008):

Esaline = (Bp + ﬂw)Ap [Eq. 8]
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Where S, and pw are the pore and water compressibility, respectively, and Ap is the difference
between initial and final pressure in the target injection horizon.

Pore compressibility for all models was 3.85E-06 psi™! (5.58E-10 Pa™!). The Ap for the 1219-
and 2438-meter (4000- and 8000-foot) flat-structure models was 4.4 and 8.7 MPa (639 and
1255 psi), respectively. Assuming a water compressibility of 4.0E-10 Pa! (2.8E-6 psi')
(Birkholzer and others, 2009; Bachu, 2015), Equation 8 results in estimated Esaine values for the
1219- and 2438-meter (4000- and 8000-foot) flat-structure models of 0.42% and 0.83%,
respectively, which is consistent with the simulation results.

As previously discussed, all models contained multiple facies (i.e., reservoir, poor-reservoir,
and cap rock), with some models representing multiple depositional environments in the reservoir
facies (e.g., fluvio-deltaic). Table 3 summarizes the CO:2 storage efficiency values obtained for
each depositional environment at 100 years of CO2 injection. When parsing the efficiencies of
each model into contributions by individual depositional environments (e.g., fluvial efficiency
separate from deltaic efficiency), more notable differences were seen. For example, storage
efficiency values for 1219-meter (4000-foot) depths ranged from 0.29% for carbonate shelf to
0.58% for carbonate peritidal depositional environments; while storage efficiency values for
2438-meter (8000-foot) depths ranged from 0.56% for carbonate shelf to 1.32% for carbonate
peritidal depositional environments (Table 3).

Table 3. Esaiine Results at 100 years of CO:; Injection Summarized by Depositional
Environment and Grid Structure for Closed and Semiclosed Boundary Simulations.

Simulation results were not generated for the reef depositional environment at 1219 meters
(4000 feet) (N/A).

Esatine (%) at 100 Years
1219-m (4000-ft) Depth 2438-m (8000-ft) Depth

Depositional Grid Closed Semiclosed Closed Semiclosed
Environment Structure P10 P50 P90 P50 P10 P50 P90 P50
Eolian Flat 0.49 0.50 0.49 0.56 097 098 0.97 1.17
Fluvial Flat 0.31 0.35 0.36 0.38 0.68 0.76 0.75 0.86
Deltaic Flat 0.57 0.53 0.50 0.58 1.11 1.00 0.96 1.13
Lacustrine Flat 0.51 1.03

Clastic Shelf Flat 0.54 1.06

Strand Plain Flat 0.40 0.80

Clastic Slope Flat 0.51 1.00

Carbonate Shelf Flat 0.29 0.56

Peritidal Flat 0.58 1.19

Reef Flat N/A 1.32 1.52
Eolian Anticline 0.50 0.54 0.56 0.62 1.00 1.02 1.01 1.18
Fluvial Anticline 0.36 0.46 0.47 0.50 0.70 0.87 0.88 0.96
Deltaic Anticline 0.61 0.60 0.61 0.66 1.13 1.08 1.09 1.18
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Formation depth, a proxy for pressure and temperature conditions, had a significant effect
on storage efficiency. The deeper 2438-meter (8000-foot) models had roughly 100% greater
storage efficiency across all depositional environments (Table 3). Since the pore volumes were
roughly equivalent between the 1219- and 2438-meter (4000- and 8000-foot) models, this higher
storage efficiency for deeper models is largely attributable to a greater change from initial to final
pressure (greater Ap). The maximum injection pressure constraint (gradient) was 13.6 kPa/m
(0.6 psi/ft); therefore, the deeper models permitted greater CO: injection rates and volumes over
the 100-year period.

The anticline models resulted in greater storage efficiency than the flat-model counterparts.
For example, the P50 Esaine coefficients for the 1219- and 2438-meter (4000- and 8000-foot)
anticline eolian models were 0.54% and 1.02%, respectively, which was an increase of 8% and
4% over their flat-model counterparts. This structural geometry effect was greatest for the fluvial
depositional environments. The P50 Esaine coefficients for the 1219- and 2438-meter (4000- and
8000-foot) anticline fluvial depositional environments were 0.46% and 0.87%, respectively, which
was an increase of 31% and 14% over their flat-model counterparts (Table 3). This structural
geometry effect for anticline models is likely attributable to 1) greater Ap along the deeper limbs
of the anticline allowing a greater amount of COz to be injected and 2) buoyancy and the tendency
of COxz to rise within the injection horizon into the crest (hinge) of the anticline, which resulted in
the available pore space more efficiently filling with COz over the injection period.

The additional storage from pressure dissipation in the semiclosed models resulted in slightly
greater storage efficiency than their closed-model counterparts. For example, the P50 Esaine
coefficients for the 1219-meter (4000-foot) flat eolian, fluvial, and deltaic depositional
environments for closed-boundary models were 0.50%, 0.35%, and 0.53%, respectively. However,
the P50 Esaine coefficients for the semiclosed models for these three environments were 0.56%,
0.38%, and 0.58%, respectively, for an increase of approximately 12%, 9%, and 9%, respectively.
Similar magnitudes of the semiclosed boundary effect were observed for the 2438-meter
(8000-foot) models and for the anticline models (Table 3). The magnitudes of change in storage
efficiency between the closed and semiclosed models were small because, as previously discussed,
the caprock permeability values used in the semiclosed simulations were in the submillidarcy
(10'7 m?) to subnanodarcy (102?> m?) range, resulting in semiclosed systems which behaved
similarly to closed-boundary systems.

Effect of Porosity—Permeability Distribution on Storage Efficiency and Rates

Figure 4 shows histograms of CO:z storage efficiency at 100 years of CO2 injection for the
fluvial depositional environment of the 1219-meter (4000-foot) depth flat and anticline models.
Similar results were observed for the 2438-meter (8000-foot) models (figures not shown). These
histograms were generated from the P10 and P90 outputs from Table 3 and the log-odds method
using Equations 4, 5, and 6, and Monte Carlo simulation. As described above, the porosity—
permeability distribution has a large effect on the connected volumes and overall pore volume,
with the P10 case having less primary storage facies and less total pore volume and the P90 case
containing more of the primary storage facies and greater pore volume. Consequently, uncertainty
in the porosity—permeability distribution has an effect on the simulated CO: storage efficiency. As
shown in Figure 6, the range in CO: storage efficiency (minimum to maximum) was approximately
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0.25% to 0.40% for the flat structural model and 0.30% to 0.55% for the anticline structural model.
This variability in the simulated CO: storage efficiency coefficient reflects the uncertainty in the
underlying porosity—permeability distribution, which in this case was modeled using the 10 and
90 percent probability range from AGD for eolian, fluvial, and deltaic depositional environments.
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Fluvial (flat, 1219 m/4000 ft)
20

15

10

Percent

20
15

10

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

CO, Storage Efficiency, E,.jipes %

Figure 6. Histograms CO:z storage efficiency (percent, x-axis) for the fluvial depositional
environment 1219-meter (4000-foot) flat models (top row) and anticline models (bottom row).
These histograms were generated using the P10 and P90 outputs from Table 3 and the log-odds

method using Monte Carlo simulation and Equations 4, 5, and 6.

The uncertainty analysis illustrated in Figure 6 underscores the importance of geologic
characterization, as variability in petrophysical properties may impact CO:z storage resource
estimates. Different types of geologic formations contain varying degrees of heterogeneity, but all
tend to have significant heterogeneity at the basin scale. A formation may encompass deposits
from multiple depositional environments. For instance, a sandstone formation may contain
elements of both fluvio-deltaic and nearshore deposition. In addition, close investigation into any
two geologic formations interpreted as being genetically similar, for instance, carbonate shelf and
peritidal sequences, will likely reveal significant differences in facies proportions. Other modes of
heterogeneity may be due to any number of processes, such as change in water depth at the time
of deposition, change in sediment composition and sedimentation rate, differential erosion,
diagenesis, and structural complications. All of these factors create heterogeneity in storage
resource quality and capacity. Therefore, thorough geologic characterization is needed to constrain
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estimates of petrophysical properties within DSF and to map the distribution and extent of good
and bad reservoir facies proportions within each specific depositional environment.

