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Abstract—Electric utilities in the United States are increas-
ingly employing demand charges and/or real-time pricing. Such
directive is bringing potential opportunities in deploying behind-
the-meter energy storage (BMES) systems for various grid ap-
plications. This study quantifies the techno-economic benefits of
BMES in reducing demand charge and smoothing load/generation
intermittencies, and determines how those benefits vary with
different penetration of onsite photovoltaic. We proposed a two-
stage control algorithm, whereby the first stage proactively de-
termines the cost-optimal BMES configuration for reducing peak
demands and demand charges and the second stage adaptively
compensates intermittent generations and short load spikes that
may otherwise increase the demand charges. The performance
of the proposed algorithm is evaluated through a 24-hours time
sweep simulation performed using data from a smart microgrid
testbed at Idaho National Laboratory. The simulation results
demonstrated that this research provides a simple and effective
solution for peak shaving, demand charge reductions, and onsite
photovoltaic variability smoothing.

Keywords—Behind-the-meter, demand charges, energy storage,
microgrid, onsite generation, two-stage control.

I. BACKGROUND

Increased penetration of intermittent renewable energy
sources (RESs) creates various control and operational chal-
lenges to the existing grid. Due to increasing availability of
behind-the-meter energy storage (BMES), it can serve as one
of the potential solutions not only to address those grid issues
but also to optimally utilize onsite photovoltaic (PV) genera-
tion [1]. In particular, BMES has massive untapped potential
that alone can cover a huge percentage of contemporary stor-
age requirements. For example, BMES in California has 1,000
megawatts of capacity, which is equivalent to three-quarters
of California’s 2020 energy storage mandate [2]. However,
one of the potential barriers to exploit BMES is its trivial
economic benefits to BMES customers compared to the huge
investment requirement. Such scenario provides significant
but challenging opportunities to the research community for
making BMES technically and economically viable solution
for providing multiple grid services.

Electric utilities in the United States are recently making
favorable policies and tariff structures for BMES owners in an
effort to effectively exploit currently untapped BMES poten-
tial. On the other hand, research communities have also been
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extensively investing efforts in deploying BMES for multiple
grid applications, such as ensuring energy security, improving
system reliability, providing ancillary services, and reducing
utility upgrade costs, demand charges, and peak demands. For
instance, the authors in [3] presented an algorithm to utilize
lithium-ion battery energy storage for peak shaving, while the
authors in [4]-[6] developed control strategies for utilizing ther-
mal and electrical energy storage for various grid functionality.
Control strategies for utilizing battery storage and demand
response for local grid constraints violation management are
presented in [7]-[10]. Similarly, the use of energy storage
for dynamic energy management and frequency regulation
are presented in [11]-[12]. Despite those technically attractive
solutions for deploying BMES for different grid services, the
economic viability of BMES is often not justified. Demand
charge reduction is one of the key BMES applications that
can directly leverage economic benefits to BMES users [12].

In order to increase the economic benefits of storage,
authors in [13]-[14] presented a two-stage procedure, whereby
the optimum storage size for the given system is made as a
part of planning decision and the optimum operational strategy
is developed to maximize the benefits out of the given storage
size. Similarly, adaptive and near-optimal control strategy for
energy storage is presented in [15]-[17] to maximize the
benefits of onsite PV generation. The strategies to exploit
energy storage combined with the onsite RES generation are
further developed in [18]-[19]. Most of the existing literature
compute BMES benefits using deterministic models, whereby
consumers are assumed to be aware in advance of their
energy consumptions pattern [19]. However, load spikes and
onsite RES variability make the use of those models very
challenging and less effective in reducing demand charges.
As many electric utilities are currently looking for a techno-
economically attractive solution for integrated deployment of
BMES and high penetrations of onsite PVs, it is of utmost
importance to have an approach that is capable of addressing
the high uncertainties stemming from intermittent renewables.

