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ABSTRACT 
 

Electric field and magnetic field reflection and transmission responses generated by a plane wave 
normally incident onto a finite-thickness geologic layer are mathematically derived and numerically 
evaluated.  A thin layer with enhanced electric current conductivity and/or magnetic permeability is a 
reasonable geophysical representation of a hydraulic fracture injected with a high-contrast proppant pack.  
Both theory and numerics indicate that backward- and forward-scattered electromagnetic wavefields are 
potentially observable in a field experiment, despite the extreme thinness of a fracture compared to a 
typical low-frequency electromagnetic wavelength.  The First Born Approximation (FBA) representation 
of layer scattering, significant for inversion studies, is shown to be accurate for a thin layer with mild 
medium parameter (i.e., conductivity, permeability, and permittivity) contrasts with the surrounding 
homogeneous wholespace.  However, FBA scattering theory breaks down for thick layers and strong 
parameter contrasts.             
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1.0 INTRODUCTION 
 
In seismic reflection exploration, a thin geologic layer in defined as one with thickness less than about 
one-fourth wavelength of an incident plane wave (Widess, 1957-58; 1973).  In this case, distinct 
reflection arrivals from top and bottom bed boundaries are difficult to recognize.  Information regarding 
layer thickness and material properties is encoded in the amplitude of the composite (reflected and/or 
transmitted) response.  Due to the significantly larger wavelength of a diffusing electromagnetic (EM) 
wave, virtually all geologic layers would be considered extremely thin via this definition.  This is 
particularly true for a single hydraulic fracture (~1 cm width) or even a fracture zone (~meters width).  
 
Seismic and (low-frequency) EM wavelengths are given by  
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where c is phase speed, f is frequency, and σ and μ are current conductivity and magnetic permeability. 
For example, the wavelength of a 30 Hz sinusoid propagating with a seismic velocity of 3000 m/s in an 
elastic medium is 100 m, whereas the analogous EM signal diffusing through a conductive body of 0.1 
S/m (clayey shale) has wavelength 1826 m.  This larger wavelength has implications for the resolution 
capabilities of the EM prospecting method. 
   
In this investigation, we restrict consideration to a normally-incident plane EM wave, and calculate 
reflection and transmission responses of a uniform-thickness layer embedded between two (possibly 
dissimilar) homogeneous and isotropic halfspaces.  Exact frequency-domain expressions for the electric 
vector E and magnetic vector B are obtained via two mathematical methodologies: 1) summing primaries 
and all intrabed multiples (the SEIS way), and 2) solving a boundary value problem by imposing 
wavefield continuity at the interfaces (the EM way).  The equivalence between the two approaches is 
rigorously established in Appendix C.  Time-domain responses are subsequently obtained by inverse 
numerical Fourier transformation. 
 
Our synthetic calculations predict observable E and B field responses, in both reflection and transmission, 
from layers that are several orders of magnitude smaller than the incident dominant wavelength. Large 
conductivity or permeability contrast of the layer, as with a hydraulic fracture injected with a suitable EM 
detection agent, enhances response amplitude. Contrary to LaBrecque et al. (2016), we find that 
permittivity contrast exerts negligible influence at the low frequencies typically used in EM geophysical 
exploration.  Interestingly, responses appear to be insensitive to the fixed (parameter × thickness) product, 
a result that agrees with First Born Approximation scattering theory.   
 
A significant portion of the present work involves developing the First Born Approximation (FBA) 
scattering representation of a thin geologic layer. Scattering of seismic waves by small-spatial-scale 
heterogeneities within Earth’s crust and mantle has long been examined via the Born approximation (see 
Hudson and Heritage (1981) and the references cited therein for early work in this area).  However, 
application of the FBA to electromagnetic wavefield scattering appears to be less common in the 
frequency band of interest in geophysics. The FBA involves replacing a perturbation in material 
properties (i.e., current conductivity σ, magnetic permeability µ, and/or dielectric permittivity ε) by an 
equivalent body source of EM waves.  A particular advantage of the present model (a geologic layer with 
plane parallel interfaces, subject to a normally-incident plane EM wave) is that FBA scattered responses 
(in backward/forward directions) generated by these effective body sources can be calculated exactly.  
Comparison with the previously-developed reflection/transmission responses of the layer then establishes 
conditions for accuracy of the Born approximation.  In particular, if the layer is thin (with respect to a 
wavelength of the incident EM wave) and has mild medium parameter contrasts with the surrounding 
wholespace, then FBA and actual responses agree well.  Very strong parameter contrasts, as with a 
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hydraulic fracture injected with highly conductive and/or magnetic proppant particles, lead to Born 
scattering amplitudes that greatly exceed the actual scattering amplitudes. 
 
In addition to providing a simple theoretical framework for understanding and analysing wavefield 
scattering, the FBA has practical utility for numerical algorithms used in simulating wave propagation 
through three-dimensional (3D) earth models.  A small-scale heterogeneity (say, a steel borehole casing 
with thickness ~1 cm) is difficult to accurately represent on a numerical grid.  Replacing this material 
parameter perturbation by an equivalent body source of waves (as in Aldridge, et al., 2015) may 
constitute a more feasible simulation approach.  Finally, the FBA underlies a recently patented process 
(Aldridge and Bartel, 2016) for imaging a subsurface hydraulic fracture injected with electrically 
conducting proppant.  The method had been applied to field-acquired EM data with some limited success 
(Palisch et al., 2016; 2017).  The theoretical evaluation of FBA accuracy contained herein will assist in 
understanding the limitations of this new imaging approach.                        
 
An obvious extension of the present investigation involves a non-normal incident plane wave, which 
offers the intriguing possibility of Electromagnetic Amplitude vs. Offset (EMAVO) analysis, analogous 
to the well-known seismic counterpart.  
 
In the following report, certain more mathematical and foundational topics (like plane EM wave 
propagation, reflection/transmission coefficients, First Born Approximation theory, and pulse-sequence 
mathematics) are reserved for the Appendices.  Interestingly, in the course of the development, we have 
“discovered” (or perhaps “rediscovered”) that the normal incidence plane wave reflection coefficient can 
be made to vanish (i.e., equal zero) by a suitable choice of the parameter contrast ratios for conductivity, 
permeability, and permittivity (see the development in Appendix B).  This result does not appear to be 
well-known in electromagnetic geophysics.  Perhaps the result may suggest an initial pathway toward 
developing a “reflectionless” or “transparent” material for EM waves.     
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2.0 PROBLEM DEFINITION 
 
2.1 Geologic Layer Earth Model 
 
Consider a one-dimensional (1D) electromagnetic (EM) earth model composed of three homogeneous and 
isotropic media.  Figure 2.1 depicts overburden, layer, and substratum, each characterized by the triad of 
isotropic EM parameters electric permittivity ε, magnetic permeability μ, and current conductivity σ.  
 
 

         
 
Figure 2.1.  Geometric setup of the geologic layer reflection / transmission problem.    
_________________________________________________ 
 
 
The layer is bounded by upper and lower plane horizontal interfaces located at z = ztop and z = zbot, 
respectively. 
 
Next, consider a downward propagating plane EM wave normally incident on the geologic layer from 
above. The wave will reflect from both the top and bottom interfaces, as well as reflect internally multiple 
times within the layer.  The totality of arrivals that return to a receiver zr < ztop constitute the layer 
reflection response. Similarly, the layer transmission response is composed of the direct (i.e., through-
going) arrival and all trailing intrabed multiples sensed by a receiver at zr > zbot.  In Figure 2.1, the 
raypaths associated with these many arrivals are displaced slightly from vertical for visual clarity.  In 
actuality, all rays are normal to the interfaces.       
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2.2 Incident Plane Wave 
 
The basic mathematics describing plane electromagnetic wave propagation within a homogeneous and 
isotropic body is developed in Appendix A.  In the frequency-domain, the x-component of a downward-
propagating electric vector within the upper medium #1 of Figure 2.1 is given by   
 

 ))((exp),(),( 1 ssincinc zziKzEzE   ,       (2.1) 

 

where ),( sinc zE  is the value at the source level z = zs, and K1(ω) is the complex wavenumber associated 

with medium #1 parameters.  The positive sign within the exponent corresponds to +z-direction 
propagation.  Generally, an electromagnetic complex wavenumber is given by 
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where the dimensionless function s(w) is defined as 
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s(w) is a positive and even function that approaches zero and unity as w → 0 and w → ±∞, respectively.  
The infinite-frequency phase speed c∞ and transition frequency ωt in equation (2.2) are defined by 
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respectively.  The transition frequency separates (roughly) the frequency ranges for electromagnetic wave 
diffusion (|ω| << ωt) and electromagnetic wave propagation (|ω| >> ωt). 
 
A low-frequency approximation to the complex wavenumber is 
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where sgn(ω) is the sign function (= ω/|ω| for ω ≠ 0, zero otherwise) and δ0(ω) is the null function (= 0 
for ω ≠ 0, one otherwise) (Bracewell, 1965).  The low-frequency approximation is independent of the 
electric permittivity ε.  A high-frequency approximation to the complex wavenumber is 
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is the infinite-frequency attenuation factor.  Retaining a non-zero imaginary part enables attenuation of a 
propagating high-frequency EM wave.  Otherwise, vanishing conductivity σ = 0 implies the complex 
wavenumber is K(ω) = ω/c∞ (i.e., pure real) appropriate for wave propagation without attenuation and 
dispersion. 
 
2.3 Reflection and Transmission Coefficients 
 
Frequency-domain expressions for normal incidence plane wave reflection and transmission coefficients 
are developed in Appendix B.  The physical boundary conditions imposed on the EM wavefields are 
continuity of the tangential components of both the electric vector E(x,ω) and the magnetic vector H(x,ω) 
at an interface.  At the top and the bottom interfaces bounding the embedded layer illustrated in Figure 
2.1, plane wave reflection coefficients are given by 
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respectively.  These forms correspond to a wave incident on an interface from above; for a wave incident 
on the upper interface from below, the corresponding reflection coefficient is –Rtop(ω).  Downward and 
upward transmission coefficients at the top interface ztop are   
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respectively. Straightforward algebra yields the well-known relation )(1)(12  topRT   (and 

correspondingly for the lower interface). 
 

The (downward × upward) transmission coefficient product )()( 2112  TT arises in the derivation of the 

total reflection response of the embedded geologic layer below. From equations (2.8a and b), we have  
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So, for a small reflection coefficient Rtop(ω), two-way transmission loss through the upper interface is 
negligible. 
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3.0 LAYER REFLECTION RESPONSE 
 
3.1 Electric Field 
  
The reflection response of the geologic layer is observed by a receiver placed on the same side of the 
layer as the source level:  zr < ztop.  Working directly with Figure 2.1, the total reflection response may be 
built up by summing the many arrivals indicated by the (deviated) raypaths.  Recall that Rtop(ω) and 
Rbot(ω) are the normal incidence reflection coefficients (for a downward propagating plane wave) at the 
top and bottom interfaces bounding the bed.  The reflection coefficient for an upward propagating plane 
wave encountering the upper interface is just ‒Rtop(ω).  Finally, T12(ω) and T21(ω) are downward and 
upward normal incidence transmission coefficients at the interface ztop.  The reflection response sum is           
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where the sum is terminated at N terms for convenience.  We will let N → ∞ shortly.  The first term 
within braces {} corresponds to the primary reflection from the upper interface.  The next term is the 
primary reflection from the lower interface, which includes two-way transmission loss through the upper 
interface.  Subsequent terms in the sum correspond to so-called “intrabed multiples”. [The term with 
exponent n on Rbot(ω) is actually the (n‒1)th intrabed multiple, with (n‒1) downward reflections at ztop and 
2n crossings of the bed.]  The two complex exponentials outside of the braces { } carry the 
electromagnetic wavefield from the source level zs down to the top interface ztop and from there back up to 
the receiver level zr. 
 
In more compact notation, the reflection response sum is 
 

  


  ),(,,
)2)((1 rstop zzziK

sincrs ezEzz


R    

                                       
















nhiK

N

n

n

top

n

bottop eRRTTR 2)(

1

1

2112
2)()()()()(
 , 

 
which is easily expressed as 
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The sum may be evaluated via the famous geometric progression formula    xxx N
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Equation (3.3) is an expression for layer reflection response for the case of a finite number (N‒1) of 

intrabed multiples.  If the modulus of the reflection coefficient product 1)()(  topbot RR , then as 

integer N → ∞ this reduces to 
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which is equivalent to 
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Appendix B demonstrates that the inequality condition 1)()(  bottop RR is indeed true.  Hence, the 

passage from (3.3) (with finite N) to (3.4a and b) (with N → ∞) is valid.   
 