Evaluating CO; Storage Rates Across Depositional Environments

Figure 7 shows time series plots for the fraction of CO: stored over the 100-year injection
period for the different depositional environments, structural geometries (flat or anticline), and
boundary conditions (closed or semiclosed). Each of these curves exhibited a sigmoidal shape,
with an initially slow increase in the fraction of COz stored followed by a period of rapid increase
and finally tapering toward a fraction of 100%. Comparing results for flat models among
depositional environments (top row in Figure 7) showed a consistent order for the time at which
the fraction of COz increased. The clastic shelf curves increased at the earliest time (the curves
farthest to the left), with the eolian and reef curves increasing at the latest time (the curves farthest
to the right). The order, from fastest to slowest rate of fractional CO: storage, was clastic shelf >
fluvio-deltaic > clastic slope > carbonate peritidal > clastic strand plain > lacustrine > eolian >
reef; however, the carbonate peritidal and clastic strand plain models were virtually
indistinguishable, as were the eolian and reef models. These orders were preserved in the
2438-meter (8000-foot) models; however, the effects were diminished (i.e., less separation
between the different curves).

The differences in CO: storage rates are largely attributable to differences in the average
porosity and permeability for the different depositional environments. As shown in Figure 8, the
fluvio-deltaic and clastic shelf environments had the greatest porosity and permeability, and also
the fastest time to store 50% of the total injected COz. Because of their higher permeability and
thus greater ability to convey injected COz, these systems reached their Apmax fastest. Thus an
inverse relationship, albeit with weak correlation, was observed between petrophysical property
characteristics and the rate with which CO: injection occurred. As both porosity and permeability
properties decreased, the amount of time needed to store 50% of the total CO2 mass increased.
Injected CO2 must travel farther to find the necessary void volume for storage in a scenario with
decreased pore volume in comparison to a scenario with greater pore volume, assuming similar
amounts of COz being injected in both cases. This suggests a “tighter” (less permeable) formation
may result in a CO2 plume of greater areal extent, instead of the low-permeability rock simply
keeping the CO2 plume condensed through resistance to flow, and this process takes place more
slowly than in formations with better petrophysical characteristics.

In addition, a general trend of increasing CO: injection rate was noted as depth increased.
The deeper models, with more pressure space available during injection (greater Ap), received CO2
at a higher rate simply because of injection could take place at higher pressures.

As shown in Table 3 and described above, at the end of the 100-year CO: injection period,
the anticline models had greater storage efficiency than the flat-model counterparts. However, the
anticline models had somewhat slower rates of CO2 storage than the flat models (i.e., the solid
curves lie to the right of the dotted curves in the middle panels of Figure 7). This was especially
true for the final 20% of COz stored (F: = 0.8 to 1.0) in the fluvio-deltaic models. For example, the
fluvio-deltaic 1219-meter (4000-foot) flat model took 0.8 years to reach F: = 0.5, while the
anticline model took 1.0 year, for an increase of a factor or 1.25.
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Figure 7. Time series plots for the fraction of COz stored (Ft, y-axis) over the 100-year injection
period (x-axis) for the different models. The left and right columns show results for the 1219-
and 2438-meter (4000- and 8000-foot) models, respectively. The top panels show the P50 results
for closed boundary flat models. Simulation results were not generated for the reef depositional
environment at 1219 meters (4000 feet). The middle panels compare the P50 results for the
closed boundary flat and anticline models. Lastly, the bottom panels compare the P50 results for
the closed and semiclosed boundary flat models.
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CO: storage capacity.
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The rates of CO2 storage were virtually indistinguishable between the closed and semiclosed
boundary models within the same depositional environment for most of the CO: injection period.
Virtually no significant difference was noted in the time to reach F; = 0.5 between closed and
semiclosed models, regardless of formation depth, structural geometry, or depositional
environment (Figure 9). However, the semiclosed models had marginally slower rates for the final
10% of COz stored (F:= 0.9 to 1.0) (i.e., the solid curves lie to the right of the dotted curves in the
bottom panels of Figure 7 when the y-axis is greater than approximately F; = 0.9). The pore
volumes were equivalent between closed and semiclosed models of the same depositional
environment. In addition, the cap rock (seal) in the semiclosed models did not allow CO2 flow
because of permeability and capillary barriers and, therefore, only allowed pressure dissipation via
brine displacement. Since bottomhole injection pressure was limited to the fracture pressure, the
rates of CO2 storage were nearly identical between the closed and semiclosed boundary models
for the majority of the COz2 injection period. However, the pressure dissipation provided by the
semiclosed boundary resulted in additional storage and, therefore, slower rates for the final 10%
of COz stored.

Figure 9 shows bar charts of the time in years for each simulation to reach 50% of the total
COz2 mass injected (Fr= 0.5). These comparisons elucidate the relative importance of depositional
environment, formation depth, structural geometry, and boundary conditions on the rate of CO2
storage. For example, among the 1219-meter (4000-foot) depth, flat models, it took 0.5 years for
the clastic shelf model to reach F: = 0.5, but it took the eolian model six years, or 12 times longer.
Therefore, while the CO: storage efficiency at the end of the 100-year injection period was nearly
identical between these two depositional environments (0.43% vs. 0.42%), the rates at which these
formations accepted their total mass of COz differed significantly.
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Comparisons to IEAGHG (2014)

In 2014, IEAGHG commissioned the EERC to develop storage coefficients for COz storage
in DSFs. The project was cosponsored by DOE (IEA Greenhouse Gas R&D Programme, 2014).
The IEAGHG (2014) approach compared volumetric and dynamic COz storage efficiencies in an
open system, represented by the Minnelusa Formation, and a closed system represented by the
Qingshankou and Yaojia Formations. The results provided low and high estimates as a function of
time, from 50 years to 2000 years of COz injection.

Table 4 compares the IEAGHG (2014) results to the overall model storage efficiencies from
the current work. As shown in the table, the average storage efficiencies at 100 years for the
1219-meter (4000-foot) models (0.42%) and 2438-meter (8000-foot) models (0.83%) from the
current study were comparable to the dynamic storage efficiencies for the Minnelusa Formation at
50 years and for the Qingshankou and Yaojia Formations at 500 years or more of CO2 injection.
The open hydrogeologic systems of the Minnelusa Formation permitted greater storage efficiency
over time (up to 18% at 2000 years of injection), which as previously described was a function of
additional CO2 storage associated with lateral brine displacement, as opposed to being limited to
the water compressibility and pore dilation.