This study has developed a multi-timescale control frame-
work to reduce demand charges and effectively address RES
generation uncertainties. In particular, we proposed a two-
stage control, whereby the first stage is 15 minutes resolution
based control designed to proactively determine a cost-optimal
BMES configuration for reducing peak demands and demand
charges. Any uncertainties stemming from generation variabil-
ity and load spikes in near real-time operation are smoothed
out by the second adaptive control stage. Such different time-



Fig. 1. Overall schematic diagram of test system (Microgrid Testbed at INL).

resolution-based control scheme provides an opportunity to
deploy BMES for multiple grid service, including demand
charge reduction, load leveling, and onsite PV variability
smoothing, thereby ensuring the economic benefits to the
BMES owner as well as technical benefits to the grid operators.

The remainder of the paper is structured as follows. First,
the details of the system modeling are presented in Section II.
In Section III, the multi-timescale control algorithm designed
to realize demand charge reduction and smoothing onsite PV
variability is presented. Details of the simulation configuration
and results are presented in Section IV. Finally, the paper is
concluded in Section V.

II. TEST SYSTEM MODELING

A smart microgrid testbed (MGT) at Idaho National Lab-
oratory is primarily used as a test network. As shown in Fig.
1, MGT primarily comprises BMES, onsite PV generation,
controllable load, and a combination of centralized and decen-
tralized control architecture. The testbed includes a total of 21
kW PV systems, two flow batteries each having 64 kW, 160
kWh, a lead-acid battery (15 kWh), two grid-tied inverter and
battery controllers (GTIB 100), a demand response inverter
(DRI 10), a controllable load (150 kW), and a smart home
comprising various household appliances (e.g., electric water
heater, smart thermostat, computers, and lights). Moreover,
a heterogeneous mesh communication network comprising
Ethernet, power line carrier, and Wi-Fi is integrated to facilitate
data acquisition and control of each microgrid component.
The following subsections present modeling of key MGT
components, including solar PV, BMES, and base loads.

A. PV System Model

We developed a simplified model of a grid-tied PV system,
whereby the PV system is modeled as a dispatchable static
generator that is capable of operating as a constant power
source at the dispatched active and reactive power (PQ) set
points. The PQ capability curve of the PV system is designed
as shown in Fig. 2 in compliance with IEEE 1547 standards
for distributed energy resources ≤ 30 kW capacity to keep the
power factor (PF) of the PV inverter 0.85 lead/lag or higher.
The control scheme of the grid-tied inverter is designed such
that the active power is mostly limited by the available solar
irradiance, while the reactive power limit is set per the IEEE
1547 standard to keep the PF within predefined limits. It is
worth mentioning that, the reactive power injection/absorption
is zero as long as the voltage at the point of common coupling
(PCC) is within the acceptable limit and/or there is no dispatch
request from the upstream control centers/grid operators. In
either case, the reactive power injection from the grid-tied PV
is limited by ± 0.85 PF.

B. Load Model

Loads are modeled using a generic ZIP approach, whereby
the actual load consumption is expressed as an algebric sum
of constant power, constant current, and constant impedance
loads. The active and reactive power consumption of the loads
are expressed in terms of voltage and ZIP coefficients as:
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Fig. 2. Capability curve of PV system (≤ 30 kW) set per the IEEE 1547
standard.

where P0 and Q0 are the active and reactive power
consumptions by the load at nominal voltage V0, while P and
Q are active and reactive power consumptions during normal
operating voltage V . Moreover, αP1 , αP2 , αP3 are the active
power coefficients for constant impedance, constant current,
and constant power loads, and αQ1 , αQ2 , αQ3 are the respective
coefficients for the reactive power. It should be noted that
those coefficients always sums up 1. Due to increased use
of constant power loads in recent years [20], this study is
performed with a reasonable assumptions of αP3 and αQ3
equals 1; that is to say the simulation is done per constant
power load model.

C. BMES Model

The BMES is similar to the PV system while injecting
power to grid (discharging) and similar to constant power load
while drawing power from the grid (charging). Therefore, the
BMES is also modeled as a dispatchable static generation
or load that is capable of operating per the dispatched PQ
signals. The capability curve of the BMES system is designed
such that the overall PF at the PCC of the MGT stays ±
0.85 lead/lag or higher. However, the control strategy of the
BMES is designed such that it operates at unity PF as long
as there is no dispatch signal requiring an increase of reactive
power injection/consumption. In this study, we modeled BMES
such that charging and discharging power of BMES can be
controlled between zero and its rated power.