Equation (3.4b) is the final expression for the reflection response of a geologic layer, where all intrabed 
multiples are accounted for!  If the modulus of the reflection coefficient product is very small (i.e., 

1)()(  topbot RR ) then the denominator may be approximated as unity, yielding the form 
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The interpretation of this expression is clear:  it includes only the primary reflections from the top and 
bottom interfaces bounding the bed.  The bottom-bed reflection is delayed in time and attenuated (via the 
medium parameters of the intervening layer) relative to the top-bed reflection.  Moreover, the 
approximation neglects two-way transmission through the top interface.  Hence, the more complicated 
denominator in equation (3.4b) compactly accounts for all intrabed multiples and interface transmission 
effects.     
 
An interesting and common special case occurs when medium #3 is identical to medium #1.  This implies 
Rbot(ω) = ‒Rtop(ω).   Assuming zs = zr = 0 we obtain 
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The quantity in braces { } is a frequency-dependent filter that modifies the top-bed primary reflection 

response.  Note that if bed thickness h vanishes, then   0,0,0 R  as expected. 

  
In the limit of vanishing bed thickness h → 0 (and top interface coordinate ztop remaining fixed), the 
general reflection response expression (3.4b) reduces to 
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However, from the reflection coefficient formulae (2.7a and b), it can be demonstrated that the quantity in 
braces { } is just the reflection coefficient for medium #1 overlying medium #3: 
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Thus, the reflection response of a geologic “layer” of infinitesimal thickness is 
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which is, of course, a reflection from a single plane horizontal interface located at z = ztop separating 
media #1 and #3.  More generally, expanding the exact reflection response formula (3.4b) to first order in 

the assumed small quantity hiK 2)(2   yields the approximate electromagnetic reflection response of a 

thin geologic bed as 
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Clearly, (3.10) approaches (3.9) as bed thickness h → 0.  Moreover, for medium #1 = medium #3, we 

have 0)(13 R  and )()(  topbot RR  , implying  expression (3.10) reduces to 
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This can also be obtained directly from equation (3.6) by expanding to first order in the small quantity 

hiK 2)(2  .  If in addition medium parameter contrasts are small, so that squared reflection coefficients 

may be neglected, then equations (3.10) and (3.11) reduce to   
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respectively.  The second expression has an interesting interpretation:  insertion of a thin low-contrast 
geologic bed into a homogeneous electromagnetic wholespace generates a “single-interface” top-bed 

reflection response, but altered by the multiplicative frequency-domain filter  hiK 2)(2  . 

 
Finally, it is worth noting that the total electromagnetic plane wave response observed within medium #1 
is the sum of the downgoing incident wave plus the upgoing reflection response: 
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Using equation (2.1) for the incident wave and equation (3.4b) for the reflection response yields the 
interesting form  
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The unit factor “1” within braces {  } accounts for the downgoing incident wave.   
 
3.2 Magnetic Field 
 
The reflected magnetic response (i.e., H(x,ω) vector with SI unit (A/m)/Hz) is obtained from Faraday’s 
law via 
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Hence, the reflected y-component of the magnetic induction vector is 
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Hence, the magnetic field reflection response is obtained merely by multiplying the electric reflection 
response by the ratio –K1(ω)/ω.  This could present some numerical problems for DC frequency. 
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4.0 LAYER TRANSMISSION RESPONSE 
 
4.1 Electric Field 
   
The electromagnetic wave transmitted through the geologic layer to a receiver at level zr > zbot may be 
built up in exactly the same manner by summing N+1 distinct arrivals as depicted in Figure 2.1.  We have    
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The first major term is the direct arrival propagating from the source level zs to the receiver level zr 
through the layer of thickness h.  T12(ω) and T23(ω) are plane wave transmission coefficients at the top 
and bottom interfaces, respectively.  The second major term accounts for all of the trailing intrabed 
multiples. The finite sum is easily evaluated via the geometric progression formula to obtain  
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which is appropriate for a finite number N of intrabed multiples.  Assuming the modulus of the reflection 
coefficient product ||Rtop(ω) Rbot(ω)|| < 1 (which is indeed always true, as demonstrated in Appendix B) 
the limit as N → ∞ yields 
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which is equivalent to 
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Since   )(1 )(1)()( 2312  bottop RRTT   we have the equivalent form (next page): 
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The denominator has the same form as in the reflection response equation (3.4a).  Note that if Rtop(ω) = 0 
(say, because media #1 and #2 are identical), then this response reduces to 
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(because in this case K2(ω) = K1(ω) and ztop + h = zbot). This is just a plane wave transmitted through the 
single interface (between media #2 and #3) at z = zbot.  Similarly, if Rbot(ω) = 0 (say, because media #2 
and #3 are identical), we have 
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which corresponds to a plane wave transmitted through the single interface located at z = ztop. 
 
If media #1 and #3 are identical, then Rbot(ω)= ‒Rtop(ω) yields the simplified form 
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In this particular case, if Rtop(ω) = 0 (say, because all three media are identical) we have 
 

  ))((1),(,, sr zziK

sincrs ezEzz



T , 

 
which is just the source plane wave propagating through a homogeneous (but still attenuating and 
dispersing) medium from level zs to level zr. 
 
Expanding the exact transmission response formula (4.3b) to first order in the assumed small quantity 

hiK 2)(2   yields the approximate electromagnetic transmission response of a thin bed as 
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where )()(1 1313  TR  is the transmission coefficient from medium #1 to  medium #3.  In the limit of 

vanishing bed thickness h, the direct plane wave transmission from #1 to #3 is recovered.  However, for 
all three media identical, expression (4.5a) reduces to the curious form 
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which does not appear to be a plane wave propagating within homogeneous medium #1!  However, adopt 
the approximation 
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Then, equation (4.5a) is re-written to first order in h as 
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Clearly, if all three media are identical, this approximation approaches the proper limit corresponding to 
uni-directional plane wave propagation in a homogeneous wholespace.   Utilizing equation (2.7b) for the 

bottom interface reflection coefficient, the ratio of complex wavenumbers )()( 23  KK can be replaced 

by 
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Rather than substitute this form into (4.5b), we immediately specialize to the low-contrast situation where 

products of reflection coefficients may be ignored.  Moreover, take 123  , consistent with a low-

contrast assumption.  Expression (4.5b) simplifies to 
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Next, assume medium #1 is identical to medium #3 (implying transmission coefficient T13(ω) = 1) to 
obtain 
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Hence, insertion of a thin low-contrast geologic bed into a homogeneous electromagnetic wholespace 
generates a transmitted plane wave with an effective transmission coefficient given in (4.5d). 
 
4.2 Magnetic Field 
 
The transmitted magnetic response (i.e., H(x,ω) vector with SI unit (A/m)/Hz) is obtained from Faraday’s 
law via 
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Hence, the transmitted y-component of the magnetic induction vector is 
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Similar to the magnetic reflection response, the transmission response is obtained by multiplying the 
electric transmission response by a ratio +K3(ω)/ω, again presenting some numerical problems for DC 
frequency. 
 
4.3 Reflection / Transmission Relationship 
 
The mathematical expressions for the layer reflection (equation (3.4b)) and layer transmission (equation 
(4.3b)) responses enable an investigation into their interrelation.  Evaluating the total electric field (3.13) 
with a receiver located at the top of the bed zr = ztop yields 
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where equation (4.3b) is used to evaluate the transmission response for a receiver located at the bottom of 
the thin geologic bed zr = zbot.  Since the total field is the sum of the incident and reflected fields, this 
becomes   
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The reflection response at the top of the bed is linked to the transmission response at the bottom of the 

bed.  However, the relationship is not as simple as )()(1  TR  for a single reflecting/transmitting 

horizon.  In the limit as bed thickness h → 0, expression (4.7) reduces to )()(1 1313  TR  , where the 

subscripts refer to media #1 and #3. 
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5.0 SCATTERED WAVEFIELDS 
 

The normal-incidence EM plane wave reflected response  ,, rs zzR  and transmitted response 

 ,, rs zzT  generated by a geologic layer of thickness h embedded between two homogeneous and 

isotropic halfspaces are derived in the previous sections.  In this section, we consider the analogous 
scattered EM wavefield responses.  In the present context, a scattered response is loosely described as the 
wavefield directly attributable to a layer “inserted” into a suitably chosen background or reference earth 
model.  If the layer were not present, there would be no scattered response. In a wordy style, a scattered 
response is defined as 
 

Scattered Response = Actual model response  minus  Reference model response. 
 
Obviously, there is rather wide latitude in obtaining a scattered response, because it depends on an 
arbitrarily specified “reference model” response.  A judicious choice for the reference model is helpful for 
calculating and interpreting scattered wavefields. An obvious choice appropriate for the particular 
problem at hand is described below.  
 
5.1 Reference Earth Model 
 
Consider a reference model consisting of a single plane horizontal interface, located at the midpoint 

coordinate )(5.0 bottopmid zzz   between top and bottom interfaces of the embedded layer.  Upper and 

lower halfspaces are assigned EM parameters associated with medium #1 (overburden) and medium #3 
(substratum) of the actual earth model, respectively.  Figure 5.1 depicts the reflected and transmitted 
wavefields.  Clearly, there is only a single plane reflected wave, and a single plane transmitted wave.  
 

 
Figure 5.1. Reference or background model consisting of a single plane horizontal interface separating 
two (possibly dissimilar) upper and lower halfspaces. 
_____________________________________________ 
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The exact reflected and transmitted responses of a finite-thickness layer embedded between upper and 
lower halfspaces (with different EM parameters) are given by 
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respectively.  Reflected and transmitted wavefields generated by the single plane interface reference 
model are  
       

))(())(( 11 )(),( rmidsmid zziK
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and 
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respectively. Here Rmid(ω) and Tmid(ω) are normal-incidence plane wave reflection and transmission 
coefficients between media #1 and #3.  Expressions (5.1a and b) are upward- and downward-propagating 
plane EM waves, respectively.  An important special case occurs when the EM parameters of media #1 
and #3 are identical.  In this case there is no material property contrast, implying reflection coefficient 
Rmid(ω) = 0 and transmission coefficient Tmid(ω) = 1. Reference model reflected/transmitted responses 
become 
       

0 ,            (5.2a) 

 
and 
 

),( rinc zE ,           (5.2b) 

 
respectively.  No reflection is generated, and the downward wave transmitted into medium #2 is identical 
to the incident wave. This realistic and common situation will be considered in detail in the sequel. 
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5.2 Thin Layer Criteria 
 
Many geologic layers are considerably thinner than a wavelength of a typical propagating/diffusing 
electromagnetic (EM) disturbance.  The exact scattered responses (both reflected or back-scattered and 
transmitted or fore-scattered) developed below will be expanded to first order in the layer thickness h.  
These expansions yield mathematical expressions that are reasonably accurate, as well as clearly 
exhibiting dependencies on the various parameters of the problem (i.e., layer thickness, EM material 
property contrasts).  In this section, the specific mathematical conditions for layer “thinness” are defined, 
for both low-frequency and high-frequency ranges. 
 
Equation (3.4b) for the reflection or back-scattering problem contains the complex exponential factor 

 hiK 2)(exp 2  , where K2(ω) is the complex wavenumber evaluated with the layer (i.e., medium #2) 

parameters.   Hence, we define a thin reflective layer as one that satisfies the inequality  
         

12)(2 hiK  .          (5.3) 

 
In turn, this implies 
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, 

 

where  )(2)( 22 c is the wavelength calculated with the phase speed c2(ω) of the thin bed, and  a 

dimensionless frequency-dependent parameter is defined as  )()()( 222 c .  Recall that α2(ω) 

is the attenuation parameter of the layer.  Hence, we have the thin layer reflection condition 
 

2

22 )(14

1

)(  


h
.         (5.4) 

 
For the transmission or forward-scattering, problem, equation (4.3b) contains the two factors 

 hiK )(exp 2   and  hiK 2)(exp 2  .  Hence, condition (5.3) ensures that the arguments of both complex 

exponentials are small.  Equation (5.4) is now safely interpreted as both a thin layer reflection and 
transmission criterion. 
  

 At low-frequency (i.e.,   t ), phase speed 





2
)( c  and attenuation parameter 

2
)(


  , implying 211)(1 2

2   .  Hence, the low-frequency thin-bed condition 

becomes 
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h
.         (5.5) 

 
A thin layer is one with thickness less than ~6% of a wavelength, calculated with the low-frequency layer 
phase speed. 
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At high-frequency (i.e., t  ) phase speed 



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)(  cc  and attenuation parameter 
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2 21)(1   ,  Hence, a high-frequency thin-bed 

condition is 
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Dependence on layer conductivity σ2 and permittivity ε2 is evident.  However, at infinite frequency (or σ2 
= 0) this criterion reduces to 
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The very-high-frequency criterion for a reflective thin bed is thickness h less than about ~8% of 
wavelength (again calculated with the phase speed of the layer). However, the high-frequency wavelength 

is  2222 2)(2)(  c , and this vanishes in the limit of infinite frequency. So, the 

notion of a high-frequency thin-bed criterion is somewhat problematical.  Nevertheless, we believe that 
the low-frequency thin-bed condition (5.5) commonly holds in typical EM geophysical exploration 
practice.  Thus, low-frequency backward- and forward-scattering is emphasized and examined in the 
sequel. 
 

