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Abstract—Low-resolution isotope identifiers are widely de-
ployed for nuclear security purposes, but these detectors cur-
rently demonstrate problems in making correct identifications in
many typical usage scenarios. While there are many hardware
alternatives and improvements that can be made, performance
on existing low resolution isotope identifiers should be able to
be improved by developing new identification algorithms. We
have developed a wavelet-based peak extraction algorithm and
an implementation of a Bayesian classifier for automated peak-
based identification. The peak extraction algorithm has been
extended to compute uncertainties in the peak area calculations.
To build empirical joint probability distributions of the peak
areas and uncertainties, a large set of spectra were simulated in
MCNP6 and processed with the wavelet-based feature extraction
algorithm. Kernel density estimation was then used to create
a new component of the likelihood function in the Bayesian
classifier. Identification performance is demonstrated on a variety
of real low-resolution spectra, including Category I quantities of
special nuclear material.
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I. INTRODUCTION

Since the September 11th terrorist attacks, the United States
has spent on the order of $1 trillion on homeland security and
anti-terror efforts; this includes approximately $150 billion on
either failed projects or equipment that does not work as well
as intended [1]]. These failed projects range from $3.5 billion
on motion sensor and camera networks along the US-Mexico
border [2]] to $230 million on prototype tests for new radiation
portal monitors [3]]. This also includes many millions spent on
handheld radioisotope identifiers.

Handheld radioisotope identifiers (RIIDs) are used to detect
and automatically identify radioactive material in a wide
variety of settings. From shipping ports to explosive ordnance
disposal to border security checkpoints, these identifiers are

relied upon for security. Generally, these detectors use a
sodium iodide (Nal) spectrometer because of their relatively
low cost and reasonable efficiency over a broad range of field
conditions.

There is a need to improve the identification performance of
these detectors, ideally without substantially increasing their
costs. Published evaluations of these commercial detectors
have demonstrated that their identifications are not generally
accurate [4], [5]], [6]. Unfortunately, more recent evaluations
of these commercial detectors have not been published, likely
due to security or commercial concerns.

It has been suggested [4] that the focus for performance
improvements should be the isotope identification algorithms
used by these detectors. While the spectra they take are low-
resolution, a trained spectroscopist can generally make highly
accurate identifications using these spectra, implying that the
ID algorithms are potentially problematic [7], [8]. The U.S.
Department of Energy (DOE) requires trained spectroscopists
to be on call at all times to analyze unknown spectra and
resolve alarms [7]], further suggesting that these identification
algorithms are out-performed by knowledgeable humans.

The lack of recent and consistent performance benchmarks
along with the relatively small number of papers published in
isotope identification make it difficult to identify at particular
state-of-the-art approach. Existing algorithms for automated
isotope identification can roughly be categorized [7] into
library comparison methods [9], [10], region of interest tech-
niques, template matching [[L1], eigenvector methods (such
as principal components analysis [12]]), and more general
machine learning techniques (such as neural networks [13],
[14], [15D).

There are several challenges for any automated identi-
fication algorithm. First, these handheld Nal spectrometers
have relatively low energy resolution, making it impossible
to resolve many of the photopeaks in a spectrum [5] and
limiting both the performance of the identification algorithms
and the methods for identification that are even applicable [16].
While other scintillator materials have much better energy
resolutions, their increased costs and, in some cases, their
decreased absolute detection efficiency make them infeasible
for the same wide-scale deployment as Nal detectors.

Second, Nal spectrometers are susceptible to temperature
changes [17]. As the temperature fluctuates, the energy cal-
ibration will change and the centroid of the peaks will shift
significantly. Some identification algorithms are unable to han-
dle the errors in peak centroid detection, leading to incorrect
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identifications.

Third, in most use cases for these detectors there is an
unknown amount of background radiation from terrestrial
naturally occurring radioactive material (NORM), from cosmic
sources, and from some manufactured materials. This can ob-
fuscate the spectrum and generally makes feature identification
in a spectrum more difficult. Some methods for isotope identi-
fication rely on background subtraction, in which a background
measurement is taken separately from the source measurement.
This introduces further uncertainties in the process and is not
always feasible for the implementations of these detectors.