D. Day-Ahead Forecasting

An auto regressive moving average (ARMA) is used for a
day-ahead forecasting of PV production and feeder demand.
Auto regression is modeled as a linear function of order p to
describe a stochastic process and auto-correlations of past data,
while moving average is modeled as a function of order q to
estimate progress and trend on the direction of the stochastic
function [10]. The forecasted parameter y(t) is mathematically
modeled as:

y(t) =

ρ∑
i=1

φρ,iy(t− i) +
q∑

k=1

θq,ke(t− k) + e(t). (2)

where p and q are the auto regressive and lagged forecast
errors terms, φp,i and θq,k are parameters calculated based on
ρ and q, and e(t) is a zero-mean stationary white Gaussian
noise. Moreover, (t − i) and (t − k) are backshift operators
with delays i and k [21]. The ARMA model is constructed
in MATLAB using a year of hourly PV production and load
demand data.

III. MULTI-TIMESCALE CONTROL ALGORITHM

This section presents details of the proposed multi-
timescale control strategy to maximally deploy the benefits
of BMESS. Particularly, a two-stage control approach is
proposed, whereby BMES scheduling is done as a part of the
first centralized scheduling stage and an adaptive update of
the BMES operation is done as a part of the second real-time
control stage. The schematic of the two-stage controls and
their interaction is illustrated in Fig. 3 and described in detail
in the following subsections.

A. Centralized Scheduling Stage

As mentioned in the preceding section, the first control
stage is designed to proactively determine cost-optimal BMES
operation schedules for the given combination of onsite PVs
and loads. Mathematically, the control schedules are deter-
mined by minimizing the following objective function:

Min. Ci ∗
1

KT

N∑
i=1

(PBLi − PPVi + PBTi,Chg/Dsg) · δt (3)

where PBLi and PPVi are the forecasted values of base load
and onsite PV generation, PBTi,Chg/Dsg is the BMES charging-
discharging schedules to be determined, Ci is the optimization
coefficient, KT is the normalization constant used to express
time in hours, N is the total number of time slots, and i
represents the time-slot index. If cost reduction is of key
concern, Ci will be real-time electricity prices that is intended
to reduce the total electricity costs, while if the demand
reduction is of the key concern, Ci will be coefficients that
should be a function of the loading conditions in the network.
As our key target is to realize demand charge reduction through
peak shaving, Ciś are derived from the load profile, particularly
from forecasted daily load profiles, as follows:

Ci =


∈ PFi,Net = PFmin
PF

i,Net−P
F
min

PF
Peak

−PF
min

PFmin < PFi,Net < PFPeak

1 PFi,Net = PFPeak

(4)

such that net power (PFi,Net) equals the algebraic sum of the
total demand and PV generation as follows:

PFi,Net = PBLi − PPVi (5)

where PFPeak and PFmin are the forecasted peak and minimum
load periods for the next day. Moreover, ∈ is the small positive
number designed to force BMES for charging during low
loading and/or high PV generation periods. In addition, higher
values of Ci’s during peak periods and/or low PV generation
allows the BMES to discharge. This approach effectively helps
to reduce the peak demands on the system. Moreover, it is



worth mentioning that the BMES charging/discharging is con-
strained by battery operational boundaries and desired demand
regulation/reduction. At each time step (∀i = 1 : N ), the
BMES is constrained by ramping rates, charging/discharging
power, and state of charge (SOC) limits as follows:

0 ≤ PBTi,Chg < PBTMax

−PBTMax < PBTi,Dsg ≤ 0
(6)

RUp < 4PBTi,Chg/Dsg ≤ P
BT
Max

RDn < 4PBTi,Chg/Dsg ≤ P
BT
Max

(7)