Utilizing the low-frequency approximation for phase speed  2)( c , we obtain an analogous 

approximation for wavelength (expressed in terms of temporal frequency  2f ) as 
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where f is assumed to be positive.  Introducing reference values for the various dimensioned quantities 
into this expression yields the non-dimensional form 
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Taking the base-10 logarithm of each side gives     
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            (5.8a) 
Next, assigning numerical values to these reference quantities as 
 

m 1ref ,               S/m 1ref ,                H/m104 7

0

 ref  ,               Hz1reff , 



29 

yields the logarithmic relation 
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There are three independent variables (the logarithms of the dimensionless ratios) on the right-hand-side.  
We fix the frequency ratio, and calculate the logarithmic wavelength as a function of the logarithmic 
conductivity and permeability ratios. The following three panels illustrate the results for values of 
frequency of f = 1 Hz, 10 Hz, and 100 Hz.  
 

 

 

 
 
Figure 5.2. Logarithm of electromagnetic wavelength vs. logarithmic conductivity and logarithmic 
permeability, for frequency f = 1 Hz (top),  f = 10 Hz (middle), and  f = 100 Hz (bottom). 
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Current conductivity on the horizontal axis ranges from 10-6 S/m (extremely resistive) to 10+6 S/m 
(extremely conductive).  Magnetic permeability on the vertical axis ranges from µ0 (vacuum) to 103 µ0 
(highly magnetic).  Thus, the lower left corner, with extremely long wavelengths, approaches vacuum 
whereas the upper right corner, with short wavelengths, approaches pure metal. Contours of fixed 
wavelength are straight lines with slope –1.  As frequency increases, the color banding pattern shifts to 
the left.        
 
The plots in Figure 5.2 are calculated using the low-frequency approximation to the EM phase speed. This 

approximation is valid provided frequency f is much less than the transition frequency  2tf .  The 

smallest transition frequency in Figure 5.2 is about 1800 Hz, corresponding to σ = 10-6 S/m and ε = 10 ε0 

with vacuum electric permittivity given by  F/m10854.8 12

0

 .  So, the next frequency decade of f = 

1000 Hz would not satisfy the low-frequency condition. This motivates developing an exact formula for 
EM wavelength, without requiring a low-frequency approximation.  The exact phase speed, appropriate 
for the full frequency band, is given in Appendix A as 
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where 1c is the infinite-frequency phase speed.  The EM wavelength formula becomes 
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The first factor on the right-hand-side, containing only medium parameters σ and µ, is identical to 
equation (5.7); the second factor containing σ and ε represents a multiplicative correction to account for 
higher frequencies.  Taking the logarithm yields  
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A logical choice for the reference value of electric permittivity is the vacuum value   

 F/m10854.8 12

0

 ref .  Once again, the first two terms on the right-hand-side are appropriate for 

low-frequencies.  The third term is an additive correction accounting for high-frequencies. 
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Top and middle panels of the following Figure 5.3 depict logarithmic EM wavelength calculated via the 
approximate (i.e., low-frequency) formula (5.8a) and the exact formula (5.10), for frequency f = 1000 Hz, 
respectively.  The exact calculation leads to a slight curvature in the contours at very small conductivity 
values; at high conductivities there is no apparent difference between the panels.  The linear contour 
distortion is accentuated at even higher frequency f = 10,000 Hz, as indicated in the bottom panel.    
 
 

 

 

 
 
Figure 5.3. Logarithm of electromagnetic wavelength vs. logarithmic conductivity and logarithmic 
permeability.  Top and middle panels are calculated with approximate (i.e., low-frequency) and exact 
formulae for frequency f = 1000 Hz, respectively.  Bottom panel is exact calculation for f = 10,000 Hz.  
Electric permittivity ε = 10 ε0 is used for the calculations. 
 
 



32 

However, it is unlikely that such a high frequency would be utilized in a deep-target geophysical 
exploration context.  On the other hand, ground penetrating radar (GPR) is used for shallow subsurface 
EM investigations (say, on the order of tens of meters).  Hence, in Figure 5.4 below we extend the 
wavelength calculations to f = 100,000 Hz and f = 1,000,000 Hz in order to visualize the high-frequency 
effect.  
 

 
 

 
Figure 5.4. Logarithm of electromagnetic wavelength vs. logarithmic conductivity and logarithmic 
permeability, calculated with exact formula for frequency f = 100,000 Hz (top), and f = 1,000,000 Hz 
(bottom).  Electric permittivity ε = 10 ε0 is used for the calculations. 
______________________________________________ 
 
 
As frequency increases, EM wavelength becomes independent of current conductivity and depends only 
on magnetic permeability (and the assumed electric permittivity).  This evident on the left-hand-side of 
the panels for small conductivity values.  Consider the high-frequency approximation for wavelength  
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where infinite-frequency phase speed is 1c .   In logarithmic form 
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where medium parameter reference values are taken as 0 ref  and 0 ref .  So, in the high-

frequency approximation, a better graphic approach is to contour logarithmic wavelength vs. logarithmic 
permittivity and logarithmic permeability, holding logarithmic frequency fixed. 
 
 
An alternative way of examining the material parameter dependence of the thin bed criterion 

12)(2 hiK   is to substitute in the expression for the low-frequency complex wavenumber 

 iK  1 2)( 222  .  After converting to temporal frequency f = ω/2π, this yields the condition 
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22 fh ,          (5.11a) 

 
or after squaring 
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In non-dimensional form: 
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Adopting the usual reference values 
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yields the numerical form 
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with bed thickness h measured in the SI unit m.  Hence, the thin bed condition requires small relative 
conductivity, small relative permeability, and small relative frequency, in addition to small thickness. 
These appear to be rather severe restrictions, which must hold simultaneously!  For example, consider a 

hydraulic fracture injected with electrically conductive proppant with 
6

2 10~ 

ref  and 
2

02 10~   

(~steel) and interrogated with an EM plane wave signal with frequency f = 1 Hz.   For thinness, the bed 

thickness must then satisfy cm 8.1m 018.0581  h .  Hence, a fracture of width h = 1 mm 

(about 20 times less than the limit) might be considered adequately thin. 
 
This quantitative development of the multiple criteria constituting a thin geologic layer is important for 
understanding the First Born Approximation (FBA) scattering theory developed in the subsequent Section 
6.0.  Briefly, Born scattering is a reasonably accurate approximation to exact scattering if the layer is i) 
thin, ii) has low conductivity, iii) has low permeability, and iv) is illuminated with a low-frequency EM 
signal. 
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5.3 Backward Scattering 
 
The back-scattered electric vector component, observed at a receiver position zr on the same side of the 
geologic layer as the source position zs, is defined as the difference 
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  .  (5.12) 

 
That is, the back-scattered response is the actual reflection response of the layer minus the reflection 
response of the single plane interface located at the layer midpoint.  [We include the incident wavefield in 
equation (5.12) as a formality; clearly it cancels out by subtraction.]  Substituting the reflection response 

 ,, rs zzR  from equation (3.4b) and simplifying yields the form 
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where Rtop(ω) and Rbot(ω) are the top-interface and bottom-interface reflection coefficients.   
 

In the important special case where medium #3 is identical to medium #1, we have )()( 13  KK  , 

)()(  topbot RR  , and 0)( midR .  Then, the exact back-scattered electric field (5.13) reduces to 

the simpler form 
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Of course, this is identical to the actual reflected response of the layer (say, from equation (3.6) above), 
because the homogeneous reference medium does not generate any reflected energy.  Alternately, in 
terms of the incident electric field at the midpoint of the layer 
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The back-scattered response is directly proportional to the incident EM wavefield at the midpoint zmid.  
However, a third version that we will subsequently utilize is 
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In this version, the back-scattered wavefield is proportional to the incident wavefield at the coordinate 
2zmid – zr.  Often, the midpoint coordinate zmid is taken to be zero, implying that –zr is a positive number. 
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This field is multiplied by a frequency-dependent filter (which depends on the layer thickness and EM 
parameters). 
 
We now expand the back-scattered response of (5.14c) to first order in the dimensionless 

quantity hiK 2)(2  : 

 

   hiK
R

R
zzEzzE

top

top

rmidincrsbak 2)( 
)(1

)(
 ),2(,, 22






















 .     (5.15)   

 

[Exponential 
hiKe )(

approximates as unity.] From equation (B9a) of Appendix B, the top-interface 
reflection coefficient may be expressed in terms of dimensionless ratios of wavenumbers and 
permeabilities as 
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with 
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These dimensionless ratios are constructed as “layer parameters” divided by “incident medium 
parameters”.  The first-order approximate back-scattered response becomes 
 

   hiK
K

K
zzEzzE rmidincrsbak 2)(  

)(ˆ

ˆ

ˆ

)(ˆ

4

1
),2(,, 2 








 








 ,     (5.18a) 

 
 or expressed in terms of the complex wavenumber of the incident medium:      
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We now examine the low-frequency regime for the above thin-bed back-scattered response. From 
equation (A4.15) of Appendix A, the low-frequency approximation to the complex wavenumber is 
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The dimensionless wavenumber ratio becomes  ˆˆ)()()(ˆ
12  KKK ,  where a dimensionless 

conductivity ratio is similarly defined as 
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Then, the low-frequency backscattered field is: 
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But
   43)sgn(4)sgn()sgn(  ii eei   , yielding the (perhaps simpler) form 
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Note that this expression embodies the several approximations of previous inequality condition (5.11d): 
thin layer, low-frequency, and “small” layer parameters σ2 and μ2.  The low-frequency back-scattered EM 
wavefield is directly proportional to: 

1) The layer half thickness h/2, 

2) The difference in parameter contrast ratios   ˆˆ  . 

 
Interestingly, if both parameter contrast ratios are identical, then the back-scattered wavefield vanishes!   
This is a particular manifestation of the general conditions for vanishing normal incidence reflection 
coefficient outlined in Appendix B; if all three parameters of medium #2 are obtained by scaling the 
corresponding parameters of medium #1, then the reflection coefficient equals zero (at all frequencies). 
Also, note that conductivity enhancement acts in an opposite manner than permeability enhancement.  

That is, if 1ˆ and 1ˆ   then 0)ˆˆ(   (positive), whereas if 1ˆ and 1ˆ   then 0)ˆˆ(   

(negative).  This realization might be exploited in a back-scattering data acquisition experiment to 
distinguish the (unknown) scattering properties of a layer.   
 
Finally, in the space-time domain, the low-frequency back-scattered field is expressed as 
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where the asterisk denotes convolution and F-1{ } indicates inverse Fourier transformation.  The inverse 
transform in (5.20) does not exist in the conventional sense.  However, analysis on the complex-valued 
plane (draw a picture!) reveals the correspondence  
 

    2/143)sgn(   ie i 
. 

 
Fractional derivative calculus (i.e, Bracewell, 1965, page 119) then implies that the inverse Fourier 

transform equals the half-integer differentiation operator: 
   2/12/143)sgn(1 dtdeF i   .  Time-

domain equation (5.20) becomes 
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The low-frequency back-scattered wavefield is proportional to the half-integer time-derivative of the 
incident plane wave EM wavefield at location 2zmid – zr.  So, in the common case where zmid = 0, the EM 
wavefield is evaluated at the positive coordinate –zr, on the opposite (i.e., fore-scattered) side of the bed 
from the back-scattered response.  This properly accounts for plane wave dispersion/attenuation over the 
complete back-scattered travel path from source zs to receiver zr.  
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5.4 Forward Scattering 
 
The forward-scattered electromagnetic wavefield, observed at a receiver position zr on the opposite side 
of the geologic layer as the source position zs, is defined as the difference 
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That is, the forward-scattered response is the actual transmission response of the layer minus the EM 
wavefield transmitted through a single plane interface located at the layer midpoint.  Substituting 
expression (4.3b) for the transmitted response and simplifying yields 
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where )(1)(13  midRT  is used.  

 

In the particular case where medium #3 identical to medium #1, we again have )()( 13  KK  , 

)()(  topbot RR  , and 0)( midR .  Then, the exact forward-scattered electric field (5.23) reduces to 
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which is the same as  
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Analogous to the back-scattering situation, the forward-scattered response depends on the incident 
wavefield at the receiver location zr.  This incident wavefield is multiplied by a frequency-dependent filter 
(the braces { } in expression (5.24b)). 
                                                                                                                               

Expanding to first-order in hiK 2)(2  (equivalent to first-order in the bed thickness h) gives 
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This has a remarkable similarity to the EM wavefield (5.18b) back-scattered from a thin layer, although 
the incident plane wave is evaluated at positive coordinate zr.  The low-frequency approximation for 
forward scattering is now developed. 
 
Substituting in the low-frequency approximation (A4.15) for the complex wavenumber gives 
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Inverting this to the space-time domain yields 
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This exhibits the same half-integer time-derivative dependence as the low-frequency back-scattered 
response (5.21).  However, in contrast to the back-scattering situation, conductivity enhancement and 

permeability enhancement have the same algebraic sign effect here.  Of course, 1ˆˆ   implies the 

forward-scattered wavefield vanishes.  But 10 (say) ˆˆ   implies that the fore-scattering multiplier is 

18, whereas the back-scattering multiplier is 0.   
 