Fourth, an issue for all isotope identification methods is
that the source activity and attenuating materials between
the source and detector are generally unknown. Attenuating
materials have multiple effects on spectra. They reduce the
total number of gamma-rays that reach the detector, making
counting statistics worse and photopeaks harder to resolve.
Shielding materials also preferentially attenuate lower energy
gamma-rays, often to the point of removing lower-energy
photopeaks from a spectrum. Finally, since the shielding
between the detector and the source is generally not the
same as the shielding between the detector and sources of
background radiation, intermediate materials will generally
decrease the signal to background ratio, further compounding
correct identification.

Finally, handheld RIIDs have limited computational capabil-
ities. These detectors are expected to be operable for several
hours on battery power, and as a result are limited on the
computational complexity of the identification algorithm. The
limitation can be significantly worse for applications where
a large isotope library is needed. Methods for identification
that might be feasible with a desktop computer may be too
time-consuming for portable applications.

The poor performance of modern isotope identification
algorithms prompts the development of new approaches, par-
ticularly ones more similar to the process a spectroscopist
would use to make manual identifications. To this end, we
have previously proposed a feature extraction algorithm using
a wavelet/non-negative least squares (NNLS) approach [18]],
[19], [20], [21] and a Bayesian classifier identification algo-
rithm [22], [23] for isotope identification.

To improve this isotope identification methodology, a novel
extension to the feature extraction algorithm to compute un-
certainty in the area fit has been developed. While various
methods for including this new information to the Bayesian
classifier are being explored, an empirical method using kernel
density estimation (KDE) is presented here. Finally, example
identifications on a set of real sources are presented.

II. FEATURE EXTRACTION WITH WAVELETS/NNLS

Excellent introductions to wavelet analysis exist elsewhere
[24], [25]); only a brief overview is presented here. The wavelet
transform can be formulated as a convolution integral or as
a tensor product. Both methods are presented for clarity.
A wavelet (t) is a zero-area, square-integrable signal that
is non-zero over a finite domain. An example wavelet (the
‘bior2.6’ wavelet, a member of the biorthogonal family [26])

is shown in Figure [T The wavelet is shifted by parameter F
1

and scaled by parameter a, as:
t—FE
o(t) = . 1
v = 2o (2F) 1)

The continuous wavelet transform (CWT) of a signal f(¢)
is the convolution integral of the signal and the wavelet:

t—F
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By computing the CWT of a spectrum over a range of scales
and shifts, peak information can be extracted. Consider the
perfectly Gaussian signal and its CWT in Figure 2| Maxima
in the CWT are colocated with the peak. By finding the local
maxima over the shift parameter, wavelet transform modulus
maxima (WTMM) lines are formed. Finally, finding maxima
along the WTMM lines gives peak width information.

In reality, some of the WITMM lines in a CWT are not
useful for peak detection. There are many approaches for
filtering out these unneeded maxima [20]. Most importantly,
a photopeak in a spectrum that was collected with an Nal
detector has a width that is determined by the photopeak’s
energy. Because this relationship is known, an optimal scale
curve can be computed. The optimal scale «(E) is the scale
that produces a maximum in the CWT of a perfectly Gaussian
photopeak with mean E and full-width at half-max (FWHM)
that matches the detector’s FWHM vs E curve.

To get better estimates of peak centroid and to obtain area
information, non-negative least squares fitting is performed
with a predetermined basis matrix. However, the NNLS is
more easily defined using the algebraic formulation of the
wavelet transform approach. Let S be the (1024x256) matrix
of values from the CWT of X. Then the wavelet transform
can be expressed as

Si’j = Wi’jX (3)

where X is the spectrum (a 1024x1 vector), and W ; is a
1x1024 row vector of the wavelet transform with scale index
1 and centroid index j. Compared to the integral formulation
before:

Si,j = T(El, aj). (4)

Next, define:

o G := a normalized (area equals one) Gaussian function
with centroid (mean) in channel j and a standard devi-
ation that matches the full width at half-max (FWHM)
response of the detector. A 1024x1 vector.

o [CWT(f)] := the CWT of signal f along the optimal
scale only. A 1024x1 vector.

o B;j :==[CWT(G,)]; , the basis matrix. For this work, B
is a 1024x256 matrix [18].