SOCMin ≤ SOCi ≤ SOCMax

SOCi+1 = SOCi +
PBTi,Chg/Dsgδt

BMESCap

(8)

where PBTn,Chg/Dsg is the charging/discharging power of BMES
that is subjected to its maximum rated power PBTMax, RUp/Dn
is the allowable up/down ramping rate, SOCi is the SOC of
BMES at ith time slot subjected to its minimum and maximum
limits SOCMin/Max, and BMESCap is the BMES energy
throughput. The first set of constraints (6) is designed to keep
the charging/discharging of BMES within the allowable rated
power, while the second set of constraints (7) prevents the
BMES from ramping up/down for smaller values. Finally,
the third set of constraints (8) is designed to keep the SOC
within the predefined boundaries. Particularly, (7) and (8) are
designed to keep BMES state of health in better conditions as
well as to operate the BMES in the operating regimes that
have higher efficiency. In addition, the BMES operation is

Fig. 3. High-level flow chart of the proposed algorithm.

constrained by the following equality constraints to ensure the
consumer requirement/comfort.

SOCi=1 = SOCi=N (9)

where SOCi=1 is the SOC of BMES at the beginning of the
day and SOCi=N is the SOC at the end of the day. This
constraint is designed mainly to keep the total energy content
within the BMES to a constant value by the end of the day.
The optimization is further subjected to constraint related to
demand reduction targets as follows:

(PBLi − PPVi + PBTi,Chg/Dsg) ≤ (α+ ε1) · PFPeak
(PBLi − PPVi + PBTi,Chg/Dsg) ≥ (β + ε2) · PFi,Net

(10)

where α and β are the user set targets for reducing the peak
demand and filling the valley respectively, ε1 and ε2 are the
relaxation variable, and PFPeak is the day-ahead forecasted
peak load. This constraint gives an additional option for
the BMES owner/user to set demand reduction targets if
desired. For instance, if the consumer set targets do not
meet (i.e., optimization does not converge), we relax the
consumer set points and determine the best BMES schedules
that gives convergence to the problem. In addition, to satisfy
the user requirements, the optimization is further constrained
by defining different blocks of time for charging and/or
discharging. For instance, the BMES is prevented from
discharging during certain time slots (e.g., low load, minimum
price, or maximum PV generation) and vice versa.

PBTi,Chg/Dsg ≥ 0 t1 < i < t2 (11)

PBTi,Chg/Dsg ≤ 0 t3 < i < t4 (12)

where t1 through t4 are different time slots used to
prevent/force BMES from charging or discharging at certain
blocks of time. For instance, (11) forces the BMES to
charge during the interval t1 through t2, while (12) forces
the BMES to discharge during the time interval t3 through
t4. It should be noted that multiple time periods can be
set to direct BMES for charging/discharging per BMES
owner preferences/requirements. If there are no such user
preferences, constraints (11) and (12) can be discarded.

The optimization problem (3) is solved with constraints (6)
through (12) using a dual-simplex solver in the optimization
toolbox of MATLAB. The optimization results in optimal
BMES schedules that reduce the peak demand, and in turn
the demand charges for the BMES users. As electric utilities
normally set demand charges based on the 15-minutes
peak demand on a monthly basis, the performance of the
proposed method should be evaluated either using monthly
demand profiles or using a demand profile of the maximum
demand day in a month. In this study, we have used the later
approach to demonstrate the performance of the proposed
control algorithm. However, it is worth mentioning that
the proposed algorithm is generic and suits any time-frame
without remarkable changes.

B. Near Real-Time Adaptive Smoothing

As described in the preceding sections, the optimum BMES
schedules are made on the basis of forecasted demand and PV
generation profiles. Note that the forecasted onsite generation



can be tied with weather predictions and/or physics based
models for better accuracy. Nevertheless, even though those
schedules best serve for short-term planning purposes, they
need additional adjustments in actual operation to cope with
any uncertainties that may occur due to forecasting errors or
any other unforeseeable events/contingencies. We proposed a
second control stage that updates the BMES near real-time (1-
minute resolution) to smooth out those contingencies and PV
intermittencies. The key purpose is to compensate small spikes
due to load/generation variations that may otherwise contribute
to an increase in peak demand and demand charges. To do
so, the BMES scheduled power (PBTChg/Dsg) is updated every
minute using the observed measurements. The updated control
signal for BMES is computed as follows:

PBT,UpdChg/Dsg = PBTChg/Dsg +
1

KT

∫ b

a

(PANet − PFNet)δt (13)

where PBT,UpdChg/Dsg is the updated BMES reference control signal
computed through the difference between the actual measured
and forecasted values of the net power, and a and b are the
time interval in which the BMES schedules are updated. In
our case, a and b are set to ensure the updates at every
minute. This approach is very effective not only to smooth
out the PV generation variabilities in smaller time resolution
but also to follow the reference load signal that may stem from
the local and/or upstream grid requirements. In the presented
study, the real-time control algorithm is designed to keep
the scheduled BMES operation intact. As depicted in Fig.
3, the BMES schedule gets updated periodically considering
load/generation uncertainties and battery operating boundaries,
and the coordination among two control stages is realized by
using an intra-slot (every 15 minute) and inter-slot (near real-
time) control mechanism.

IV. IMPLEMENTATION AND RESULTS

A 24-hours time sweep simulation is performed in a co-
simulation environment using MATLAB and LabView. Par-
ticularly, all the computations, including optimization, are
performed in MATLAB, while the time-series simulation,
including near-real time control, is performed in LabView.
The Performance of the proposed algorithm is demonstrated
through three operating scenarios: low, medium, and high pen-
etration of onsite PV. The economic performance is evaluated
using the time-of-use (TOU) electricity price and demand
charges taken from Southern California Edison’s TOU-GS-2
Option B rate structure [22]. Particularly, the demand charge
of 16.20/kW and TOU electricity price as illustrated Fig. 4
are used for the simulation purposes. The details of each
simulation scenario and its effectiveness are described in the
following subsections.

A. Scenario I: Low Penetration of Onsite PV

This scenario is primarily designed to emulate the effective-
ness of the proposed method in a contemporary PV penetration
scenarios; that is to say low PV penetration. In particular,
the simulation is performed with approximately 15% PV
penetration. According to the proposed algorithm, first, day
ahead cost-optimal scheduling is done for the BMES for
every 15-minutes time-slot by considering BMES operational
boundaries, onsite PV generations, and load demands. Fig.

Fig. 4. TOU electricity price used in the simulation.

5a) illustrates the day-ahead forecasted values of demand,
PV generation, and energy throughput to/from BMES. As
demonstrated in Fig. 5b), the BMES is scheduled to discharge
during a peak load period to reduce the peak demand and, in
turn, demand charges. Similarly, the BMES is scheduled for
charging during the periods when the feeder loading is lower.
Looking from the TOU perspective (Fig. 4), it is seen that
BMES is scheduled for charging during cheaper electricity
price periods (e.g., late night and/or early morning) while
scheduled for discharging during peak periods.

The optimal operational schedule from the first (schedul-
ing) stage primarily forms a reference control signal to the
second (near real-time) control stage. However, number of
uncertainties (e.g., generation intermittencies, load spikes,
and contingencies) that could occur during actual operation
may deviate the BMES operational profiles from the cost-
optimal schedules. As shown in the Fig. 5c), small variations
(+ve/ − ve) on load/generation occur quite frequently over
the day. As those spikes may contribute to increase the peak
demand, it is necessary to smooth them out in the smaller
time frames. Near real-time control stage updates the BMES
schedules every minute (1-minute resolution control) per ob-
served intermittencies/variations in order to smooth out those
deviations. It is seen in Fig. 5d) that BMES operates with a
faster switching (charging-discharging) within a narrow range
to keep the overall demand profile as scheduled. The near real-
time control thus serves as a great tool for compensating the
onsite PV generation and short load spikes.

Fig. 5. Simulation results with low penetration of onsite PV.