In order to facilitate a visual comparison of the various time-domain approximations for the scattered 
electric field responses, we construct the following table appropriate for a thin geologic bed within a 
homogeneous background medium (i.e., medium #1 = medium #3). In addition to the low-frequency 
responses derived above, we exhibit very-high-frequency (i.e., in the limit  ) responses obtained 

by using the a high-frequency approximation to the complex wavenumber.  These particular responses are 
not derived here. 
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                        Thin Bed (h << λ) Time Domain Scattered Responses   
 
 

                              Low-Frequency               Very-High-Frequency 
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Table 5.1.  Thin-bed time-domain scattering formulae. 
_________________________________________ 
 
All four responses are directly proportional to the bed half thickness h/2.  Low- and high-frequency 
responses are proportional to one-half and unity time derivatives of the incident plane electric field 

),( tzeinc , respectively.  Symbols subscripted by “1” (i.e., 111 ,,  ) are the EM medium parameters 

characterizing the reference (or background) wholespace. Symbols with a superposed “hat” (i.e., 

121212
ˆ,ˆ,ˆ   ) are dimensionless ratios of the layer parameters to the surrounding 

wholespace parameters.  Low- and high-frequency scattering are independent of permittivity contrast ̂  

and conductivity contrast ̂ , respectively.  Once again, note that the condition r  ˆˆˆ  (where 

ratio r need not equal unity) implies zero backward scattering and enhanced forward scattering.  
 
The analogous table of approximate thin bed frequency-domain response filters is: 
 

               Thin Bed (h << λ) Frequency-Domain Scattering Filters   
 
 

                              Low-Frequency               Very-High-Frequency 
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Table 5.2.  Thin-bed frequency-domain scattering formulae. 
__________________________________________ 
 
Back-scattering filters multiple the Fourier-transformed incident plane wave electric vector component 

),2( rmidinc zzE  , whereas fore-scattering filters multiply ),( rinc zE .  Interestingly, for zmid = 0, this is 

the same location in space.   

  Backward 
  Scattering 

 Forward 
Scattering 

  Backward 
  Scattering 

 Forward 
Scattering 
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5.5 Scattering Ratio 
 
The (complex-valued) ratio of the backward-scattered wavefield to the forward-scattered wavefield may 
be a useful quantity for optimizing experiment design.  In order to formulate this quantity, substitute 
equation (5.16) for the top-interface normal-incidence reflection coefficient    
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into the previously-derived expressions for the scattered wavefields.  Here )()()(ˆ
12  KKK   and 

12
ˆ   are dimensionless ratios of complex wavenumbers and magnetic permeabilities, respectively.  

We specialize to the important case where medium #3 is identical to medium #1.  From equation (5.14c), 
the back-scattered electric vector x-component is 
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From equation (5.24b), the analogous forward-scattered wavefield is 
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At low-frequencies, the complex wavenumber is 
 4)sgn()sgn()(  ieK  , implying 

 ˆˆ)(ˆ K .  Also, 
   43)sgn(4)sgn()sgn(  ii eei    and 

    2/143)sgn(   ie i 
.  Hence 
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Substituting this into the above scattering expressions gives the forms 
 

 

 
hi

rmidincrbak e

hi

hi

zzEzE 11 

ˆˆtanh 
ˆ

ˆ

ˆ

ˆ

2

1
1

 ˆˆtanh 
ˆ

ˆ

ˆ

ˆ

2

1
 

 ),2(),(

11

11




































































 , (5.31a) 

 
and 

 

 









































1 

ˆˆtanh 
ˆ

ˆ

ˆ

ˆ

2

1
1 

  ˆˆsech 
 ),(),(

11

11
11

hi

ehi
zEzE

hi

rincrfor















.   (5.31b) 

 
Next, the low-frequency wavelength of an EM wave propagating in medium #1 (the incident medium) is 
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Then, the above scattering formulae are recast as 
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            (5.32a) 
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These are our working expressions for the backward- and forward-scattered wavefields.  The ratio of 
these two wavefields is easily put into the form 
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with dimensionless parameter  )()1(2)( 11  hi .  Dependence on the two receiver position 

coordinates zr is contained in the first major term (in square braces [ ] ) on the right-hand-side.  It is 
logical to choose the receiver coordinates so that this factor equals unity.  In turn, this means that the 
back-scattered and fore-scattered EM fields are measured at the same distance from the layer midpoint 
zmid.   The scattering ratio reduces to 
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The ratio depends on the two dimensionless parameter ratios 12
ˆ   and 12

ˆ   , as well as 

)(1  , which in turn depends on the homogeneous background medium parameters, layer thickness, and 

angular frequency.  The wavelength of the incident EM wave is readily expressed as  
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where suitable reference values are selected.  Hence we have 
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where href  is a reference value for layer thickness (typically 1 m).    
 
Equations (5.34) and (5.35) constitute a pair of expressions for evaluating the backward-to-forward 
scattering ratio, as follows: 

1) Select background medium conductivity σ1 and magnetic permeability µ1, layer thickness h, and 
frequency f = ω/2π.  This fixes quantity β1(ω). 

2)  Evaluate and display the scattering ratio SR(ω) as a function of the two independent 

dimensionless ratios ̂ and ̂ . 

 
The panels in the following Figure 5.5 depict the scattering ratio on a logarithmic scale for three decades 
of frequency (f = 0.1, 1, and 10 Hz).  Layer thickness is h = 1 cm. Homogeneous background medium 

current conductivity and magnetic permeability are S/m 1.01   and 01   , respectively. 
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Figure 5.5.  Logarithmic amplitude ratio of back-scattered to fore-scattered electric field for a thin (h = 1 
cm) layer, at frequencies f = 0.1 Hz (top), f = 1 Hz (middle), and f = 10 Hz (bottom).  Scattering ratio is 

plotted vs. logarithmic conductivity contrast ratio 12  and logarithmic permeability contrast ratio 

12  .  
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Very little difference is discernable in the three panels, with most of the zone colored light green 
indicating nearly equal backward- and forward-scattering amplitudes (~100 = 1).  The logarithmic ratio 

along the slanting line  ˆˆ  is theoretically –∞, because SR(ω) vanishes by equation (5.34).  [However, 

the origin appears to be a singular point. By L’Hopital’s rule 11)sinh()(SRlim   , with + 

meaning 1ˆ  and – meaning 1 .]  The lower left quadrant is a broader zone of diminished back-

scattering.  Curiously, there is a ridge-like locus of enhanced back-scattering (~102) indicated by the thin 
curving blue line; this was unanticipated.  
 
For thoroughness, we illustrate the same logarithmic scattering ratio for frequencies f = 100 Hz and f = 
1000 Hz below. The only detectable difference appears to be a slightly shifting pattern in the green zone 
of nearly equal back- and fore-scattering.   
 

                     

                     
Figure 5.6.  Logarithmic amplitude ratio of back-scattered to fore-scattered electric field for the layer in 
Figure 5.5, at higher frequencies f = 100 Hz (top) and f = 1000 Hz (bottom).  
____________________________________________  
 

In this case with background permeability 01   , the lower half of the plots where   0log 1210   

might be challenged on theoretical grounds (e.g., can a magnetic permeability be less than the vacuum 
value?).   However, we include this zone in the plots for symmetry purposes.  Tests indicate that this zone 
remains with larger values of background permeability. 
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The backward-to-forward scattering logarithmic amplitude ratio is illustrated for a thicker layer (h = 10 
m) in Figure 5.7 below.  All other parameters remain the same.  
 

                     

                     

                     
Figure 5.7.  Same as Figure 5.5, except the scattering layer is relatively thicker (h = 10 m).  Top, middle, 
and bottom panels correspond to frequency f = 0.1 Hz, f = 1 Hz, and f = 10 Hz, respectively.  
_________________________________________ 
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A curious artifact (blue color) develops around the upper reaches of the line  ˆˆ  .  This artifact appears 

to grow, and a zone of NANs (= not a number) develops in the upper right corner area, at higher 
frequencies (Figure 5.8 below).  This leads us to suspect that numerical precision is low in this zone.     
 

                     

                     
Figure 5.8.  Same as Figure 5.6, except the scattering layer is relatively thicker (h = 10 m).  Logarithmic 
amplitude ratio of back-scattered to fore-scattered electric field, at higher frequencies f = 100 Hz (top) and 
f = 1000 Hz (bottom).  
_________________________________________ 
 
 
The general conclusion from this study is that, for most of the dimensionless parameter ratio space (i.e., 
the green zones in the above figures), backward-scattered amplitudes are approximately the same as 

forward-scattered amplitudes. For example, 25.0)(log10 SR implies 56.0)( SR ; back-

scattering is about half as large as fore-scattering. 
 
Finally, it is emphasized that equation (5.34) and the above figures give the amplitude ratio, at a fixed 
frequency, of the back-scattered to the fore-scattered signals measured at equal distances from the bed 
center.  The actual physical values of the two signals could be quite small.  For example, consider a 1 cm 

thick layer situated in a uniform background medium with S/m 1.01   and 01   , and interrogated 
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by a f = 1 Hz (period P = 1 s) sinusoidal waveform.  The middle panel of Figure 5.5 above depicts the 

relevant logarithmic scattering amplitude ratio.  Next, the layer is assigned parameters S/m 001.02   

and 02 995.1   , which roughly corresponds to a point on the thin blue ridge (i.e., 

  2log 1210  and   ).3.0log 1210    So this is a relatively resistive and diamagnetic layer 

compared to the background.  We place a source (of amplitude 1 V/m) and receivers only 5 m from the 
midpoint of the thin bed.  Figure 5.9 below displays four periods of the back-scattered (red trace) and 
fore-scattered (green trace) electric fields, after gaining each by the factor 114,167 (this plots the red trace 
at about full scale on the panel). The sinusoidal variation in the forward-scattered trace is just barely 
perceptible at this plot scale.  The ratio of the red-to-green maximum amplitudes is about 2212, which is 
roughly consistent with the selected point in Figure 5.5, middle panel (i.e., , or dark blue) 

34.3)2212(log10  )      

 
 

 
Figure 5.9.  Back-scattered (red trace) and fore-scattered (green trace) sinusoidal waveforms (period P = 
1 s) generated by a thin layer (h = 1 cm) possessing both conductivity and permeability contrasts with a 
uniform background medium.  Amplitude ratio of the two signals is ~2212. 
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6.0 NUMERICAL EXAMPLES OF SCATTERING  
 
Algorithm THEMBED has been developed to calculate normal incidence reflected and transmitted plane 
wave electric field responses by evaluating the frequency-domain formulae (3.4b) and (4.3b), 

respectively.  [Intrabed responses, where a receiver is located within the geologic layer botrtop zzz   are 

also available via equation (C9b) of Appendix C.]  The associated magnetic field responses are calculated 
via equation (3.15b) (for reflection) and equation (4.6b) (for transmission). Time-domain responses are 
subsequently obtained by inverse numerical Fourier transformation.  
 
THEMBED is a standalone program written in the Fortran programming language.  Source code structure 
is similar to that of the Green function forward modeling program EMHOLE (Aldridge, 2013).  A short 
list of source wavelets (e.g., Gaussian, Ricker, rectangular, sinusoidal, triangular, etc.) is available for 
selection by the program user.  Alternately, a preferred source wavelet may be imported into THEMBED. 
 
6.1 Backward / Forward Scattering 
 
We present below several examples of normal-incidence plane EM wave scattering by geological layers 
with various thicknesses and material parameters.  The layer is situated between two homogeneous and 
isotropic halfspaces with identical properties. In the context of Figure 2.1, the three parameters  

 333 ,,   characterizing medium #3 (substratum) are taken to be the same as  111 ,,   representing 

medium #1 (overburden).  Parameter numerical values are 
 

     S/m 02.0 , ,10,,,, 00333111   , 

 

where  F/m10854.8 12

0

  and  H/m104 7

0

   are vacuum (or free space) values of dielectric 

permittivity and magnetic permeability, respectively.  This specialization to two identical halfspaces is 
particularly relevant to the problem of a hydraulic fracture generated within a uniform geologic 
formation.       
 
For this situation, the natural reference model used to define backward- and forward-scattered responses 

is a homogeneous wholespace with parameters  111 ,,  .  Hence, in the context of Figure 5.1, the 

reflected plane wave from a material contrast interface at midzz  does not exist (as in equation (5.2a)). 

The transmitted plane wave is identical to the incident (or direct) wave propagating downward in 
homogeneous medium #1 (= medium #3) (as in equation (5.2b)). Thus, back-scattered responses depicted 
in the following figures are identical to the reflected responses from the layer; fore-scattered responses are 
identical to the transmitted responses minus the direct wave.  These scattered responses are generated by 
program THEMBED via user-selectable option. 
 