Table 4. Comparison of Esaiine Results (percent) from IEAGHG (2014) for the Minnelusa
and Qingshankou—Yaojia Systems to the Overall Model Esaiine Results from the Current
Work

Minnelusa Qingshankou— Current Work
System Yaojia System Overall Model, m/ft
Point of Comparison Low High Low High 1219/4000 2438/8000
Volumetric Efficiency (closed system) 0.54% 0.54% | 0.21% 0.21% NA NA
Volumetric Efficiency (open system) 2.90% 11.00% | 1.30% 10.00% NA NA
Dynamic Efficiency (50 years of injection) 0.55% 1.70% | 0.28%  0.40% NA NA
Dynamic Efficiency (100 years of injection) NA NA NA NA 0.42% 0.83%
Dynamic Efficiency (200 years of injection) 1.90% 4.30% | 0.39%  0.52% NA NA
Dynamic Efficiency (500 years of injection) 2.50%  7.90% | 0.45%  0.60% NA NA
Dynamic Efficiency (2000 years of injection) | 3.40% 18.00% | 0.62%  0.72% NA NA

HYDROCARBON RESERVOIR ASSESSMENT

Among hydrocarbon-bearing formations, one proven technology that both produces oil and,
through the process, permanently stores COz2 in the subsurface is CO2 EOR. CO2 EOR refers to
the process whereby an operator injects COz2 into the subsurface at an oil field, after which it mixes
with the oil to swell it and reduce the oil viscosity, making it lighter and detaching it from the rock
surfaces. These subsurface alterations cause the oil to flow more freely within the reservoir so that
it will flow to production wells. During this process, approximately 50% of the total volume of
injected CO:2 (purchased plus recycled) is produced together with oil, separated, and reinjected,
but nearly all (>95%) of the purchased CO2 delivered to the oil field remains securely trapped
within the geologic formation (Melzer, 2012; Azzolina and others, 2015).
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CO2 EOR occupies an important place in the realm of geologic COz storage, as it is likely to
be the primary means of geologic COz2 storage during the early stages of commercial deployment
because the value of the produced oil offsets some of the costs of CCS (Peridas, 2008; Leach and
others, 2011). As of 2014, there were 136 active CO2 EOR projects identified in the United States
(Koottungal, 2014), with forecasts predicting strong future growth (Kuuskraa and Wallace, 2014).
Besides the United States, China, Indonesia, and other countries have expressed strong interest in
using CO2 EOR for climate change mitigation. CO2 storage resource estimates for new and
ongoing CO2 EOR operations will help to quantify the amount of carbon storage potential available
through this process.

The DOE methodology for estimating the CO2 storage resource in oil reservoirs uses a
volumetric approach and the standard industry method to calculate original oil in place (OOIP)
(Calhoun Jr., 1982; Lake, 1989). Equation 9 provides the general form of the volumetric equation
to calculate the CO2 storage resource mass estimate (Gcoz) for geologic storage in oil reservoirs
(U.S. Department of Energy National Energy Technology Laboratory, 2012):

Geoz = Ahy e (1 =S,1) B Eoy pcoz [Eq. 9]
Where (M = mass; L = length):
Gco: = Mass estimate of oil and gas reservoir COz storage resource (M).
A = Reservoir area (L?).
hn = Net thickness (L).
e = Average effective porosity (L3/L%).
(1 —Swi) = (1 — initial water saturation) = original hydrocarbon saturation (L/L?).
B = Oil formation volume factor (stock tank barrel [STB]/reservoir barrel [RB])
(L3/L%).
Eoil = CO:z storage efficiency factor (L*/L?).
pco2 = CO2 density (M/L%).

In Equation 9, the product of 4, &, ¢e, (1 — Swi), and B yield the OOIP (red-colored text in
Equation 9. For the CO: storage resource estimate at reservoir depletion, the factor Eoi is
equivalent to the incremental oil recovery factor (RF), (Bachu and others, 2007). A critical insight,
and a major component of the work presented in this study, is that in oilfield terms, the RF and the
CO2 net utilization factor (UFer) together represent the COz storage efficiency factor, Eoir, for CO2
storage in CO2 EOR operations, as opposed to CO: storage following reservoir depletion. Thus
Equation 9 may be rewritten as:

Geop = O0IP X RF X UF,0¢ X Pco2 [Eq. 10]
Where:
OOIP = Original oil in place (stock tank barrel [STB]).
RF = Incremental oil recovery factor in CO2 EOR (%OO0IP).
UFn: = COz net utilization factor (Mscf [thousand standard cubic feet]/STB).
pcoz = COz density, with a conversion factor of 1 tonne CO2 per 19.25 Mscf at normal

conditions (U.S. Department of Energy National Energy Technology
Laboratory, 2010).
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In Equation 10, the red- and blue-colored text identifies the common components with
Equation 9. The form of Equation 10 provides a more tractable volumetric equation because OOIP,
RF, and UFer are common performance metrics. Incremental oil recovery in this work represents
oil that is produced following the primary and secondary oil production, i.e., during tertiary
recovery from the CO2 flood and, hence, incrementally adds to the entire oil production from the
oil reservoir. Incremental oil recovery is expressed as a dimensionless variable, the incremental oil
RF, which is expressed in units of %OOIP. Industry commonly expresses the CO2 net utilization
factor (UFrer) as the amount of purchased COz used to recover a barrel of oil, in units of thousand
standard cubic feet (Mscf)/STB. COz net utilization does not include the recycled CO2 component
and, therefore, only incorporates the new, purchased CO2 volumes into the calculation.

Among the parameters in Equation 10, RF is already normalized to the reservoir volume
because it is expressed in units of %OOIP. Similarly, UF . scales purchased CO2 use to barrels of
oil produced and, therefore, the units of Mscf/STB are normalized to the same unit of measure as
OOIP. However, it is difficult to assess COz storage mass, Gcoz, across multiple CO2 EOR sites.
For example, while the absolute value of COz stored in units of mass is critical to summing the
total available CO2 storage mass across sites (e.g., for national inventories), it is not possible to
make comparisons in COz storage resources between two reservoirs of different volume, as a larger
volume allows greater storage mass. Therefore, Equation 2 can be taken one step further to express
COsz storage “normalized” to OOIP, as follows:

Equation 11 provides the foundation for estimating CO: storage efficiency factors from
commonly reported metrics of OOIP, RF, and UFu.r and plays a pivotal role in the current work.

Gcoz

00IP RE X UFyet coz X Pcoz = Eout Pco2 [Eq. 11]

Where Gco2/OOIP = specific COz storage resource (tonnes/STB OOIP) and represents the CO2
stored per unit of incremental oil volume produced through CO2 EOR, and the RF and UF.: terms
have been combined into a single term, Eoir (Msct/STB OOIP).

Industry experience and simulation studies both suggest that the amount of CO» stored and,
hence, the RF and UFe: are a function of both geologic and operational factors. Geologic factors
are specific to the reservoir and include lithology, pore type/porosity, permeability, heterogeneity,
and other physical features unique to the reservoir. Operational factors are specific to the design
and operation of the CO: flood, including injection pattern (the geometrical arrangement of
injection and producing wells), pattern spacing (the distance between injection and producing
wells), the volume of CO: injected, and the ratio of injected water to injected CO2 (the WAG
[water alternating gas] ratio). The interplay of geologic and operational factors leads to uncertainty
in the amount of COz storage that occurs at an individual site. Analogously, these same factors
affect the quantity of incremental oil that is produced (Advanced Resources International, Inc.,
and Melzer Consulting, 2010; Hill and others, 2013; van’t Veld and others, 2013, 2014;
Ettehadtavakkol, 2014). An open research question is the degree to which these geologic and
operational factors may be incorporated into approaches for CO:z storage resource estimates.

The primary objective of this work was to improve COz storage resource estimates for COz
EOR sites via integration of real-world reservoir performance data, numerical simulation studies,
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and statistical models to develop representative CO:2 storage efficiency factors for CO2 EOR
operations in clastic and carbonate reservoirs. The results of this work provide practical tools that
can be used to quantify CO: storage resource estimates associated with CO2 EOR and the
uncertainty inherent in those estimates.

Geologic Model Construction

A series of heterogeneous geologic models were created for the purpose of evaluating CO2
utilization through numerical simulation of CO2 enhanced oil recovery operations. Model size and
shape were based on simulations of heterogeneous reservoirs performed by Gorecki and others
(2009). Models were generated with an anticlinal structural trap (6.4 km [4 miles] along the
anticline axis and 3.2 km [2 miles] wide). A cylindrical anticline with an arbitrary closure of
30.48 meters (100 feet) in thickness was chosen to represent the structure.

