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Introduction

Transforming renewable biomass into cost competitive high-
performance biofuels and bioproducts is key to US energy
security

Butanol production by microbial fermentation and chemical
conversion to polyolefins, elastomers, drop-in jet or diesel fuel,
and other chemicals is a promising solution

Butanol fermentations using Clostridial microorganisms have
production limitations:

current strains have low butanol tolerance and low yields resulting in
increased product recovery costs

strains grow at ambient temperatures with slow growth rates
current processes require batch fermentation

High temperature fermentation process can facilitate butanol
recovery up to 20%, by using gas stripping with a continuous
flow rate?
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Benefits of a High Temperature

Optimal hydrolysis rates in the saccharification of biomass
which leads to maximized butanol production

Decreases energy costs associated with reactor cooling
and capital cost associated with reactor design

Decrease process contamination for maintaining a sterile
environment

Butanol stripping at elevated temperatures gives higher
butanol production with constant removal and continuous
fermentation
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Butanol Production Screening

Bacterial strains were purchased or provided by GreenBiologics (GBL)
and screened for butanol production.
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Butanol production on 2TY media with xylose as the carbon source. Strains: Geobacillus
caldosylosiliticus (ATCC700356), Geobacillus caldoxyloliticus TK4 (NCIMR14283), Bacillus
Licheniformans (GBL2635), Ureibacillus thermophaericus (GBL2643), Ureibacillus
thermophaericus (GBL2666).
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Geobacillus caldoxylosilyticus (ATCC700356)
strain selection

Capable of anaerobic growth on xylose and
glucose.

Optimum growth temperature at 65°C.

Enzymes for xylose fermentation produced at high
levels when fermenting glucose, suggesting
simultaneous consumption.

No alcohol dehydrogenase activity detected
anaerobically, suggesting lower alcohol production.



\w_b Idaho National Laboratory

Production Pathway
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Butanol Pathway
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pUCG18 Plasmid

« Shuttle vector for Geobacillus
strains grown up to 68°C.

* Thermal stable positive
selectable antibiotic marker,
conferring resistance to
kanamycin.

» Several methods reported Iin
the literature for Geobacillus
transformation.
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Potential Transformation Methods

1. Electroporation of electrocompetent cells

2. Conjugation for ternary transfer of plasmid
from E. coli

3. Protoplast fusion
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Electroporation
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Electroporation

Geobacillus was subcultured and grown to an OD,, of 1.4 at
55°C and 220 rpm

Cells prepared to be electrocompetent

Mixed with 1-5 pL of plasmid (either methylated or
unmethylated)

Exponential decay program was used
10-25 pF
1500-2500 V
600 Q

Recovered for 4 hours at 55°C and 220 rpm
Grown on TBAB with kanamyacin
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Ternary Conjugation
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Ternary Conjugation

dam-/dcm- E. coli, HB101, and Geobacillus were
subcultured and grown to an ODg, 0f 0.3

All three cells were combined in an 8:1:1 ratio of
Geobaclillus, dam/dcm- E. coli, and HB101

Pellet was placed on LB plate and incubated at
37°C for 6-16 hours

Resultant colonies were plated on LB with
kanamycin and grown overnight at 55°C
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Protoplast Fusion

Chromosome
Plasma membrane
Cell wall

Bacterlal cells | € Bacterial cell walls are
enzymatically digested,
producing protoplasts.

Protoplasts |

@ In solution, protoplasts are
treated with polyethylene glycol.

Q@ @ | © Protoplasts fuse.

l@ Segments of the two
chromosomes recombine.
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cell \/

© Recombinant cell
grows new cell wall.

(a) Process of protoplast fusion

Copyright ©2010 Pearson Education, Inc.
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Protoplast Fusion

Geobacillus was subcultured and grown to an ODg,, of 0.8-
1.0

Lysozyme added to 10 pg/mL
5-20 pL of plasmid was mixed protoplast suspension
Added PEG 600 or 10,000

Protoplasts were plated on regeneration plates with
kanamycin

Incubated at 50°C for 12 hours then at 60°C for 24-48
Colonies transferred to TBAB plates with kanamycin
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Discussion

Electroporation

Setting have been adjusted to give a pulse time of 5-6 milliseconds
which gives best effeciency

Controls showing cells can withstand the shock
Both fresh and frozen electrocompetent cells were used

Ternary Conjugation
Cells were plated with no dilution in an attempt to get any amount
of growth

Protoplast
Problem with antibiotic selection

Moving to a small plasmid pUCG3.8
Same essential genes
Higher transformation efficiency
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