Given the basis matrix B, NNLS is performed to find the
fit vector k, whose nonzero elements ideally represent the
identified peaks. In NNLS, a submatrix of B is defined by
setting some columns of the basis matrix to zero to minimize
the fit vector error subject to the nonnegative constraint. The
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Fig. 2. Top: a Gaussian signal. Bottom: The wavelet transform of the signal.
The WTMM line (solid) and the maximum along the WTMM line (white
‘x’) give information about the peak centroid and peak width. Comparing the
scale at maximum transform value against the optimal scale curve (dashed)
gives a sanity check for peak widths.

window of nonzero columns is chosen as a function of peak
width. This window must be suitably wide to have enough
peak information for accurate fits, but small enough that other
spectral features (Compton edges, other significant peaks, etc.)
are not included if feasible. Let B; be this submatrix of B.

Bk = S &)
BIBik = BTS. (6)
If the inversion exists, the solution can be written explicitly

as:

k =
O =

(B{ B1)"'B{ 8 = 0S (7
(B By)"'BY. (8)

However, the matrix B?Bl is singular. To avoid this issue,
truncated singular value decomposition (TSVD) is used here.
In TSVD, B; is decomposed as U EVT, where U and V are
unitary matrices and F is a diagonal matrix of non-negative
real numbers. The pseudoinverse of B; is then VETU T
where E7 is a pseudoinverse of E. The diagonal elements of
E™ are simply the reciprocal of the corresponding elements
in E. In TSVD (vs the usual singular value decomposition),
these diagonal elements are set to zero if they are below a
user-defined threshold.

v JELFE =001

= 9
o if £, <0.01 ©

Here, 0.01 is a manually defined threshold. Finally, the fit
vector is computed by:

B, = UEVT
k = VETUTS.

(10)
(1)

A. Area Uncertainty

To augment the isotope identification algorithm, the variance
of the fit vector k is computed. This information can be used
as a peak filter (e.g. reject peaks with peak uncertainties over
a threshold) or as additional information in an isotope identi-
fication algorithm (e.g. weight peaks with a lower uncertainty
more than high uncertainty peaks in a peak scoring algorithm).
Let C'g be the covariance of the coefficient matrix S and C'x
be the covariance of the signal X. If S is uncorrelated, Cg
can be calculated simply as:

2
o1

1

m—-n

Cs = (12)

13)

oy = ST(I — B,0)S.
where m—n is the degrees of freedom of the submatrix B; and
o2 is the variance of the signal. This variance is primarily due
to Poissonian noise, and can be estimated using the coefficients
of S at small scales.

However, Cg is generally not uncorrelated and will be a
function of the covariance of the signal Cx. Suppose C'x =
Io?2. Then:

wo,w7T
oc,07

Cs =
Cry =

(14)
5)

and the variance of vector k is diag(Cs).

In this approach, it is possible that the fits obtained through
the NNLS process are not accurate representations of true
peaks. In this case, the area uncertainties calculated may not
have the same interpretation due to incorrect assumptions in
their derivation. However, in practice when this happens the
computed uncertainties are generally significantly larger than
those for true peaks. These uncertainties can then be used as
an indicator that a fit is not good, and the poor fits can be
rejected with a threshold filter.

III. FEATURE EXTRACTION DEMONSTRATION

To demonstrate the feature extraction code, a %4Eu spec-
trum with excellent counting statistics and a '®2Eu spectrum
with poor counting statistics were processed. These two spec-
tra are shown in Figure [3]

First, the smooth spectrum of ®*Eu was processed for peak
information. >*Eu has a over a hundred gamma-ray emissions,
only a few of which are resolvable with an Nal detector.
A comparison of the larger gamma-ray emissions [27] and
the peaks produced by the feature extraction code are shown
in Table [II With the exception of the 38.6 keV peak, the
uncertainties of all of the detected peaks are small. For the
38.6 keV peak, a larger uncertainty was found due primarily to
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Fig. 3. A 60 s spectrum of >4Eu (top) and a 3 s spectrum of 1>2Eu (bottom)
used to demonstrate the feature extraction performance.

the small fitting window and the low peak area to background
ratio at these low energies.

Of the peaks that were not detected, the 756.8 keV peak is
overshadowed by the much larger 723.4 keV. The 996.3 keV
peak is too close to the 1004.8 keV peak to be resolvable with
an Nal-measured spectrum. Finally, the highest energy peaks
were not detected, though a peak around 1595 keV is visible
to a human observer in the spectrum.