B. Scenario II: Moderate Penetration of Onsite PV

Scenario II is performed to demonstrate the effectiveness
of the proposed method with PV penetration in 5 to 10 years



from now; that is to say moderate PV penetration. In particular,
the simulation is performed with approximately 30% PV pen-
etration. In this case also, a day-ahead cost-optimal scheduling
is first determined for the BMES considering its operational
boundaries, onsite PV generations, and load demands. Fig.
6a) illustrate the 24-hours operating profiles of the microgrid
system with and without PV and BMES, while Fig. 6b)
illustrates the day ahead BMES schedules for the next 24-
hours of the day. It can be seen that the BMES is scheduled
to discharge during peak load period to reduce the demand
charges, while scheduled for charging during the periods when
the feeder loading is lower and PV generation is higher. The
main take away from this scenario is that, unlike the previous
case (LowPV), the BMES is scheduled for charging during the
afternoon period when PV generation is relatively high.

Similar to the previous case, the near real-time control is
activated with 1-minute of resolution to compensate any devia-
tions on BMES optimal schedules made during the scheduling
stage. As illustrated in Fig. 6c), the overall load looking from
the upstream grid and/or utility looks pretty spiky. This would
ultimately increase the peaks and woudl pose potential issues if
the microgrid is participating in any regulating and balancing
purposes. With the proposed 1-minute based control, all the
spikes that may be encountered during the actual operation are
compensated simply by making the reference load-following
algorithm. It should be noted BMES should always be kept
with a small (10% in our case) additional capacity to com-
pensate those load and/or PV generation variability. One big
difference compared to the low PV penetration case is that it
results in more cost shaving and draws less power from the
grid, thereby reducing the cost significantly as in Fig. 7.

C. Scenario III: High Penetration of Onsite PV

The key purpose of emulating Scenario III is to analyze
how BMES owners get benefited using the proposed method
with an increased penetration of onsite PV. The simulation is
performed with a high (approximately 50%) PV penetration.
The day-ahead cost-optimal BMES schedules, as illustrated in
Fig. 8a) and Fig. 8a), are first determined using a forecasted
scenario of onsite PV generation and load demand. It is
demonstrated that the BMES is scheduled to discharge during
a peak load period similar to the previous case, but charge
during the afternoon when the PV has high generation. Even
though the load from mid-night through early morning is quite

Fig. 6. Simulation results at moderate penetration of onsite PV.

Fig. 7. Total cost (TOU+ demand charges) expressed on per day basis.

low, the BMES is scheduled to use the available PV generation
efficiently by utilizing the PV power for charging. Similar to
the previous case, any load and/or PV generation uncertainties
that may stem from forecast errors and unexpected operating
scenarios, as shown in Fig. 8c), are compensated for by
forcing the BMES to capture those uncertainties. In particular,
the control signal to the BMES is updated every minute
considering the deviations shown in Fig. 8d). In addition to
the peak shaving and load following, the proposed method can
absorb PV over-generation and contributes positively to avoid
grid over-voltage that may occur due to high PV penetrations.

As illustrated in Fig. 7, the total cost, which comprises the
electricity cost as well as the demand charges, is significantly
lower in the case of high onsite PV penetration compared to
the other two cases. Moreover, it can be observed that the
difference in total cost between with and without BMES is
significantly high in each case, while the difference is highest
in the case of high PV penetration. In fact, the total cost with
BMES is significantly lower than that of the case without the
BMES in all three scenarios.

Fig. 8. Simulation results at high penetration of onsite PV.

V. CONCLUSION

We presented a multi-timescale control algorithm to
exploit BMES benefits in reducing demand charge and
smoothing onsite PV variability. First, the BMES schedule
is determined to reduce system peak and in turn demand
charges considering forecasted PV generation, electricity
demand, and BMES operational boundaries. Those schedules
form a reference control signal for the second stage, which
smooths out load/generation spikes with shorter resolution
(near real-time) control by enabling BMES to absorb those
deviations. The performance of the proposed method is
demonstrated through the 24-hours time sweep simulation for



three operating scenarios, namely low, moderate, and high
penetration of onsite PV. The simulation results demonstrated
that this is a simple yet sufficient method for peak shaving
and demand charge reduction. More importantly, the near
real-time control enables the proposed method to serve as
an effective tool in load following and compensating the
PV intermittency that may stem from forecast errors and/or
rapid/random fluctuations on the loads.
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