Three different model thicknesses were created: 7.6, 20, and 64 meters (25, 66, and 209 feet).
Therefore, three different gridding methods were used: 1) for the 7.6-meter (25-foot)-thickness
cases, the gridding was 106 x 211 x 25 with a total of 559,150 blocks; 2) for the 20-meter
(66-foot)-thickness cases, the gridding was 106 x 211 x 33 with a total of 738,078 blocks; and
3) for the 64-meter (209-foot)-thickness cases, the gridding was 106 x 211 x 52 with a total
1,163,032 blocks. Geologic properties were populated within each facies using geostatistical
ranges and values from the AGD (Figures 10 and 11). Porosity was assigned using a truncated
normal distribution and the mean and standard deviation from the EERC AGD. The bivariate
relationship between porosity and permeability was measured from porosity logio (permeability)
crossplots, consisting of over 1600 paired data points collected from fluvial clastic reservoirs and
over 9500 pairs from carbonate shallow shelf reservoirs. These relationships were used to
distribute permeability values conditioned to the previously distributed porosity properties.
Petrophysical property summary statistics for each model are shown in Table 5.

Model depths of 1219 and 2438 meters (4000 and 8000 feet) were chosen to explore different
temperature and pressure behaviors on the modeled system. These depths are also standards used
by U.S. Energy Information Administration to calculate operating costs (U.S. Energy Information
Administration, 2010). Temperature and pressure properties were based on depth properties, using
a temperature gradient of 0.027°C/meter (0.015°F/foot) and a pressure gradient of 9.8 kPa/meter
(0.433 psi/foot).
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Figure 10. 64-meter (209-foot) thick anticlinal model property distributions. A single well
trajectory is shown in each inset image (green vertical line). Fluvial model properties are shown
in the left column, including facies, P50 porosity, and oil saturation (from top to bottom).
Carbonate model properties are shown in the right column, including facies, P50 permeability
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Figure 11. Porosity logio (permeability) crossplots for fluvial clastic (left) and shallow shelf
carbonate (right) datasets from the AGD. These porosity—permeability crossplots were used to
populate the geologic properties of the simulation models for reservoir (blue circles),
nonreservoir (red squares), and shale (green diamonds) lithofacies.

Table S. Porosity and Permeability Data Derived from the AGD for Fluvial
Clastic and Shallow Shelf Carbonate Facies

Fluvial Clastic Shallow Shelf Carbonate
Porosity, % Permeability, mD Porosity, % Permeability, mD
Minimum 0.31 0.00002 0.01 0.001
P10 Mean 5.46 0.05 3.63 0.08
P50 Mean 16.92 10.63 12.11 2.17
P90 Mean 26.62 670.91 23.00 76.73
Maximum 34.68 7983.77 54.42 7596.72
Standard Deviation 7.68 715.83 7.81 347.92

Industry Data Set and Performance Metrics

Aside from the models constructed in these efforts, monthly reservoir performance data from
31 CO2 EOR sites (hereafter referred to as the industry data set) were provided by Melzer
Consulting in conjunction with a worldwide reservoir appraisal company to assist in the
assessment of COz storage in hydrocarbon reservoirs. These data were originally used to compare
flood performance between differing projects, develop petroleum reserve estimates for the
operators of the field, and prepare annual petroleum reserve certifications for filers with the U.S.
Securities and Exchange Commission. The industry data set was described in detail in a previous
publication (Azzolina and others, 2015). The data include quantity of CO: injected and produced,
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incremental oil recovery, and water injected for each site. The sites in the industry data set reflect
WAG CO:z2 floods — all within the continental United States and heavily dominated by the West
Texas carbonate floods. Several CO:2 floods outside of this region were also included (i.e., the
Rocky Mountain region and the state of Oklahoma).

Previous work by Azzolina and others (2015) focused on three factors that significantly
influence the long-term performance and economic viability of CO2 EOR projects: CO2 retention,
incremental oil recovery, and COz net utilization. The current work extends the previous study by
also examining COz storage efficiency factors in accordance with Equation 11. Incremental oil
recovery, COz net utilization, and COz storage are defined according to Equations 12—14, as shown
below.

RF = -~ [Eq. 12]
Where:
RF  =Incremental oil recovery factor (%OOIP).
N, = Cumulative incremental oil production (STB).
N = OOIP (STB).
_ VCOz,purchased
UF, e = — [Eq. 13]
p
Where:
UF et = COz2 net utilization factor (Mscf/STB).
Vcozpurchasea = Cumulative volume of purchased CO: injected (Mscf).
Ny = Cumulative incremental oil production (STB).
CO, stored = CO, injected — CO, produced [Eq. 14]
Where:
COz stored = Volume of COz stored (Mscf).

CO2injected = Volume of CO2 injected (Mscf).
COz2 produced = Volume of CO2 produced (Mscf).

The volumes of CO: and water injected in the industry data set are expressed as
dimensionless variables in units of hydrocarbon pore volume (HCPV), as opposed to a volume or
mass measure. HCPV represents the pore volume of the reservoir that is occupied by
hydrocarbons. One hundred percent HCPV (which is equivalently reported in the literature as
1.0 HCPV) is equal to the OOIP. The amount of COz individually or COz plus water injected is
not bounded between 0 and 1.0, as more than 1.0 HCPV may be injected into the reservoir over
the life cycle of the CO: flood because there is no perfect displacement, i.e., sweep efficiency, of
the OOIP. We consider herein a threshold value of 3.0 HCPV as an estimate of the end of life for
the CO2 EOR field, recognizing that some sites may exceed this value while others may not inject
up to this amount.
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The input parameters required to implement Equations 12-14 to derive CO: storage
efficiency factors were not available for all 31 sites in the industry data set. As a result, the focus
of the measured reservoir performance data component of the current study is on nine sites from
West Texas San Andres dolomite reservoirs.

Hydrocarbon Reservoir Numerical Simulation

Numerical simulations were conducted to examine CO: storage behavior for different
geologic and operational factors. The current work focused on two different CO2 EOR
development strategies and two different geologic regimes, with variations in reservoir volume,
pressure, and temperature among these models. Two different types of CO2 EOR development
strategies were explored: continuous CO2 injection (CCI) and WAG. In the CCI simulations, the
injected fluids into the reservoir consisted solely of CO2, whereas in the WAG simulations the
ratio of injected water to injected CO2 (WAG ratio) was 1:1. The CCI simulations represented the
base case against which all other simulations are compared. There were 12 different cases for the
CCI simulations. Cases 1 to 6 represent fluvial/clastic reservoirs and Cases 7 to 12 represent
shallow shelf carbonate reservoirs. As discussed above, each depositional environment was
simulated using two different depths (1219 and 2438 meters [4000 and 8000 feet]) and each depth
was run using three different reservoir thicknesses (7.6, 20, and 64 meters [25, 66, and 209 feet]).
The 50th percentile (P50 or median) outcome was generated for all 12 cases. In addition, 10th and
90th percentile (P10 and P90, respectively) outcomes were generated for a subset of four cases to
assess uncertainty: Cases 2, 5, 8, and 11. Six of the 12 cases that were assessed using CCI
simulation were also simulated using WAG injection. These WAG cases consisted of P50
simulations for Cases 1, 2, 6, 7, 8, and 12. Altogether, there were 18 unique simulation models
(Table 6).

Table 6. Matrix of Simulation Cases Showing the Different Lithofacies (fluvial clastic or
shallow shelf carbonate), Depth (1219 or 2438 m [4000 or 8000 feet]), Thickness (7.6, 20, or
64 meters [25, 66 or 209 feet]), Temperature (48.9 or 82.2°C [120° or 180°F]), and Pressure
(11.9 or 23.9 MPa [1730 or 3465 psi]). All 12 cases generated a median (P50) outcome for CCI
floods; cases marked with an “X”” were also evaluated for WAG simulations.