The center coordinate of the geologic layer in the following examples is   m 0.02  bottopmid zzz , 

with the electric vector plane wave source located at zs = –100 m.  Source current waveform is an 
alternating polarity square pulse sequence with period P = 4 s and duty cycle d = 50% (implying 1 s on +, 
1 s off, 1 s on –, and 1 s off), and run for 25 full periods (or 100 s).   The frequency spectrum of this type 
of source waveform is developed and analyzed in Appendix E.  Square pulse amplitude is 1 V/m. The 

receivers recording back/for-scattered responses are located at m 100rz , respectively (implying the  

back-scattering receiver is coincident with the source).  Hence, total travel path length of the plane wave 
through the conductive background medium is about 200 m, for both reflection and transmission 
responses.  Electric field Ex (V/m) and magnetic field By (T) responses are recorded; only the first 4 s (or 
one period) is plotted.  In order to facilitate comparison of the various responses, amplitude scales for all 
Ex and By panels are held fixed. 
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We first illustrate how scattered responses are constructed via differencing of the actual model and 
reference model responses.  Figure 6.1 below displays electric vector component (Ex) responses generated 
by reflection from (top panel) and transmission through (bottom panel) a geologic layer possessing strong 
conductivity contrast relative to the homogeneous background medium. Bed conductivity is 

S/m 100bed , or 5000 times larger than the background medium conductivity S/m 02.0bak .  Bed 

permeability 0 bed and permittivity 010 bed  are identical to the background values. Bed thickness 

is fixed at hbed = 10 m. 
 
The green trace in each panel is the reference model response, consisting of a plane wave (referred to 
here as the “direct wave”) advancing in the +z direction through the homogeneous attenuating 
background medium.  In the context of a hydraulic fracturing experiment, this is the “pre-frak” measured 
response.  Since the back-scattering receiver zr is co-incident with the source at zs = –100 m, the green 
trace is the upper panel is identical to the source square pulse waveform.  The green trace in the lower 
panel, recorded at zr = +100 m, exhibits the familiar dispersed and attenuated character (i.e., slightly 
rounded square pulse onsets) due to propagation/diffusion through 200 m of conductive background 
medium. 
 
The black trace in each panel is the actual model response, generated after emplacing the 10 m thick 
geologic layer in the homogeneous background.  These are equivalent to “post-frak” measured responses.  
In the upper panel, this consists of the summed direct and reflected responses, and is not easily 
interpretable.  [The low-amplitude high-frequency oscillations on the black trace are THEMBED 
numerical artifacts of present unknown origin; ignore these.]  In the lower panel, the actual response is 
identical to the transmitted response.  This is readily interpreted to be a severely attenuated version of the 
direct (green) response. 
 
Finally, the red trace in each panel is the scattered response, obtained by subtracting the green trace from 
the black trace. Interestingly, the for-scattered response appear identical to the back-scattered response.  
The reason for this is found by numerically evaluating the low-frequency thin bed criterion of equation 
(5.11d) with the particular parameters at hand.  We have: 
 

1) 
2

2 10S/m 1S/m 100 ref , 

2) 102  , 

3) 
1105.2) Hz1s 4(11  refref Pfff , 

4) 
222 m 10h . 

 

Then, thin bed condition (5.11d) evaluates to 110896.7 2  
, which is only mildly true.  Note that we 

use the dominant frequency f = 1/P = ¼ Hz of the periodic response signal in this calculation.   
 
Since the thin bed criterion is satisfied, examine the approximate formulae for low-frequency scattering 

from Table 1.  Dimensionless conductivity ratio 5000ˆ
12    and dimensionless permeability ratio 

1ˆ
12   .  Then, the low-frequency backward-scattering and forward-scattering filters in Table 1 

evaluate to the same number, since 4999ˆˆ   and 49992ˆˆ   .  Moreover, since the bed 

midpoint coordinate zmid = 0, the incident plane electric wave in each case is evaluated at the same 
location zr = +100 m.  We conclude that back-scattered and for-scattered E-field responses should be 
identical (in the thin bed approximation), as indeed appears to be the case in the top and bottom panels of 
Figure 6.1. 
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Figure 6.1.  Electric vector component responses generated by a geologic bed with conductivity 

S/m 100bed  (5000 times larger than the background medium conductivity S/m 02.0bak ).  Top 

and bottom panels correspond to reflection and transmission measurement geometries, respectively.  
Green traces are homogeneous reference model responses and black traces are actual model (i.e., 
containing the geologic bed) responses.  Red traces are scattered responses, equal to black minus green 
traces.  Back-scattered and fore-scattered responses are nearly identical for this thin geologic bed. 
______________________________________   
 
The associated magnetic vector component (By) back- and for-scattered responses are illustrated in the top 
and bottom panels of Figure 6.2 below. 
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Figure 6.2.  Magnetic vector component responses generated by the same geologic bed with medium 
parameters used for Figure 6.1. Top and bottom panels correspond to reflection and transmission 
measurement geometries, respectively. Except for a sign change, back-scattered and fore-scattered 
responses are nearly identical for this thin geologic bed. 
_____________________________________________ 
 
Once again, scattered responses (red traces) are formed by subtracting the reference responses (green 
traces) from the actual (i.e., measured) responses (black traces).  Except for a sign change, the scattered 
responses are nearly identical, consistent with equations (3.15b) and (4.6b). 
 
Many of the numerical examples depicted below are taken from recent presentations delivered at the 
annual American Geophysical Union meeting (Aldridge, et al., 2014; Aldridge and Weiss, 2016).  
Backward and forward electric and magnetic scattering are illustrated. 
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6.1.1 Variable Bed Thickness 
 
The first set of responses, illustrated in the following two figures, are back-scattered and for-scattered 
electric and magnetic vector components generated by geologic layers of varying thickness, and 
possessing a (fixed) strong conductivity contrast relative to the homogeneous background medium.   
 

 

 
 
Figure 6.3.   Back-scattered Ex electric vector components (top panel) and By magnetic vector 

components (bottom panel) generated by a geologic bed with conductivity S/m 100bed  (5000 times 

larger than the background medium conductivity S/m 02.0bak ).  Bed permeability 0 bed and 

permittivity 010 bed  are identical to background values.  Bed thickness varies from h = 10 m (red 

curves) to h = 1 cm (brown curves).  
_________________________________________ 
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Clearly, a thicker bed gives rise to a larger amplitude response.  Recall that the source electric field 
magnitude is 1 V/m (equal to full scale of the Ex panel); the vertical scale of the By panel is chosen so that 
the largest amplitude response plots at nearly full scale.  The thinnest layer appears to give negligible Ex 
and By response at these receiver positions, 100 m from the bed mid-point. 
 
Forward-scattered responses, for the same set of layer parameters, are given in the following Figure 6.4. 
 

 

 
Figure 6.4.   For-scattered Ex electric vector components (top panel) and By magnetic vector components 
(bottom panel) generated by the same conductivity contrast geologic bed as in Figure 6.3. 
___________________________________________ 
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6.1.2 Variable Bed Conductivity 
 
The next set of responses, illustrated in the following two figures, depict back-scattered and for-scattered 
EM fields generated by a relatively thin geologic bed of fixed thickness (1 cm), and current conductivity 
varying from 105 S/m to 102 S/m. 
 

 

 
Figure 6.5.   Back-scattered EM field components generated by a geologic bed with fixed thickness 

cm 1bedh , and current conductivity bed varying between 105 S/m (red curves) and 102 S/m (brown 

curves).  Bed permeability 0 bed  and permittivity 010 bed  are identical to background. 

_________________________________________ 
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Figure 6.6.   Fore-scattered EM field components generated by the same conductivity contrast geologic 
bed as in Figure 6.5. 
___________________________________________ 
 
Responses have the same general character as with variable bed thickness.  In fact, the red traces, 

corresponding to S/m 105bed are identical to the red traces in Figures 6.3 and 6.4.  The reason for this 

will soon become apparent.  This very thin bed ( cm 1bedh ) with large electrical conductivity 

( S/m 105bed ) might be an analogue of a hydraulic fracture injected with highly conducting proppant. 
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6.1.3 Variable Bed Permeability 
 

The scattering effect of variable magnetic permeability, for fixed layer thickness m 10bedh and 

conductivity S/m 02.0bed , is illustrated in the following two figures.  

 

 

 
Figure 6.7.   Back-scattered EM field components generated by a geologic bed with fixed thickness 

m 01bedh , and magnetic permeability bed varying between 0

410   (red curves) and 0

110  (brown 

curves).  Bed conductivity S/m 02.0bed  and permittivity 010 bed  are identical to background. 

_______________________________________ 
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Figure 6.8.   For-scattered EM field components generated by the same permeability contrast geologic 
bed as in Figure 6.7. 
_________________________________________ 
 
Back-scattered responses generated by a permeability contrast have opposite polarity (i.e., sign) compared 
to the analogous responses generated by a conductivity contrast (compare Figure 6.7 with Figure 6.5).  
However, for-scattered responses have the same sign (compare Figure 6.8 with Figure 6.6). Bed thickness 
and permeability are intentionally chosen to be rather large in order to generate an equivalent response 
magnitude as in the previous examples.  [Note that plot scales are identical.]  However, a relative 

magnetic permeability of 
410 to

310 is probably unrealistic.  Carbon steel has a relative permeability of 
210~ .   
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6.1.4 Joint Conductivity and Permeability Contrast; Variable Bed Thickness 
 
The effect of joint current conductivity and magnetic permeability contrast, for variable bed thickness, is 
illustrated in the following two figures. 
 

  

 
Figure 6.9.   Back-scattered EM field components generated by a geologic bed with fixed current 

conductivity S/m 100bed  and magnetic permeability 0100 bed , and with thickness varying 

between m 10bedh  (red curves) to cm 1bedh  (brown curves). Bed permittivity 010 bed  is 

identical to background.  These layers have strong conductivity contrast (×5000) and permeability 
contrast (×100) with the background medium. 
__________________________________________ 
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Figure 6.10.   For-scattered EM field components generated by the same joint conductivity/permeability 
contrast geologic bed as in Figure 6.9. 
__________________________________________ 
 

Current conductivity assigned to these beds ( S/m 100bed ) is the same as in the variable bed thickness 

study of Figures 6.3 and 6.4.  A careful comparison of these response amplitudes with those depicted in 
the previous figures indicates that joint permeability and conductivity contrast diminishes back-scattering 
and enhances fore-scattering.  However, the effect does not appear to be particular large.  
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6.1.5 Fixed Bed Conductance; Backward-Scattering 
 
Figure 6.11 below depicts back-scattered electric and magnetic responses generated by a suite of geologic 

layers with fixed conductivity × thickness product, or fixed conductance S 100)( bedh . 

 

 
Figure 6.11.   Back-scattered EM field components generated by a geologic bed with fixed conductance 

(i.e., conductivity × thickness product) equal to 100 S.  Bed magnetic permeability 0 bed  and electric 

permittivity 010 bed  are identical to background values.  All curves overplot at this plot scale.  

___________________________________________ 
 
All traces overplot, indicating that back-scattered responses are insensitive to varying bed thickness and 
conductivity, as long as the product conductance remains fixed.  For-scattered responses (not plotted here) 
exhibit the same effect. This is consistent with First Born Approximation scattering, developed in the 
subsequent Section 7.0. 
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6.1.6 Fixed Bed Inductance; Forward-Scattering 
 
Forward-scattered electric and magnetic responses generated by a suite of geologic layers with fixed 

permeability × thickness product, or fixed inductance  H10)( 4bedh , are displayed below: 

 

 

 
Figure 6.12.   For-scattered EM field components generated by a geologic bed with fixed inductance (i.e., 

permeability × thickness product) equal to 104 H.  Bed current conductivity S/m 02.0bed  and electric 

permittivity 010 bed  are identical to background values.  All curves overplot at this plot scale.  

______________________________________________ 
 
Similar to the fixed-conductance situation, all curves overplot.  This is also consistent with First Born 
Approximation scattering theory. 
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6.1.7 Permittivity Contrast Scattering; Low-Frequency 
 
The possibility of electromagnetic scattering induced solely via dielectric permittivity contrast has been 
raisaed by Aldridge and Bartel (2016) and LaBrecque et al. (2016).  However, numerical simulations with 
program THEMBED indicate that the amplitude of the scattered electric field is negligible at the low-
frequencies and dielectric permittivities typically encountered in EM exploration. 
 
We use program THEMBED to replicate, as nearly as feasible, the forward-scattering numerical 
modeling results reported by LaBrecque et al. (2016) in their Figure 4(a).  The homogeneous background 
medium is assigned EM parameters: 
 

     S/m 0039.0 , ,411,18,,,, 00333111   . 

 
Although the huge relative permittivity appears unrealistic, it is actually stated by LaBrecque et al. (2016) 

on their page 4.  The thin bed has thickness mm 5bedh and is given EM parameters: 

 

   S/m 0039.0 , ,104,, 00

6

222   . 