Next, a 3 second spectrum of '*?Eu is analyzed for peak
information. Similarly to the previous example, >Eu has 138
gamma-ray emissions above 50 keV, but most of these are
not resolvable with an Nal detector. In this example, much
larger uncertainties are observed. First, while a peak at 569.3
keV was reported, the uncertainty of 50.2% is large enough
to suggest it may not be a real peak. However, a peak was
also detected at 964.5 keV with an uncertainty of 47.3%, and
this peak clearly does correspond to a true peak. In this case,

the uncertainty alone is not a suitably informative indicator to
determine the validity of peaks without other information.

IV. MODIFYING THE IDENTIFICATION ALGORITHM

Previously, we developed a Bayesian classifier approach to
isotope identification [23]], [28], [29]. Using the peak energies
and areas found with the feature extraction code, this algorithm
scored each of these features against an isotope library con-
taining peak energies and branching ratios only. These scores
are combined to compute the likelihood P(D|M;) of data D
for each model M; in the isotope library.

After computing the likelihoods for each model, the pos-
terior probability P(M;|D) of model M; is computed with
Bayes’ Theorem:

= S P(D[My)r(M;) (16)

where 7(M;) is the prior probability of model M;, or how
probable that model M; is correct without accounting for the
data D. There are many options for constructing the prior.
Currently, a simple prior that depends only on the number
of isotopes in a model is used, with the prior decreasing
as more isotopes are added to a model. This prior does
not weight any combination of isotopes more strongly than
another combination of the same number of isotopes. While
this prior is almost non-informative, it is used to demonstrate
that identification results are not relying on a prior distribution
that unfairly biases it towards the desired answer.

This yields a probability measure for each model in the
library. The scoring functions are built such that the models
are orthogonal, e.g. P(D|M; and Ms) = 0. Practically, this
means that if M; is the model of a single source of ?*!Am,
then P(M;|D) is the probability that 24! Am is the only source
present for the spectrum measurement.

To account for the area uncertainty information, the
previously-developed likelihood calculation must be modified
[29]]. The likelihood is approximated as the product of four
scoring functions:

TABLE I
EU-154 FEATURE EXTRACTION RESULTS
Expected  Branching Fit Fit Fit
Energy Ratio Energy Area Uncertainty
43.0 0.132 38.6 61079 0.306
123.1 0.405 123.7 1.24E5 0.153
248.0 0.066 249.5 54500 0.012
- - 346.8 26016 0.010
591.8 0.0484 594.6 22059 0.009
723.4 0.197 732.4 26645 0.012
756.8 0.0434 - - -
996.3 0.1029 - - -
1004.8 0.179 1004.0 17189 0.027
1274.5 0.355 1273.5 11350 0.005
1593.0 0.0103 - - -
1596.6 0.0183 - - -
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P(D|M;) = frrfprfrpfar. a7
TABLE II
EU-152 FEATURE EXTRACTION RESULTS
Expected  Branching Fit Fit Fit

Energy Ratio Energy Area Uncertainty

121.8 0.284 121.2 4777.1 0.104

2447 0.075 250.6 1760.1 0.047

3443 0.266 3425 23926 0.032

411.1 0.022 - - -

4439 0.028 - - -

- - 569.3 562.7 0.502
778.9 0.130 772.3 667.7 0.156
867.4 0.042 - - -
964.1 0.145 964.5 4717.6 0.473
1085.9 0.099 - - -
1089.7 0.017 1096.6  595.2 0.048
1112.1 0.136 - - -
1408.0 0.208 1416.1 316.9 0.073
1457.6 0.050 - - -
1528.1 0.027 - - -




This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNS.2017.2676045, IEEE

Transactions on Nuclear Science

Each of these scoring functions considers a different subset of
the data and is described in depth elsewhere [23]], [29].

e frr: scores which peaks in the library model M; are
possibly represented in the dataset D

e fpr: scores which peaks in the data D are possibly
represented in the library model M;

o fpp: scores how well the data peak energies match the
library peak positions in energy

e fagr: scores the peak areas by examining the ratios of
areas of neighboring peaks

The incorporation of the area uncertainty information in-
volves reconstructing only one term, f4pr. The modularity of
this approach to isotope identification is a major advantage;
it allows for simple modifications to the algorithm to account
for new information.

A. Constructing far

In the identification algorithm, peak area information is
incorporated by scoring the ratios of peak areas of neighbor-
ing peaks. Using the area ratios largely eliminates the need
for information about the source activity and geometry and
reduces the effects of shielding somewhat when the peaks are
close in energy.