Depth, Thickness, Temp., Pressure,

Case No. Lithofacies m/ft m/ft °C/°F MPa/psi  WAG
1 Fluvial clastic 1219/4000 7.6/25 48.9/120 11.9/1730 X
2 Fluvial clastic 1219/4000 20/66 48.9/120 11.9/1730 X
3 Fluvial clastic 1219/4000 64/209 48.9/120 11.9/1730

4 Fluvial clastic 2438/8000 7.6/25 82.2/180 23.9/3465

5 Fluvial clastic 2438/8000 20/66 82.2/180  23.9/3465

6 Fluvial clastic 2438/8000 64/209 82.2/180 23.9/3465 X
7 Shallow shelf carbonate  1219/4000 7.6/25 48.9/120 11.9/1730 X
8 Shallow shelf carbonate  1219/4000 20/66 48.9/120 11.9/1730 X
9 Shallow shelf carbonate  1219/4000 64/209 48.9/120 11.9/1730

10 Shallow shelf carbonate  2438/8000 7.6/25 82.2/180 23.9/3465

11 Shallow shelf carbonate  2438/8000 20/66 82.2/180 23.9/3465

12 Shallow shelf carbonate  2438/8000 64/209 82.2/180 23.9/3465 X
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CMG-Builder was used to populate simulation model parameters and numerical settings.
After setting up all the geologic properties, well placements, boundary conditions, initial
conditions, fluid pressure—volume—temperature (PVT) information, rock types, and numerical
parameters, the cases were sent to EERC’s cluster nodes for simulation. A total of 184 CPU cores
distributed in eight cluster nodes were used for the simulations.

The CO2 EOR phase for the CCI simulations was run up to 3.0 HCPV. In contrast, the WAG
simulations were run for over a 30-year time frame. The HCPV injected was secondary, recorded
through time rather than a targeted injection volume.

Simulations were run using CMG’s GEM. GEM is an advanced compositional simulator
that models the flow of three-phase, multicomponent fluids. GEM has the added benefit of being
able to model recovery processes where effective fluid composition is important.

Key outputs from the simulation modeling included the same metrics that were used to assess
the industry data set: incremental oil recovery, CO2 net utilization, and CO: storage. To permit
comparisons between the simulation models and the industry data set, the simulations’ injection
volumes were reported in units of HCPV. All simulation modeling outputs were exported to Excel
for use in the following statistical modeling and data summary.

Statistical Modeling

A novel statistical modeling approach was used to evaluate CO: storage efficiency factors
throughout the injection life cycle from 0 to 3.0 HCPV for both the industry data set and the
simulation cases. The COz storage efficiency curves during CO2 EOR follow similar patterns
across the industry data set and simulation cases, namely a rapid increase in storage efficiency
early in the CO2 flood followed by flattening, asymptotic-like behavior up to 3.0 HCPV. There are
a number of nonlinear equations that describe processes that follow this pattern; however, based
on previous experience in fitting these types of curves, this work explores a type of two-parameter
function called Michaelis—Menten or saturation growth, which has the form (Michaelis and
Menten, 1913):

ax

Where:
y = Response variable, in this application CO2 storage efficiency.
X = Predictor variable, in this application cumulative CO2 or CO2 and water

injected (HCVP).
aand b = Empirical constants fit using regression analysis.

One motivation for fitting an equation like Michaelis—Menten is to reduce the HCVP series
data to two parameters, a and b, about which inferences can be made. For example, in the
Michaelis—Menten formula, parameter a represents the maximum storage efficiency that would be
possible at infinite CO2 or CO2 and water injection. The parameter b is the time at which CO2
storage efficiency is half of the maximum value. In addition to allowing inferences, the fitted
model may also be used to predict the CO2 storage efficiency factors out to 3.0 HCPV when the
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observed data, either real-world reservoir performance data or simulation data, do not reach
3.0 HCPV.

The Michaelis—Menten equation has been used to describe substrate-limited growth. In the
case of CO2 EOR, the substrate is the pore space available for CO2 to access. The mechanistic
explanation for why the Michaelis—Menten equation may be applicable to CO2 EOR is as follows.
During the initial CO2 flood, there is sufficient available pore space for the CO2 to occupy
(consume) with oil or water mobilized from the same pore space. This results in the pore space
“filling up” at a first-order rate, which is the period of rapid CO: storage in early time. As
increasing volumes of CO:z are injected, more of the accessible pore space is occupied by CO2 and
the available pore space decreases (gets to substrate-limited conditions), so the rate at which the
pore space fills up approaches a zero-order rate. This is the period of asymptote-like or near-
horizontal storage curve over time (Robert Dilmore, DOE NETL, personal communication).

The fitted Michaelis—Menten functions across sites from the industry data set and simulation
cases were used to generate empirical percentile estimates of COz storage efficiency factors.

Results and Discussion

For the industry data set, the median times to inject 1.0, 2.0, and 3.0 HCPV of total fluids
(CO2 + water) were 17.3, 29.8, and 43.0 years, respectively (Table 7). The median RF' and UF e
at 3.0 HCPV were 12.2% OOIP and 8.7 Mscf/STB, respectively (Table 8). Lastly, the median Eoil
at 3.0 HCPV was 1.28 Mscf/STB OOIP (Table 9).

The Michaelis—Menten model was fit to nine West Texas dolomite fields in the industry data
set to generate statistical fits from 0 to 3.0 HCPV. Figure 2 shows the percentile estimates from 0
to 3.0 HCPV. The dark gray-shaded area in Figure 12 represents the interquartile range (IQR) from
the 25th to 75th percentiles (P25 to P75), or the region within which 50 percent of sites are likely
to fall, while the light gray-shaded area represents the P10 to P90, or the region within which
80 percent of sites are likely to fall. There is less uncertainty in the estimated CO: storage
efficiency factor early in the CO2 flood (small range between the P10 and P90) and greater
uncertainty beyond 2.0 HCPV (larger range between the P10 and P90). For example, the P10, P50,
and P90 estimates at 1.0, 2.0, and 3.0 HCPV were 0.63, 0.82, and 0.97; 0.74, 1.17, and 1.47; and
0.76, 1.28, and 1.74 Mscf/STB OOIP, respectively.

These industry data set percentiles are used to compare the results of the simulation studies.
An important distinction between the industry data set results and the simulation models is that the
former is specific to West Texas carbonate geology, whereas the latter is conditioned on average
petrophysical relationships from the EERC AGD for either fluvial clastic or shallow shelf
carbonate depositional settings and pressure/temperature conditions specific to two different
reservoir depths (Table 7).
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Table 7. Summary of Time in Years Since CO: Injection as a Function of HCPV for the

12 CCI Simulation Cases, Six WAG Simulation Cases, and Median (P50) of Nine West
Texas Dolomite Reservoirs from the Industry Data Set. Blank cells mean that no data were
generated in the WAG simulation cases, which were run for a time of 30 years and the volume of
HCPV injected was based on the volume injected up to that point in time, not an injection target.

Time at HCPVI, years
Case 0.5 1.0 1.5 2.0 2.5 3.0
1 1.2 24 3.6 4.7 59 7.1
2 2.6 5.2 7.8 10.3 12.9 15.5
3 5.2 10.4 15.5 20.7 25.9 31.1
4 1.3 2.7 4.0 5.4 6.7 8.0
5 2.5 5.1 7.6 10.1 12.7 15.1
6 5.9 11.8 17.7 23.6 29.5 35.2
7 2.4 4.2 6.0 7.6 9.2 10.8
8 2.9 5.8 8.7 11.6 14.5 17.3
9 6.9 13.6 20.2 26.8 33.2 39.7
10 2.0 3.8 5.5 7.2 9.0 10.7
11 3.1 6.2 9.2 12.3 15.4 18.4
12 7.3 14.6 21.8 29.2 36.3 43.5
WAG-1 3.5 6.7 10.0 13.5 16.8 20.0
WAG-2 6.8 13.6 20.5 27.3
WAG-6 9.1 18.2 274
WAG-7 6.5 12.3 17.5 22.7 27.8
WAG-8 8.2 16.4 24.5
WAG-12 11.0 22.0
Industry P50 7.6 17.3 223 29.8 35.7 43.0

36



Table 8. Summary of Incremental Oil Recovery in %OOIP (top) and CO; Net Utilization in
Mscf/STB (bottom) as a Function of HCPV for the 12 CCI Simulation Cases, Six WAG
Simulation Cases, and Median (P50) of Nine West Texas Dolomite Reservoirs from the
Industry Data Set. Blank cells mean that no data were generated.