 
Hence, this layer only possesses a contrast in permittivity.  LaBreque et al. (2016) attribute the 
gargantuan relative permittivity ε2/ε0 to “the interaction of mobile ions in (an) electrolyte with the charged 
surface of the immersed contrast agent”, and indicate that this is an experimentally measured value 
(appropriate for a 30% / 70% volume mixture of Lorenzo Coke Breeze / sand, wetted with 10 Ωm NaCl 
solution).  LaBreque et al. (2016) cite Chew and Sen (1982) for theoretical justification of this very large 
relative permittivity.  
 
For THEMBED modeling, we use a 100 Hz sinusoidal source waveform (period P = 10 ms) run for 0.5 
seconds (or 50 full periods).  This source frequency is chosen to agree with the LaBrecque et al. (2016) 
numerical modeling conducted “at a frequency of 100 Hz”.  Our source electric field amplitude is 1 V/m.  
Plane wave source and receiver are located at zs = –2 m and zr = +2 m, which are estimated from the 
poorly labeled Figure 1 in LaBrecque et al. (2016).  We plot 10 periods of forward-scattered Ex response, 
ranging from 100 ms to 200 ms to avoid any starting transients near t = 0 ms.  
 
As the following Figure 6.13 (top panel) indicates, the forward-scattered response is vanishingly small at 
this plot scale!  This result is in marked contrast to the ~1.25% (max) scattered Ex field amplitude 
depicted in the analogous Figure 4(a) of LaBrecque et al. (2016).  If the thin bed relative permittivity is 
increased about four orders of magnitude to 1010, then a ~6.5% scattered response is observed (bottom 
panel).  
 
At present, we do not have an explanation for the differing results of THEMBED modeling compared to 
those reported in LaBrecque et al. (2016).  Perhaps the different geometric configuration (their proppant-
filled thin layer is actually a finite-radius disk with a hole in the middle – like a washer – with outer/inner 
diameters 5.83 m/0.16 m) plays a significant role in enhancing the LaBrecque et al. forward-scattered 
amplitudes.  Also, their EM source is rather localized as a “vertical electric line source of 0.375 m” co-
axial with the fracture disk, and is not an extensive plane as with THEMBED modeling.  This difference 
may play a role as well.   
 
Finally, we anticipate that permittivity contrast scattering will be non-negligible at higher frequencies, as 
suggested by the formulae in Tables 1 and 2.    
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Figure 6.13.   For-scattered Ex field components generated by a thin geologic bed (hbed = 5 mm) with 
strong permittivity contrasts with the background medium.  Top / bottom panels correspond to layer 
relative permittivities of 4 × 106 and 1010, respectively.  Bed conductivity and permeability are the same 
as the homogenous background medium.  
_________________________________________  
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6.2 Scattered Signal Amplitude Analysis 
 
In this section, algorithm THEMBED is used to investigate range-dependent amplitudes of back-scattered 
and forward-scattered plane wave electric and magnetic fields. The study was presented at a recent 
American Geophysical Union meeting (Aldridge and Weiss, 2016).  Figure 6.14 immediately below 
illustrates the modeling geometry.  
     

 
 
Figure 6.14.  Reflection/Transmission modeling geometry.  Ez-component electric field plane wave is 
incident from the left (x < –h/2) on a geologic layer of thickness h = 10 m.   Both reflected (x < –h/2) and 
transmitted (x > +h/2) electromagnetic plane waves are generated.         
___________________________________________ 
 

The layer is h = 10 m thick, and is assigned EM parameters    S/m 10 ,10 and ,10,, 000222   . 

Note that two different magnetic permeabilities are used.  In this geometric configuration, the layer might 
represent a vertically-oriented hydraulic fracture stage (i.e., multiple individual fractures) infused with 
enhanced conductivity proppant.  The x-axis is interpreted as aligned with the horizontal well track. 
 
As in the previous examples, the background medium is taken to be a non-magnetic homogeneous 

wholespace (implying medium #3 = medium #1) with permittivity 01 10   and permeability 01   .  

Various conductivities   S/m  0.1 ,1.0 ,01.0 ,001.01  , ranging over four decades, are assigned to the 

background medium.  These values strongly influence the signal amplitude level vs. distance from the 
layer. 
 
The electric field source waveform is an alternating polarity square pulse sequence with period P = 1 s 
and d = 50% duty cycle.  A detailed analysis of the frequency spectrum of this type of signal is presented 
in Appendix E.  Source amplitude is 1 V/m.  Two source positions are considered: a proximal source, 
immediately adjacent to the fracture zone, is located at zs = –5.1 m, whereas a distal source is placed at zs 
= –2000 m. 
 
Finally, although the above Figure 6.14 refers to reflected and transmitted wave trains, the subsequent 
trace plots and amplitude curves pertain to the associated backward-scattered and forward-scattered 
signals.  These are the signals directly attributed to the presence of the geologic layer. 
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Figure 6.15 below illustrates example scattered electric field responses generated by the near and far 
plane wave sources.  Two seconds (equal to two full periods) of data are plotted at 40 receiver stations 
ranging  2 km from the center of the fracture zone; receiver interval is 100 m. The scattering layer has 

both a conductivity contrast S/m 102  and a permeability contrast 02 10   with respect to the 

background medium  011   S/m, 1.0   .   

 

 

 
Figure 6.15.  Back-scattered and for-scattered Ez-component traces generated by proximal (top panel) and 
distal (bottom panel) plane wave sources positioned at the vertical red arrows.  Maximum absolute 
amplitude within each panel is plotted at one trace spacing; positive lobes of the traces are shaded grey. 
 _________________________________________    
 
Near-source and far-source traces clearly have different shapes, induced by different propagation path 
lengths through the conductive background medium.  Far-source pulses have longer duration rise- and 
decay-times.  In this case of joint conductivity and permeability contrast of the layer, the forward-
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scattered traces have larger amplitudes than the backward-scattered traces.  This is consistent with the 
previous Figure 6.9. 
 
Relative amplitude vs. distance curves extracted from the calculated Ez-traces are illustrated in Figure 
6.16.  The maximum absolute value of a trace, divided by the maximum absolute value of the source 
signal (= 1 V/m), is plotted on a logarithmic scale.  The four values of background medium conductivity 
are indicated via color-coding; the dashed green amplitude profiles are obtained from the example traces 
plotted in the previous Figure 6.15. 
  

  

 
Figure 6.16.  Logarithmic maximum relative Ez amplitude vs. receiver location for proximal (top) and 
distal (bottom) plane wave sources.  Source amplitude level is indicated by the horizontal black dashed 

line at 0.0.  Background medium conductivities are 2 = 0.001 S/m (red curves), 0.01 S/m (blue curves), 

0.1 S/m (green curves), and 1.0 S/m (brown curves).  Solid and dashed amplitude profiles correspond to 
conductivity-only scattering, and joint conductivity and permeability scattering, respectively. The 
scattering zone is represented by the thin vertical brown strip. 
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As expected, all amplitude profiles decay with increasing distance from the scattering layer. Additionally, 
an individual amplitude profile for the near-source (top panel) is larger than the corresponding profile for 
the far-source (bottom panel).  Increasing the background conductivity reduces the scattered amplitude at 
any fixed receiver location, as the progression from red to blue to green to brown curves illustrates.  

Indeed, for large background conductivity S/m 0.11  (~water), the far-source amplitude plots off-scale 

(brown curves in bottom panel). Interestingly, the scattering amplitude observed at the nearest receiver 

locations m 100rz  to the thin bed exceeds the source level when background conductivity is very 

low (red curves in top panel).  The reason for this is unclear, although it may be a constructive 
interference phenomenon where intrabed multiple reflections reinforce.  For a thin bed possessing only 
conductivity contrast, the backward- and forward-scattered amplitude profiles appear symmetric (at least 
at this plot scale).  However, joint conductivity and permeability contrast enhances for-scattering and 
suppresses back-scattering (compare the dashed and solid amplitude profiles, of all colors).  The amount 
of forward-scattering boost depends on the background conductivity, with low conductivity yielding the 
most (compare brown dashed and solid curves).    
 
Finally, note the slight flexure in the amplitude decay profiles for the large conductivity background 
medium with the near-source (brown curves in top panel).  The reason for this is that the time at which 
maximum amplitude is achieved on a calculated Ez-trace changes with receiver distance from the 
scattering layer. The effect is most pronounced for large conductivity media. 
 
An initial conclusion from this signal amplitude study is that observable backward- and forward-scattered 
electric field amplitudes are predicted, out to 2 km from the scattering layer, provided the background 
conductivity is not too large.  Note that the smallest logarithmic plot amplitude of –2.5 corresponds to a 
decay of ~316 relative to the source level.  A proximal source is clearly superior to a distal source. 
 
The final two figures display the same scattering amplitude information, but pertaining to the associated 
magnetic field component By observed at the receiver locations.  Note that the magnetic field traces in 
Figure 6.17 appear (nearly) anti-symmetric about the thin bed position:  forward-scattered traces are 
reversed in polarity compared to the backward-scattered traces.  This is the same scattering layer as with 

the prior Figure 6.15, with both a conductivity contrast S/m 102  and a permeability contrast 

02 10   with respect to the background medium  011   S/m, 1.0   .  

 
Relative amplitude profiles obtained from the calculated By traces are illustrated in Figure 6.18.  The 
reference level is arbitrarily taken to be Bref = 1 T, because these are magnetic field responses sourced by 
an incident electric field (different SI units!).   Amplitudes observed at the far offset locations of ±2 km 

range down to μT 2.3T 10 5.5 
.  Although some features of these magnetic field amplitude profiles are 

similar to the analogous electric profiles (like decay with offset distance), there is at least one notable 
difference:  increasing the background conductivity does not necessarily reduce amplitude at a fixed 
receiver location.  This is most evident in the progression from red to blue curves; amplitude increases in 
this situation.  Then, progressing from blue to green curves yields a mixed situation for the near source 
(top panel) and a uniform reduction in amplitude for the far source (bottom panel). 
 
Finally, similar to the electric field situation, joint conductivity plus permeability contrasts enhances 
forward-scattering and diminishes backward-scattering.  Somewhat different from the E-field responses, 
the B-field responses may be observable in a field experiment context, particularly with a near-source and 
with a near-offset receiver.  
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Figure 6.17.  Back-scattered and for-scattered By-component traces generated by proximal (top panel) 
and distal (bottom panel) plane wave electric field sources positioned at the vertical red arrows.  
Maximum absolute amplitude within each panel is plotted at one trace spacing; positive lobes of the 
traces are shaded grey. 
____________________________________________ 
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Figure 6.18.  Logarithmic maximum relative By amplitude vs. receiver location for proximal (top) and 
distal (bottom) plane wave sources.  Reference amplitude level is Bref = 1 T. Background medium 

conductivities are S/m 001.02  (red curves), 0.01 S/m (blue curves), 0.1 S/m (green curves), and 1.0 

S/m (brown curves).  Solid and dashed amplitude profiles correspond to conductivity-only scattering, and 
joint conductivity and permeability scattering, respectively. The scattering zone is represented by the thin 
vertical brown strip. 
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7.0 FIRST BORN APPROXIMATION SCATTERING 
 
The physical essence of the First Born Approximation is a replacement of a material property perturbation 
with an equivalent (or “effective”) body source of wavefields, at the same location(s) in space.  The 
perturbation (in the EM context, in current conductivity σ, magnetic permeability µ, or electric 
permittivity ε) is considered small in magnitude, although it may be spatially extensive.  Replacement of a 
material parameter perturbation by an effective body source offers an advantage for numerical modeling 
algorithms where gridding or meshing of a small scale perturbation is difficult to achieve.  
 
The mathematical basis of the First Born Approximation (FBA) is developed in general three-dimensional 
(3D) form in Appendix D.  In this section, we apply FBA theory to the 1D plane interface layer geometry.  
A geologic layer with enhanced electrical conductivity is replaced by a finite thickness “slab” of electric 
current; the magnitude of the current depends on the incident plane wave electric field.  In turn, the EM 
fields generated by this current slab may be calculated in closed form.  The 1D EM field solution 
methodology is outlined first, followed by the two illustrative examples of a thin “sheet” and thick “slab” 
of horizontal body source current flow.  For the FBA scattered field calculations, we again adopt the 
simplifying assumption that medium #3 (the substratum) is identical to medium #1 (the overburden, from 

which the incident plane wave arrives):    111333 ,,,,   .  This enables a direct comparison with 

the exact scattered field responses of the previous Section 5.0.           
 
7.1 Solution Methodology 
 
Consider a homogeneous and isotropic wholespace characterized by electric permittivity ε, magnetic 
permeability μ, and current conductivity σ.  In one space dimension, the two coupled first-order partial 

differential equations (PDEs) governing the components of the electric vector ),( tzex and magnetic vector 

),( tzhy are 
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Inhomogeneous (i.e., right-hand-side) terms represent three body sources of electromagnetic waves.  
These are: 
 

Conduction current density:     ),( tzjsx  (SI unit: A/m2),  

Displacement current density:  ttzdtzk sxsx  ),(),(  (A/m2),  

Magnetic current density:         ttzbtzl sysy  ),(),(  (V/m2).  