Let A; and A, be the peak areas found with the
wavelet/NNLS algorithm with peak energies E; and E5 re-
spectively (Fq < E3), and let u; and ugy be the corresponding
area uncertainty percentages. Then the area ratio r = A;/As
is scored against the expected area ratio R. In an ideal
spectrum with perfect counting statistics and no attenuation,
the observed ratio 7 should be the same as the expected R.
In reality, intermediate materials will reduce this ratio, the
significance of which depends on the materials and the peak
energies. Poor signal-to-noise ratio (SNR) can dramatically
increase or decrease the observed R, depending on the areas
of each of the peaks.

Ideally, the effect of the SNR will be captured in the peak
uncertainties u; and uo. For small uncertainties, this effect
should be minimal, and the observed ratio should be the
same (little effect from shielding) as the expected ratio or be
somewhat less (more effect from shielding materials). When
uy is large but us is small, only some additional deviation in
the observed r is reasonable, as varying A; by 20% changes
r by 20%. However, when uy is large, the observed ratio
may be wildly different than the expected ratio, and the peak
area information should only contribute weakly to the isotope
identification.

To build this scoring function, 200,000 spectra were simu-
lated in MCNP6. The simulation geometry assumed a model
of an Ortec 905-3 Nal detector [30]. For each simulated
spectrum, random energies and branching ratios were sampled
from uniform distributions, and a point source with these char-
acteristics was created. Cosmic and terrestrial backgrounds
were not included in the simulations. Including these back-
grounds would either increase the area uncertainties slightly
or, in some cases of source photopeaks overlapping with back-
ground peaks, cause peaks to be missed by the wavelet/NNLS.

The wavelet/NNLS algorithm then extracted peak informa-
tion from each of these simulated spectra. For each spectrum,
this consists of a pair of peak energies, areas, and area
uncertainties.

Finally, the probability density was estimated using kernel
density estimation (KDE). During isotope identification, this
expected area ratio R is the ratio of the branching ratios for the
two photopeaks, convolved with detector efficiency. However,
at this stage, the expected area ratio R is known from the
simulation stage.

KDE 1is wused to directly estimate the probability
P(r,u1,us, R). However, an isotope should not be penalized
for the area uncertainties, but instead should be evaluated on
the observed data ratio r as a function of the area uncer-
tainties and the library ratio. Further, it is actually desired
max far(r,ui,us, R) = 1 instead of being a normalized
probability density (integrating to one). An arbitrary scaling
factor can be introduced without breaking the identification
algorithm; with the normalization term in Bayes’ Theorem
(Equation [T6)), the normalization constant will drop out. This
scaling factor makes tuning the individual terms in the likeli-
hood estimation easier, but could be excluded if desired.

The area ratio score is set to be proportional to the condi-
tional density P(r|uy, us, R):

P(r|u1, Usg, R)
max, P(plu1,usz, R)

far(r,ur,ug, R) := (18)

An example of this scoring function are shown in Figure
Ultimately, the shape of this function is similar to previous
models for the area ratio [23]], [29], but the area uncertainties
can scale and distort the score. In general, if the observed area
ratio r is close to the expected (library) area ratio R, a high
score (no penalty) is assigned. As the difference between r
and R increases, the score decreases (penalty increases). The
penalty is much more severe for r > R than for r < R; the
effect of attenuating materials is to reduce the observed ratio r
because lower energy peaks are more strongly attenuated than
high energy peaks.

It is important to note that while this scoring function was
constructed in the absence of background radiation, it can
be used for identifications on spectra with the backgrounds
included. The true distribution for area ratios and uncertainties
depends on many unknown variables, such as the geometry,
background concentrations of each NORM isotope, and more.
The empirical distribution found here is essentially a first order
approximation, where all of these unknown variables are fixed.
The significance of these fixing these variables and the effects
on the empirical distribution are to be explored in the future.

V. EXAMPLE IDENTIFICATIONS

Example spectra have been collected with an Ortec 905-
3 2”x2” Nal detector; spectra are shown in Figure [5 and
identification results are shown in Table Background
subtraction was not performed on any of these test cases;
this often leads to the identification of 22Th decay chain
and/or 4°K in addition to the radiation source of interest. The
backgrounds are also not the same across all test cases; the
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Fig. 4. An example of the area scoring function for library ratio R = 3 and
u1 = uz = 10%. If the observed ratio r was the same as the library ratio
R, a high score (no penalty) would be assigned. However, if the observed
ratio is significantly different, a lower score (larger penalty) is given, with the
severity dependent on the difference between the library and observed ratios.

first two spectra were measured in Los Alamos, NM, while
the latter three were measured at the Nevada National Security
Site. Identification results on test spectra are promising, and
suggest several routes for algorithm improvement.