Incremental Qil Recovery Factor at HCPVI, % OOIP

Case 0.5 1.0 1.5 2.0 2.5 3.0
1 3.0 7.0 9.3 11.0 12.4 13.5
2 5.1 11.0 14.5 16.9 18.7 20.3
3 5.5 11.0 14.6 17.2 19.2 20.8
4 6.8 10.7 12.7 14.0 14.9 15.7
5 9.2 13.8 16.0 17.4 18.5 19.2
6 10.2 15.3 18.1 20.0 21.3 22.4
7 43 7.3 9.8 11.8 13.7 15.3
8 6.2 11.3 15.2 18.4 21.0 23.2
9 5.4 9.2 12.2 14.5 16.4 18.1
10 7.1 12.2 15.9 18.8 21.2 23.2
11 9.5 15.2 18.9 21.6 23.5 25.0
12 8.7 13.0 15.7 17.6 19.1 20.2
WAG-1 54 7.7 9.1 10.2 11.0 11.7
WAG-2 6.7 9.7 11.2 12.3
WAG-6 7.2 10.7 12.4
WAG-7 5.0 8.1 10.3 12.1 13.4
WAG-8 6.8 10.7 13.1
WAG-12 6.3 9.7
Industry P50 2.7 7.3 10.3 11.7 12.0 12.2
CO; Net Utilization at HCPVI, Mscf/STB
Case 0.5 1.0 1.5 2.0 2.5 3.0
1 39.2 23.1 19.7 17.9 16.8 16.0
2 27.2 16.8 14.2 13.0 12.2 11.5
3 22.0 15.2 13.3 12.2 11.6 11.1
4 12.3 8.5 7.3 6.7 6.3 6.0
5 9.3 6.6 5.7 5.3 5.0 4.8
6 6.9 5.2 4.5 4.1 3.9 3.7
7 14.8 12.0 10.7 9.9 9.3 8.9
8 15.7 11.8 10.3 9.4 8.8 8.3
9 10.5 8.2 7.2 6.6 6.2 5.9
10 9.4 7.0 6.0 5.3 4.9 4.5
11 5.8 4.3 3.7 34 32 3.0
12 4.1 3.2 2.8 2.5 2.3 2.2
WAG-1 15.1 12.3 10.9 10.0 9.4 8.9
WAG-2 11.1 9.1 8.4 7.9
WAG-6 5.2 4.0 3.5
WAG-7 9.0 7.1 6.2 5.7 5.3
WAG-8 8.7 6.7 5.8
WAG-12 3.2 2.5
Industry P50 13.8 10.6 9.8 9.4 8.9 8.7
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Table 9. Summary of CO; Storage Efficiency (Eoi1) in Mscf/STB OOIP as a Function of
HCPYV for the 12 CCI Simulation Cases, Six WAG Simulation Cases, and 10th Percentile
(P10), 50th Percentile (median or P50), and 90th Percentile (P90) of Nine West Texas
Dolomite Reservoirs from the Industry Data Set. Yellow-shaded cells indicate where
simulation data were not available and the Michaelis—Menten model fits were used to estimate
Eoil at that specific HCPV. In the Michaelis—Menten model fits, Parameter a represents Eoil at
infinite HCPV (the maximum Eoi value) and Parameter b represents the HCPV at which the

system reaches one-half of its maximum value.

E.ii at HCPVI, Mscf/STB OOIP

Michaelis—Menten

b =HCPV

Case 0.5 1.0 1.5 2.0 2.5 3.0 a=Eq,i max. at 1/2 Eqj max.
1 083 1.12 127 137 144 149 1.80 0.63
2 0.81 1.08 121 128 1.33 1.37 1.59 0.49
3 073 101 116 126 133 1.39 1.70 0.69
4 058 063 064 0.64 0.65 0.65 0.67 0.08
5 050 053 054 054 053 053 0.55 0.04
6 043 048 049 050 0.50 0.50 0.52 0.10
7 044 060 072 081 0.88 0.94 1.31 1.22
8 057 078 091 1.00 1.07 1.13 1.44 0.85
9 034 045 053 058 0.61 0.64 0.79 0.73
10 046 059 065 069 071 0.72 0.83 0.40
11 032 038 041 042 043 044 0.47 0.24
12 021 025 026 026 027 027 0.29 0.16
WAG-1 081 095 099 101 1.03 1.03 1.10 0.17
WAG-2 074 088 094 097 1.00 1.01 1.09 0.23
WAG-6 037 043 044 046 046 047 0.49 0.14
WAG-7 045 058 064 068 071 0.72 0.83 0.42
WAG-8 059 072 077 080 0.82 0.83 0.90 0.26
WAG-12 020 024 025 026 026 0.26 0.28 0.19
Industry P10 041 0.63 0.71 0.74 0.75 0.75

Industry P50 0.56 0.82 1.08 1.17 123 1.28 1.66 0.89

Industry P90 0.70 097 125 147 161 174
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Figure 12. Percentile estimates generated from multisite Michaelis—Menten model fits for CO2

storage efficiency (Msct/STB OOIP) versus cumulative CO2 + H20 injection (HCPV) for nine

West Texas San Andres dolomite reservoirs. The light gray-shaded regions bounded by dashed

lines represent the 10th—90th percentiles, the dark gray-shaded regions bounded by dotted lines

represent the 25th—75th percentiles (interquartile range), and the P50 estimate (solid black line)
represents the central value of the distribution.

Numerical Simulation CO, Storage Efficiency Factors

For the CCI simulation models, the time to inject 3.0 HCPV, incremental oil recovery factor,
CO2 net utilization factor, and Eoil varied as a function of lithology and reservoir thickness. The
time to inject 3.0 HCPV varied from a low of 7.1 years for Case 1 (clastic, 7.6-meter [25-foot]
thickness) to a maximum of 43.5 years for Case 12 (carbonate, 64-meter [209-foot] thickness)
(Table 7). The incremental oil recovery factor after injection of 3.0 HCPV ranged from a low of
13.5 %OO0IP for Case 1 to a high of 25.0 %OOIP for Case 11 (carbonate, 20-meter [66-foot]
thickness) (Table 8). The CO: net utilization factor after injection of 3.0 HCPV ranged from a low
of 2.3 Mscf/STB for Case 12 to a high of 16.8 Mscf/STB for Case 1 (Table 8). Lastly, Eoi after
injection of 3.0 HCPV ranged from a low of 0.27 Mscf/STB OOIP for Case 12 to a high of
1.49 Msct/STB OOIP for Case 1.

The nine West Texas San Andres dolomite reservoirs in the industry data set had depth
ranges from approximately 1494 to 1585 meters (4900 to 5200 feet) deep (average 1539 meters
[5050 feet] deep) and thicknesses of 12 to 43 meters (40 to 140 feet) (average 27 meters [90 feet]
thick), which are most similar to the physical conditions of the WAG Case 8 (1219 meters
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[4000 feet] deep and 20 meters [66 feet] thick). As shown in Table 9, the simulation results after
injection of 3.0 HCPV for WAG Case 8 (0.83 Msct/STB OOIP) fell between the P10 (0.75
Mscf/STB OOIP) and the P50 (1.28 Mscf/STB OOIP) of the industry data set. Direct comparison
between the simulation results and the industry data set were complicated by two characteristics.
First, as mentioned above, the industry data set was specific to West Texas carbonate geology (San
Andres dolomite), whereas the simulation results were conditioned on average petrophysical
relationships from the EERC AGD for shallow shelf carbonate depositional settings and
pressure/temperature conditions specific to reservoir depths of 1219 and 2438 meters (4000 and
8000 feet). Second, the industry data set represented a synopsis of historical operations for fields
that operated since the early 1980s. The evolution of these fields, including the impact of infill
drilling or changes to the CO: flood plan over time, are not explicitly quantified by the statistical
analyses provided in Azzolina and others (2015).