 
Note that the source magnetic current flows in the y-direction.  Eliminating the magnetic vector 
component yields a single second-order inhomogeneous PDE for the electric vector component: 
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Mathematically, source conduction current and displacement current appear indistinguishable in both 
equations (7.1a) and (7.2).  Fourier transforming from time t to angular frequency ω yields the 
inhomogeneous Helmholtz equation (an ordinary differential equation): 
 

 
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where the squared complex wavenumber is  iK  22)( .  Next, Fourier transforming from 

space coordinate z to angular wavenumber k yields     
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where the superposed “hat” symbol denotes a doubly-transformed quantity. The solution for the electric 
vector component is obviously 
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The inverse Fourier transform, from wavenumber k back to coordinate z, is defined by the integral 
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where, for notational simplicity, we omit subscript “x” indicating x-component.  Finally, substituting for 
the doubly-transformed electric vector gives   
 

 
dke

kK

kLikkKkJi
zE ikzsysxsx

   
)(

),(ˆ),(ˆ),(ˆ)(

2

1
),(

22







 









 .    (7.6)   

 
With known body sources, the above inverse Fourier transform may be performed with the aid of the 
definite integral 
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The last step is via item 3.723(2) on page 445 in Gradshteyn and Ryzhik (1994).  [The choice for complex 

parameter     )()()()()(  ciiciiK   has the required positive real part, 

whereas the alternative )( iK does not.]  With magnetic current sourcing, we require the space 

derivative 
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where sgn(z) is the signum (or sign) function.  Then, the frequency-domain electric vector E(z,ω) may be 
formally written as spatial convolution over coordinate z: 
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However, depending on the particular mathematical form of the body source terms, it may actually be 
easier to evaluate the Fourier transform integral (7.6) to obtain the frequency-domain field E(z,ω). 
 
7.2 Two Simple Sourcing Scenarios 
 
The 1D solution methodology outlined above is illustrated with two simple body source distributions: an 
infinitely thin “sheet” and a finite-thickness “slab” of conduction current. 
 
7.2.1 Current Sheet 
 
A particularly simple 1D body source consists of an infinitely-extended sheet of (lateral) current flow, 
localized at the coordinate z = zmid. Hence, assume a source conduction current 

density )()(),( midsx zztJwtzj   , where magnitude scalar J has the SI unit A/m and w(t) is a 

dimensionless waveform (often normalized to unit maximum absolute amplitude). The doubly-

transformed source current density is midikz

sx eJWkJ
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 )(),(ˆ  .  Then, from equation (6.6), the x-

component electric vector is obtained as 
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As expected, the electric field generated by a current sheet is symmetric about coordinate zmid.  Moreover, 
equation (7.9) satisfies the plane wave propagation relation 
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where the + sign is used if midzzz 21, and the – sign is used if midzzz 21, . 

 
The space-frequency expression (7.9) suggests the equivalent space-time expression 
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where F-1{ } is the inverse Fourier transform of { }, an asterisk denotes convolution with respect to time t, 
and a prime denotes differentiation with respect to the argument of a function.  In general, this inverse 
Fourier transform is difficult (perhaps impossible?) to perform.  Hence, adopt a high-frequency 
approximation for the complex wavenumber as 
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with infinite-frequency phase speed 1c  and infinite-frequency attenuation factor 

   2 .  Then, with the aid of items 3.722(2 and 4) on page 448 of Gradshteyn and Ryzhik 

(1994), it can be shown that 
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where H(t) is the Heaviside unit step function.  The inverse Fourier transform is a one-sided decaying 

exponential with onset time  czz mid ; the amplitude is also exponentially attenuated with distance 

midzz   from the current sheet.  The time-domain electric field (7.11) becomes 
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where the approximate equality indicates this is a high-frequency expression.  For vanishing conductivity 
σ → 0 (corresponding to vacuum), then α∞ = 0 and the above reduces to 
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The source waveform w(t) propagates vertically away (i.e., up and down) from the current sheet at z = zmid 
with speed c∞, without amplitude diminution or shape distortion.  Note the negative sign out front!  If 
waveform w(t) is positive, then the electric vector x-component e(z,t) is negative.  This is a manifestation 
of Lenz’s Law of electromagnetism:  an induced electric current acts in a manner that opposes the action 
that generates it.  Thus, a positive source current flow at z = zmid induces a negative conduction current 
flow for z ≠ zmid (and vice versa) in order to satisfy conservation of electric charge. 
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7.2.2 Current Slab         
 
Next, suppose the body source of current is confined to a slab of finite thickness h, centered at coordinate 
zmid.  The conduction current density vector is 
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where amplitude scalar M has SI unit A/m2 and П(x) is the rectangle function of unit height and area. The 
doubly-transformed source current is 
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where the well-known “sinc function” is defined as xxx  )sin()(sinc  .  Persisting through some 

algebra, the inverse transform to the space-frequency domain for the electric vector x-component can be 
put into the form:   
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where 2/hzz midtop   and 2/hzz midbot   are the “top” and “bottom” z-coordinates of the source 

current slab.  Next, utilize item 3.725(1) on page 446 in Gradshteyn and Ryzhik (1994): 
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         for   Re{β} > 0   and   a > 0. 

 
Then, for z < ztop: 
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and for z > zbot: 
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Alternately, the field external to the source current slab for 2hzz mid   may be expressed in a single 

formula as 
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which exhibits the same dependence on coordinate z as the sheet source electric field of the previous 
equation (7.9). 
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Internal to the current slab, for bottop zzz  , the electric vector component is 
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Expressions (7.18 and 7.19) are clearly symmetric about the slab midpoint zmid.  Moreover, the formulae 

agree on )2( hzE mid  at the slab boundaries.  Finally, in the limit as the slab thickness h vanishes and 

the source current magnitude M simultaneously grows without bound, such that the product Mh = J 
remains fixed, the slab external electric field (7.18) approaches the form (7.9) appropriate for sheet source 
current flow. 
 
 7.3 Conductivity Contrast 
 
The FBA scattering situation for a contrast in electric current conductivity is pursued first, as it forms a 
template for the slightly more complicated cases of dielectric permittivity and magnetic permeability 
contrasts.  In the First Born Approximation, an “effective body source” of conduction current, defined 
within the depth interval of the geologic layer ztop < z < zbot, is given by the product of the conductivity 
difference and the incident electric field: 
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where П(x) is the rectangle function of unit height and area.  See equation (D1.4a) of Appendix D.  
Superscript “B” indicates a First Born Approximation effective source.  This form differs from the slab 
current body source (7.14) in that the incident electric field varies with coordinate z across the layer.  
Fourier transforming to the frequency-domain gives 
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A trivial re-write is 
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This form indicates that, in the limits of vanishing thickness h → 0 and infinite conductivity contrast Δσ =  
σ2 – σ1 → ∞, such that the product Δσ h ≡ S remains fixed, then the Born source current reduces to the 

sheet source current form )(),( midmidinc zzzSE  . 

 
The incident electric field (x-component) is a plane wave propagating in the +z direction.  In the 
frequency-domain, we have 
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Substitute this into equation (7.21a) and Fourier transform to the wavenumber domain to obtain the 
doubly-transformed Born current source as (next page): 
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In the last equality, the ratio in square brackets approaches the expected form midikz
e


as h approaches zero.  
Next, substitute this into equation (7.6) for the doubly-transformed electric field (assuming no 
displacement current and magnetic current sources) to obtain  
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Subscript “B” on the left-hand-side indicates this is an x-component electric vector generated by a First 
Born Approximation effective current source. 
 
We have not located a tabulated integral form for the inverse Fourier transform (from wavenumber k to 
coordinate z) of expression (7.24).  Hence, we pursue an alternative solution strategy.  By inspection, the 
inverse Fourier transform of (7.24) may be written as 
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where the asterisks now denote convolution with respect to the spatial coordinate z.  From equation (7.7a) 
above, we already have the result 
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Next, using the Residue Theorem, it is readily demonstrated that 
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where H(z) is the Heaviside unit step function.  The spatial convolution of these two factors is 
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Inserting this result into equation (7.25) and performing the final convolutions yields the frequency-
domain Born scattered electric vector x-component as 
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As with the slab current source electric field (7.17a and b), the top and bottom boundaries of the geologic 
layer play an important role.  For z < ztop, the above expression simplifies to  
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whereas for z > zbot we have 
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The left-hand-side notation indicates that these are Born scattered fields generated by a conductivity 

contrast 12   .  Unlike the electric field generated by a finite-thickness slab of source current, 

the Born scattered electric field is not symmetric about the midpoint zmid; the reflected response (7.27a) 
contains a “modulating factor” in the bed thickness h.  This asymmetry is expected, because the 
illuminating electromagnetic field Einc(z,ω) is incident onto the geologic bed from above (i.e., from 
smaller z-coordinate).  In fact, the Born reflected response is quite similar to the (total) slab response:  
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but note the interesting slight difference in the bed thickness modulating factors.  
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Expressions (7.27a and b) for the Born back-scattered and fore-scattered wavefields can be simplified 

further, by recognizing the incident EM wavefield at level z is 
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Then, for z < ztop, we have 
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whereas for z > zbot we have 
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Note the asymmetry. The back-scattered response contains a “layer thickness modulation factor” 
involving the hyperbolic sine function.  Additionally, it contains a complex-exponential that accounts for 
extra dispersion/attenuation as the incident EM wave propagates from the source level zs down to the 
layer midpoint zmid, and then back to a receiver at level z < ztop.   
 
In the limit of small layer thickness h, the responses reduce to the common form 
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In the limits of vanishing bed thickness h → 0 and infinite conductivity contrast σ2 – σ1 → +∞, such that 
the product (σ2 – σ1)h ≡ S remains fixed, the Born scattered response reduces to  
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which is identical in form to the body source current sheet electric field of equation (7.9), as expected.   
 

Internal to the geologic bed, for bottop zzz  , the Born scattered electric vector component is 
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We intentionally write the electric field in this manner in order to compare with the analogous field inside 
the finite-thickness source current slab: 
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Clearly, there are similarities and differences. Both vanish as bed thickness h → 0. 
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7.4 Permittivity Contrast 
 
First Born Approximation scattered wavefields generated by an electric permittivity contrast Δε = ε2 – ε1 
assigned to the geologic layer are easily obtained from the previously-derived equations for a current 
conductivity contrast Δσ.  As per equation (D1.4b) in Appendix D, an “effective electric displacement 
vector body source”, defined within the depth interval of the layer ztop < z < zbot, is given by the product of 
the permittivity difference and the incident electric field: 
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Once again, П(z) is the rectangle function of unit height and area.  Comparing this with equation (7.20) 
for an “effective current density vector body source” indicates 
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The “effective electric displacement current” is the time-derivative 
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or, in the doubly-Fourier transformed domain 
 

),(ˆ )(),(ˆ

12

12 



 kJiωkK B

sx

B

sx 



 .        (7.32b) 

 
In general, the frequency-domain electric vector generated by the three different body source types is 
given by inverse Fourier transform equation (7.6) above as 
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In the present situation, the only active body source is the effective displacement current.  Hence 
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By equation (7.6), this is clearly 
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The Born scattered EM wavefield generated by a permittivity contrast Δε is proportional to the analogous 
wavefield generated by a conductivity contrast Δσ.  However, the proportionality coefficient is frequency-
dependent.  In the time-domain, this becomes 
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Now, for z < ztop, we have the conductivity contrast Born scattered field 
 

     ))((

11

1121 1),( 
)(

 
)(

)(sinh
  

2
),(

zziK

midincB
midezE

iK

i

hiK

hiKh
zE



 






 






















 ,    (7.27a again) 

 
whereas for z > zbot we have 
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Hence, from equation (6733), the permittivity contrast First Born Approximation scattered fields become: 
For z < ztop:  
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whereas for z > zbot we have 
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Once again, there is a slight asymmetry in the back-scattered and fore-scattered responses.  In the limit of 
small layer thickness h, the responses reduce to the common form 
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Internal to the geologic bed, for bottop zzz  , the Born scattered electric vector component is 
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7.5 Permeability Contrast 
 
The final First Born Approximation scattering situation to consider is a contrast in magnetic permeability 

12   .  From equation (D1.4c) of Appendix D, the effective magnetic induction body source is 

given by   
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where again the rectangle function Π(x) localizes the body source to the depth interval ztop < z < zbot.  The 

y-component of the incident magnetic induction (or magnetic flux) vector is ),( tzbinc .  Fourier 

transforming to the frequency-domain gives 
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Now, from Faraday’s Law: 
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Then, we have 
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where the obvious ),(),(
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 is used.  But we already have the effective FBA 

current density body source   
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So this implies 
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and after Fourier transforming to the wavenumber domain 
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Next, recall the general solution for the x-component electric field due to the three body source types as 
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Retaining only the magnetic current density source ),(ˆ)(),(ˆ  kBikL sysy  gives the Born scattered 

electric field as 
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But by the general solution expression (7.6) again, this reduces to the space derivative 
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The FBA scattered field generated by a permeability contrast is proportional to the derivative (with 
respect to depth coordinate z) of the field generated by a conductivity contrast.  Now, for z < ztop, we have 
the previous expression for a conductivity contrast field as  
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whereas for z > zbot we have 
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Hence, it is easy to show 
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where the + sign is used for z > zbot and the – sign is used for z < ztop.  Thus, putting it all together yields 
the First Born Approximation scattered fields generated by a magnetic permeability contrast as: 
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For z < ztop: 
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whereas for z > zbot 
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Again note the interesting asymmetry between these two expressions.  First-order expansions in layer 
thickness h are obviously: 
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and for z > zbot: 
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which exhibit a remarkable similarity, although the back-scattered field (7.45a) has the opposite sign as 
the fore-scattered field (7.45b). 
 