In the first test case, the large 136.0, 264.6, and 400.7 keV
peaks of 75Se are easily detected. The smaller peak at 303.9
keV was also detected; however, the area of this peak was
found to be larger than expected. Because 57Ga also has a
peak at 300.2 keV, the combination of 4"Ga and 7°Se would
result in a larger peak at 300 keV, which lead to a partially
incorrect identification overall. A more accurate fit of the
303.9 keV peak would improve this result, as would a more
informed prior distribution. Alternatively, a cost function that
more strongly penalizes adding extra isotopes would likely fix
this test case.

In the second example, in addition to the correct source
identification, 232Th is predicted. While 232Th is often cor-
rectly identified as a component of terrestrial background ra-
diation, the production of 233U includes a small 232U impurity
due to various (n, 2n) reactions, which eventually decay to
Z32Th, This leads to a higher concentration of 232Th and its
decay chain in the spectrum.

In the last three examples, the sources have significant self-
attenuation due to their size, as well as additional shielding
materials in the third and fifth examples. While the shielded
cases were identified correctly, the unshielded weapons-grade
plutonium (WGPu) also included a false identification of 12°1
in addition to 2! Am and ?*°Pu due to the peak at approx-
imately 26 keV. 1251 has significant emissions at 27.2, 27.4,
31.0, and 31.9 keV, which the identification code considers
a reasonable match for 26 keV. This would be corrected
in hardware by increasing the lower-level discriminator to
approximately 40 — 50 keV.

There are other areas for improving identification perfor-
mance. First, further tuning of the parameters of the wavelet
code should be explored in order to improve sensitivity to
small or overlapping peaks and to reduce false alarms.

Second, further model refinement for the likelihood calcula-
tion in the isotope identification code is needed. This includes
increasing the number of spectra used in the empirical mod-
eling of the area scores, incorporating other data features into
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Fig. 5. Example spectra used for test identifications. With the exception of
the 233U spectrum (300 s), all spectra were measured for 60 s. The spectra
were also not all collected in the same location, leading to different levels of
background radiation from 49K and the 232Th decay chain.

the identification process, and a parameter optimization across
all of the models. Besides generally improving performance,
the identification code could be tuned to allow for a higher
false alarm rate in the wavelet/NNLS code, which will allow
the sensitivity of the wavelet/NNLS algorithm to be increased
further.
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TABLE III
EXAMPLE IDENTIFICATION RESULTS. ALL SPECTRA WERE MEASURED
WITH AN ORTEC 905-3 2”X2” NAI DETECTOR AND ARE NOT
BACKGROUND-SUBTRACTED.

# Source Amount | Shielding | Dist | Time ID
Se-75,
1. Se-75 0.54 mCi - 50 cm | 60 s | Th-232,
Ga-67
U-233,
2. U-233 lg - 100 cm | 300 s Th-232
HEU: 1.2 cm
3. 93.2% U-235 13 kg Fe 120 cm | 60 s | U-235
WGPu: Pu-239,
4.1 93.7% Pu-239 4.5 kg - 120 cm | 60 s | Am-241,
557 ppm Am-241 1-125
WGPu:
5.| 93.7% Pu-239 | 4.5 kg l'i]:m 120 cm | 60 s E‘I’I'lzzf’fi
557 ppm Am-241

Finally, the Bayesian classifier utilizes a simple prior prob-
ability distribution and uniform cost function. These could be
changed to improve performance towards specific benchmarks
or applications, but their simple forms have been kept for
developing the rest of the identification code and to demon-
strate that our performance is not being specifically driven by
a specific choice of prior distribution or cost function.

VI. CONCLUSIONS

A wavelet/NNLS approach to peak detection and quantifica-
tion has been developed. This method can extract peak energy,
area, and area uncertainty measurements from a spectrum.
Modifications of the isotope identification code have been
developed to incorporate the new area uncertainty information
into the likelihood modeling using an empirical approach.
Future work on the feature extraction algorithm will focus on
improving sensitivity to overlapping and small peaks, while
development of the isotope identification algorithm will center
on improving the new area uncertainty modeling and on
parameter optimization.
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