Dimensionless CO. Storage Efficiency Factors

The statistical population of the geologic models using the average petrophysical
relationships from the EERC’s AGD resulted in slightly different reservoir effective pore volumes
across Cases 1-12. These differences confound drawing inferences about Eoil that are attributable
to differences in reservoir depth (1219 and 2438 meters [4000 and 8000 feet]), thickness (7.6, 20,
or 64 meters [25, 66, or 209 feet]), lithology (clastic or carbonate), or CO2 flood development
strategy (CCI versus WAG). Moreover, work on DSFs expresses CO:2 storage efficiency in
dimensionless units, which are not directly comparable to the units shown in Table 9. Therefore,
Table 10 expresses dimensionless Eoii values for the simulation cases using the following
calculation approach. For the reservoir simulation models used in Cases 1-12, the total volume of
COz stored and the reservoir effective pore volume were known explicitly. Therefore, the CO2
storage efficiency can be expressed as the ratio of these values, which is the dimensionless Eoil
value:

E,ii(dimensionless) = XC—O; [Eq. 16]
de

Where:
Vo2 = reservoir volume of CO2 stored
Vet = effective pore volume of the reservoir

Figure 13 shows the dimensionless CO2 storage efficiency curves from simulation model
outputs for both the fluvial clastic and shallow shelf carbonate simulations and their associated
Michaelis—Menten model fits.

Figure 13 illustrates several interesting trends about the relative differences in CO: storage
efficiency across the different model cases. First, comparing clastic and carbonate models shows
that for all but Cases 4 and 10 (left-most panel in the middle row), the clastic models have greater
CO:z storage efficiency than the carbonate models under the same reservoir thickness and depth
conditions (i.e., the solid black lines are above the solid blue lines in the different panels in
Figure 13). These results are a by-product of the porosity—permeability distributions for clastic
versus carbonate reservoirs — for a given porosity, the clastic models have greater permeability
because of the greater slope of the porosity—permeability bivariate relationship (Figure 11). In
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addition, comparing CCI simulations to WAG simulations shows that the CCI development yields
a higher CO:z storage efficiency. For example, the dimensionless Eoil values after injection of
3.0 HCPV for CClI clastic Cases 1, 2, and 6 are 61%, 50%, and 15%, respectively. In contrast, the
dimensionless Eoil values after injection of 3.0 HCPV for WAG clastic Cases 1, 2, and 6 are 42%
(31% less), 37% (26% less), and 14% (7% less), respectively (Table 10). These trends are also true
for carbonate models. The dimensionless Eoii values after injection of 3.0 HCPV for CCI carbonate
Cases 7, 8, and 12 are 40%, 37%, and 8%, respectively. In contrast, the dimensionless Eoil values
after injection of 3.0 HCPV for WAG carbonate Cases 7, 8, and 12 are 31% (23% less), 21% (27%
less), and 8% (no change), respectively. The greater CO: storage efficiency under the CCI
development strategy is attributable to the fact that during WAG injection, water occupies pore
space that might otherwise store COz, hence WAG development results in lower Eoil. This is also
reflected in the lower COz net utilization rates for the WAG cases, which were approximately 20%
to 45% less than their CCI counterparts at a given HCPV of total fluids injected (Table 8). Lastly,
the dimensionless Eoil values at a particular HCPV are greater in the 1219-meter (4000-foot)
reservoirs (top row in Figure 3) than in the 2438-meter (8000-foot) reservoirs (middle row in
Figure 13), which illustrates a dependency of Eoil on reservoir pressure and temperature conditions.

Table 10. Summary of CO; Storage Efficiency (E,i) in Dimensionless Units (Vco2/V®eff) as
a Function of HCPV for the 12 CCI Simulation Cases and Six WAG Simulation Cases.
Yellow-shaded cells indicate where simulation data were not available and the Michaelis—
Menten model fits were used to estimate Eoil at that specific HCPV. In the Michaelis—Menten
model fits, parameter a represents Eoil at infinite HCPV (the maximum Eoil value) and parameter
b represents the HCPV at which the system reaches one-half of its maximum value.

Eoii at HCPVI, % Michaelis—Menten
b = HCPV at

Case 0.5 1.0 1.5 2.0 2.5 3.0 a=E¢ max. 1/2 Eqi max.
1 33 46 52 55 58 61 73 0.63
2 29 39 44 47 49 50 58 0.49
3 24 33 38 42 44 46 56 0.69
4 22 23 24 24 24 24 25 0.08
5 15 16 16 16 16 16 16 0.04
6 13 15 15 15 15 15 16 0.10
7 19 26 31 35 38 40 56 1.22
8 19 25 30 33 35 37 47 0.85
9 11 15 17 19 20 21 26 0.73
10 17 22 24 26 27 27 31 0.40
11 9 11 12 12 12 13 14 0.24
12 6 7 8 8 8 8 8 0.16
WAG-1 33 38 40 41 42 42 45 0.17
WAG-2 27 32 34 36 36 37 40 0.23
WAG-6 11 13 13 14 14 14 15 0.14
WAG-7 19 25 27 29 30 31 35 0.42
WAG-8 19 23 25 26 27 27 29 0.26
WAG-12 6 7 7 8 8 8 8 0.19
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Figure 13 also shows that the Michaelis—-Menten model accurately describes the overall
shape of the COz storage efficiency curves for both the fluvial clastic and shallow shelf carbonate
simulations. For the deeper clastic models (Cases 4, 5, and 6), which quickly reach their asymptote
at approximately 0.5 HCPV, the Michaelis—Menten model overpredicts Eoil in the region between
0 and 0.5 HCPV. Nevertheless, the Michaelis—Menten model provides a simple and effective tool
for modeling Eoil as a function of HCPV using a single analytical expression.

In aggregate, Figure 13 illustrates relationships between Eoii and lithofacies, reservoir
thickness, reservoir depth (a surrogate for reservoir pressure and temperature), and CO2 flood
development (CCI or WAG). As seen in Figure 13, the CO: storage efficiency factors are more
strongly influenced by depth and reservoir geology than by reservoir volume (thickness). Thus in
terms of screening-level assessments for estimating the CO: storage resource in CO2 EOR
operations, reservoir depth (or pressure and temperature) and lithology may play a more significant
role in estimating the COz storage efficiency factor than reservoir volume.

Figure 14 shows contour plots of dimensionless Eoii for the CCI cases for clastic and
carbonate reservoirs as a function of reservoir depth (y-axis) and thickness (x-axis). Figure 14,
therefore, provides a response surface for dimensionless Eoil as a function of lithology, depth, and
thickness. These plots not only illustrate the differences between clastic and carbonate, but also
allow predictions of Eoil at future CO2 EOR sites. For example, a carbonate reservoir 1829 meters
(6000 feet) deep and 30.5 meters (100 feet) thick would be expected to yield and Eoii of
approximately 20%, while the same conditions for a clastic reservoir would be expected to yield
an Eoil of approximately 0.3.
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Figure 14. Contour plots of simulated Eoir for the CCI cases for fluvial clastic reservoirs (top) and
shallow shelf carbonate reservoirs (bottom) as a function of reservoir depth (y-axis) and
thickness (x-axis).

Comparison to Esaine Estimates

Several studies have focused on DOE methodology and CO: storage efficiency factors for
deep saline reservoirs, or Esaline. These works provide Esaiine for displacement terms when Ean/at
(ratio of net to total area), Ennng (ratio of net to gross thickness), and Ege/tot (ratio of effective to
total porosity) values are known directly, which are the conditions of simulation Cases 1-12.
Literature P10 and P90 estimates of Esaline for clastic, limestone, and dolomite reservoirs are 7.4 to
24%, 10 to 21%, and 16 to 26%, respectively (Goodman and others, 2011; U.S. Department of
Energy National Energy Technology Laboratory, 2012). As shown in Table 10, dimensionless Eoil
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at 3.0 HCPV for the CCI development strategies in clastic and carbonate reservoirs ranged from
46 to 61% and 21 to 40% for the 1219-meter (4000-foot) reservoirs and 12 to 24% and 8 to 27%
for the 2438-meter (8000-foot) reservoirs, respectively. Thus, the dimensionless Eoil values in this
study can be considerably higher than previous estimates of Esaine, depending on reservoir
conditions and CO2 development strategy. A primary reason for the greater Eoil values is that these
CO2 EOR fields are not only injecting CO2, but are also producing fluids (COz, oil, and water) at
the production wells. Therefore, the addition of fluid extraction creates additional pore space into
which the COz can be permanently stored, thus increasing the overall COz storage efficiency.

CONCLUSIONS

The results of the DSF assessment described in this report provide general values and
distributions for COz storage efficiency in closed and semiclosed hydrogeologic systems from
eight different models representing ten depositional environments. Closed- and semiclosed
boundary conditions were employed over a 100-year injection time frame to develop results
relevant to future potential commercial-scale CCS operations using an array of injection wells.
The regional-scale extent of the models constructed in these efforts were simulated as a unit cell
within a formation-scale assessment, surrounded on all sides by other unit cells. The pressure
interference between unit cells caused wells to experience closed or semiclosed boundary
conditions.

Storage efficiency values for 1219-meter (4000-foot) depths ranged from 0.29% for
carbonate shelf to 0.58% for carbonate peritidal depositional environments, while storage
efficiency values for 2438-meter (8000-foot) depths ranged from 0.56% for carbonate shelf to
1.32% for carbonate peritidal depositional environments. The narrow range in Esaline values across
models, attributable to the closed or semiclosed system boundary conditions of the simulations,
did not distinguish significant differences among depositional environments at the end of 100 years
of CO:2 injection. This suggests that the effect of depositional environment on CO: storage
efficiency is negligible in a closed system. However, the results illustrate the relative importance
of depositional environment, formation depth, structural geometry, and boundary conditions on
the rate of COz storage in closed or semiclosed systems. The type of depositional environment
responsible for generating a particular formation results in different degrees of lateral and vertical
heterogeneity and ranges in petrophysical property characteristics, which together affect CO2
injection rate by controlling fluid flow and pressure dispersion.

The modeling and simulation showed the relative influence of reservoir depth, structure, and
boundary conditions on CO: storage efficiency. Reservoir depth plays an important role in
controlling COz injection rate by constraining the amount of force (pressure) which may be used
during injection. The maximum injection pressure constraint (gradient) was 13.6 kPa/m
(0.6 psi/ft); therefore, the deeper models permitted greater COz injection rates over the 100-year
period. Geologic structure exerts a similar influence on CO: storage efficiency, as shown in this
study by the greater COz storage efficiency in anticline models as compared to flat (structureless)
models. The depth difference between the hinge and limbs of the anticline structures used in the
current study was approximately 152.4 meters (500 feet), which resulted in greater Ap (change
between initial and final reservoir pressure) along the deeper limbs of the anticline allowing a
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greater amount of CO:2 to be injected. Boundary conditions exert the greatest control on CO2
injection rate by allowing or resisting pressure dispersion. In open systems, which are confined
vertically but open laterally, pore space (and thus pressure dissipation) for the injected COz is
created primarily by lateral displacement of formation water. Conversely, a closed system does
not permit mass transfer across either vertical or lateral boundaries, and space for the injected CO2
is solely attributable to in situ fluid compressibility and pore dilation (the inverse of
compressibility). The closed-boundary systems modeled in this work showed lower CO: storage
efficiency values than prior work conducted on open systems. These closed-boundary estimates
may be more representative of CO: storage resource potential in commercial-scale fields using an
array of injection wells over 100-year time frames.

The fluvio-deltaic and clastic shelf environments of the DSF investigation exhibited the
greatest COz storage rates among the environments considered in this study. This was largely due
to a high frequency of desirable petrophysical characteristics contained within the EERC AGD.
This suggests that these types of deposits may be of primary interest to future investigations of
prospective storage resource and may serve to assist in COz storage complex screening. However,
variability occurs within each depositional environment. Similar depositional processes may result
in different ratios of reservoir and poor-reservoir/nonreservoir rock and different ranges of
petrophysical characteristics. Location-specific data plays a key role in reducing uncertainty in
COz storage resource assessment and should be given careful consideration in the movement
toward successful commercial-scale CCS.

The results of the hydrocarbon reservoir assessment provide useful statistical information to
estimate COz storage efficiency in CO2 EOR operations. COz storage efficiency values derived
from real-world reservoir performance data from the industry data set, all of which were WAG
CO:z2 floods, resulted in P10, P50, and P90 estimates for COz storage efficiency factors in West
Texas San Andres dolomite reservoirs of 0.76, 1.28, and 1.74 Mscf/STB OOIP. Across fluvial
clastic and shallow shelf carbonate simulation models, median COz storage efficiency factors from
CCI following conventional waterflood varied from 0.50 to 1.49 and 0.27 to 1.13 Mscf/STB OOIP,
respectively. Median COz storage efficiency factors from WAG CO:z injection varied from 0.47 to
1.03 and 0.26 to 0.83 Mscf/STB OOIP for fluvial clastic and shallow shelf carbonate reservoirs,
respectively, demonstrating that WAG injection results in lower CO: storage efficiency than CCI.

When expressed on a dimensionless scale, median COz storage efficiency factors from CCI
following conventional waterflood varied from 15% to 61% and 8% to 40% for fluvial clastic and
shallow shelf carbonate simulation models, respectively. Median CO: storage efficiency factors
from WAG CO:z injection varied from 14% to 42% and 8% to 31% for fluvial clastic and shallow
shelf carbonate reservoirs, respectively. These storage efficiency values are considerably higher
than previous estimates of efficiency values for DSFs. This is primarily attributable to CO2 EOR
fields both injecting CO2 and simultaneously producing fluids (CO2, oil, and water) at the
production wells. Therefore, the addition of fluid extraction creates additional pore space into
which the CO2 can be permanently stored, thus increasing the overall CO2 storage efficiency.
Variation in the CO2 storage efficiency factors was largely attributable to reservoir depth (a
surrogate for reservoir pressure and temperature) and lithology (clastic versus carbonate
lithofacies).
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For sites currently undergoing CO: injection with total fluid injection volumes above
1.0 HCPV, it may be possible to estimate the incremental oil recovery factor and CO: net
utilization separately and then apply the methods described in Azzolina and others (2015) to
estimate COz storage. However, if there are no site-specific values available, then the CO2 storage
efficiency values presented in this work may be used to estimate CO:z storage based solely on the
reservoir OOIP.

The research activities for both the DSFs and conventional hydrocarbon reservoirs
associated with CO2 EOR supported the development of a best practices manual on optimizing
and quantifying COxz storage resources in these geologic settings. Using lessons learned from this
work and other DOE-funded research, approaches outlined in the best practices manual present
workflows that guide the user through a series of decision points that help determine which CO2
storage resource-estimating method is best for a particular situation. The methodologies for the
optimization and refinement of CO:2 storage resource estimation that are presented in the best
practices manual will enable stakeholders to more accurately estimate the CO: storage resource
potential in these geologic formations.
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