Finally, internal to the geologic layer, the Born scattered electric vector component is for bottop zzz  : 
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7.6 FBA Scattering Response Summary 
 
The various frequency-domain expressions for FBA scattered responses, in both the backward (z < ztop) 
and forward (z > zbot) scattering zones, are summarized in this section.   Responses recorded within the 
geologic layer (ztop < z < zbot) are also given, although these may be of lesser practical interest. General 
(i.e., exact) expressions for these responses are then specialized to the low-frequency electromagnetic 
induction regime and a thin geologic layer. 
  
7.6.1 Exact Born Approximations 
 
Admittedly, the phraseology “exact…approximation” sounds somewhat odd.   The intent is to re-state the 
FBA-derived scattering responses prior to adopting an additional thin bed and/or low-frequency 
approximation.   
 

1) Current conductivity contrast: 12   . 

    
For z < ztop: 
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and for z > zbot we have 
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Responses are proportional to the conductivity contrast ∆σ, and the incident plane wave electric field at 
the layer midpoint Einc(zmid,ω).  Note again the asymmetry between the back-scattered and fore-scattered 
formulae. Although the fore-scattered response (7.47b) is directly proportional to the layer half-thickness 
h/2, the back-scattered response (7.47a) is not. 
 

Internal to the geologic bed, for bottop zzz  , the Born scattered electric vector component is 
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2) Dielectric permittivity contrast: 12   . 

 
For z < ztop:  
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and for z > zbot we have 
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Interestingly (and perhaps obviously), these ∆ε responses may be obtained from the corresponding ∆σ 
responses by multiplying by (–iω) and making the replacement ∆σ → ∆ε.  Thus, permittivity contrast 
scattering has higher frequency content compared to conductivity contrast scattering. 
 

Internal to the geologic bed, for bottop zzz  , the Born scattered electric vector component is 
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3) Magnetic permeability contrast: 12   . 

 
For z < ztop: 
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and for z > zbot: 
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In all cases, the forward-scattered responses are directly proportional to the layer half thickness h/2, 
whereas the backward-scattered responses are not.  Moreover, back-scattered and fore-scattered ∆µ 
responses have opposite sign. 
 

Internal to the geologic layer, the Born scattered electric vector component is for bottop zzz  : 
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Note a sign difference compared to equations (7.47c) and (7.48c)! 
 
All of the above FBA scattered responses are considered “exact” in the sense that the full-frequency 
complex wavenumber K1(ω) (constructed with medium #1 parameters) is used in the expressions:  
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where the dimensionless function s(x) is defined as 
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The infinite-frequency phase speed c1∞ for medium #1 is defined as 111 1 c .       (2.4a again) 

 
7.6.2 Multi-Parameter Scattering 
 
It should be obvious from the previous derivations that FBA scattered electric fields generated by 
contrasts in multiple layer parameters are given by the sum of formulae appropriate for single parameter 
scattering. Thus, combining the FBA back-scattering formulae (7.47a), (7.48a), and (7.49a) yields: 
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whereas the FBA fore-scattering formulae (7.47b), (7.48b), and (7.49b) give 
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The forward-scattering expression lacks the bed thickness modulation factor involving the hyperbolic sine 
function (and has opposite algebraic sign in the permeability scattering term).   
 
For ztop < z < zbot, the three intrabed FBA scattering formulae (7.47c), (7.48c), and (7.49c) are combined 
and re-written in a different form as 
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The above forms, utilizing the dimensionless parameter ratios 12  and 12  ,are preferred for 

numerical calculation purposes. However, recalling the notation 12
ˆ   , 12

ˆ   , and  

12
ˆ   yields the alternative forms: 
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and for z > zbot:    
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Note the sign difference (i.e., within the braces { }).  For ztop < z < zbot the exact FBA intrabed scattering 
response becomes 
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An important observation is that the FBA scattering formulae (7.51a,b,c) are linear in the three 

dimensionless parameter contrast quantifiers 1ˆ  , 1ˆ  , and 1ˆ  .  In other words, if any two of them 

are zero, then the FBA scattered response scales directly with the third.  An obvious implication is that 
ever increasing parameter contrast leads to ever increasing scattered wavefield magnitudes.  The limits of 
this approximation are examined in a subsequent section. 
 
7.6.3 Low-Frequency Approximations 
 
Next, we impose a low-frequency approximation on the above-derived First Born Approximations.  From 
equation (A4.15) of Appendix A, the complex wavenumber (evaluated with the reference model 
parameters) at low frequency is given by 
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where sgn(x) is the sign function.  This approximation is appropriate for 111   , where ω1 is 

the transition frequency for medium #1.  So, in the low-frequency (or electromagnetic induction) regime, 
the phase speed and attenuation factor are both proportional to the square root of frequency, and dielectric 
permittivity ε does not play a role.  As per the development in section 5.5 (entitled Scattering Ratio), we 
have the low-frequency form 
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Substituting this into the above expressions (7.51a,b,c) for the FBA scattered responses gives: 
 
For z < ztop:  
   

  )()(

11
11),(  )(sinh

2

ˆˆ
 ),(

zzi

midincB
midezEhizE















 .   (7.52a)  

 
For z > zbot:    
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For ztop < z < zbot: 
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In this low-frequency approximation, where 1   , scattering by dielectric permittivity contrast 

12    is considered negligible (at least for “normal” values of relative permittivity), and hence is 

omitted from both sides of the above expressions. Only conductivity and permeability contrasts are 

relevant.  Clearly, if 1ˆˆ   (implying no parameter contrast), then all three scattered responses 
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vanish, as expected.  The forward-scattered response is directly proportional to the bed thickness h, 
whereas the back-scattered response is not.  Moreover, responses are continuous at top and bottom bed 
boundaries (i.e., as z → ztop and z → zbot). 
 
7.6.4 Low-Frequency and Thin-Bed Approximations 
 
Finally, we impose an additional thin-bed approximation on the above low-frequency response equations.  
Expanding the above expressions to third-order in the small quantity 
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yields the back-scattered FBA response  
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[Recall that 6)sinh( 3zzz  .]  The fore-scattered response (7.52b) is already (and truncates) at first-

order in h, and is repeated as 
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Hence, to first-order in h, the back- and fore-scattered low-frequency FBA responses are proportional to i) 

the half-bed thickness h/2, ii) complex wavenumber )(11  i with SI unit 1/m, and iii) the incident 

electric field at the bed mid-point ),( midinc zE . The thin intrabed response is 
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which is also proportional to the mid-bed electric field value. 
 
How do these thin-bed, low-frequency FBA scattering formulae compare to the exact scattering 
expressions of Section 5.0?   Equation (5.19) gives the exact back-scattered response, expanded to first-
order in bed thickness h, as  
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But we know
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This is identical to the first-order term in the FBA back-scattered response (7.53a)!  Similarly, the exact 
fore-scattered response, expanded to first-order in bed thickness h is 
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or alternately 
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This is identical to the first-order (in h) FBA fore-scattered response (7.53b), when the substitution 
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 is made!   These deductions lead to an important theoretical 

statement linking exact and FBA scattering expressions as: 
  
 
The exact formulae for the electric field scattered by a geologic layer, when expanded in both the low-
frequency and thin-bed approximations, are identical to the First Born Approximation scattering 
expressions in these same limits. 
 
 
7.6.5 Primaries Only Comparison 
 
The mathematical development of the First Born Approximation in Appendix D indicates that the 
scattered (or perturbed) wavefield propagates within the original (or reference, or background, or incident 
medium) earth model.  This has led to numerous statements in the geophysical literature to the effect that 
the FBA is a “single scattering” theory that does not accommodate “multiple scattering” between 
physically separated scattering loci.  We concur with this understanding.  In the FBA approach, a distinct 
scatterer (i.e., a perturbation in material properties) is removed from the earth model, and is subsequently 
replaced with a body source distribution within the background medium. 
 
The single scattering aspect of FBA theory motivates an examination of the “primaries only” reflection 
and transmission responses of a geologic layer, wherein all intrabed multiples are neglected.  Admittedly, 
ignoring the intrabed multiples is nonphysical (and this will be elaborated upon later).  However, the 
resulting scattering responses are useful for comparison with the analogous FBA responses, and also 
enable as assessment of the importance of the multiples.  Interestingly, the original treatment of the thin 
bed reflection response issue in seismic reflection exploration (Widess, 1957-58 and 1973) considered 
only top-bed and bottom-bed primary reflections, and ignored all the intrabed multiples.      
 
Following the summation approach of section 3, the primaries only reflection response, consisting of just 

the top-bed and bottom-bed reflections recorded at a receiver topr zz   , is given by (next page): 
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where )(topR is the normal-incidence reflection coefficient at the upper bounding interface, and 

)(12 T and )(21 T are the downward and upward transmission coefficients through this interface.  We 

have    2

2112 )(1)(1 )(1)()(  topbottop RRRTT   because the usual assumption that 

medium #1 = medium #3 is adopted.  The primaries only reflection response becomes 
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Next, the top-bed reflection coefficient is     
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where two dimensionless ratios are )()()(ˆ
12  KKK   and 12)(ˆ   . In the low-frequency 

approximation, hihiK  )(   .  Hence  ˆˆ)(ˆ K  where 12)(ˆ   is a third 

dimensionless parameter ratio.  Moreover, in the low-frequency approximation 
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where the low-frequency wavelength in the incident medium is given by



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1

2
2)(  , and we 

recall from section 5.5 the definition of dimensionless parameter )(1  .  Substituting these forms yields 

the primaries only reflection response as 
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Recognize that, in this case where medium #1 = medium #3, the reflection response is identical to the 

back-scattered response.  As a simple check, note that 1ˆˆ    (i.e.,  no material parameter contrast) 

implies that the  reflection response vanishes, as expected. In fact, 1ˆˆ  r yields the same result. 

 

A similar development yields the primaries only transmission response, for a receiver at botr zz  as 
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or, at low frequencies: 
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Subtracting off the direct arrival gives the forward-scattered primaries only response as  
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In the no-contrast situation 1ˆˆ   , the transmitted response is just the incident field, and the for-

scattered response vanishes.  However, 1ˆˆ  r leads to enhanced forward scattering. 

 

The product 
2

2112 )(1)()(  topRTT  used in the development of both the back- and for-scattered 

responses accounts for plane wave transmission through the top and bottom interfaces of the geologic 

layer.  For small parameter contrast, the top bed reflection coefficient 1)( topR , and the 

transmission coefficient product is well-approximated as unity.  This leads to the two additional scattering 
approximations, without transmission loss, as  
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The following table summarizes four back-scattering responses in the common parameterization 

 )(,ˆ,ˆ
1  .   [The exact back-scattering expression (top line of table) is obtained in this form in a 

subsequent section.]  All four expressions indicate that the back-scattered field is proportional to the 

incident electric field at position rmid zz 2 . However, the four formulae possess a rather different 

mathematical “look”; dependence on the two dimensionless parameter ratios ̂ and ̂  clearly  differs. 

Moreover, dependence on layer thickness h (via the argument )()1(2)( 11  hi ) varies. 

Despite the apparent “multiple free” assumption embedded in the FBA response (bottom line of table), it 
does not compare well with the two “primaries only” responses (second and third lines).  Finally, let the 
bed thickness h vanish, holding the other two parameters fixed.  Surprisingly, the primaries-only back-
scattered response (second line) does not vanish, but approaches a nonzero value!  This feature arises 
because two-way transmission through the top interface is included in the derivation.  Ignoring two-way 
transmission (by setting the transmission coefficient product to unity) leads to the correct result.  
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Backward Scattering Formulae (zr  <  ztop) 
 
 
Exact Back-Scattering (including all intrabed multiples): 
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Primaries-Only Back-Scattering: 
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Primaries-Only and No-Transmission Loss Back-Scattering: 
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First Born Approximation Back-Scattering: 
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Table 7.1.  Backward scattering formulae (zr  <  ztop). 
__________________________________________ 
 
 
The analogous forward-scattering expressions are summarized in the following table.  All responses are 
proportional to the incident electric field at position zr.  Once again, there is no obvious similarity between 

the FBA response and the two “primaries only” responses.  All four responses vanish for 1ˆˆ    (i.e., 

no  parameter contrast), but the “primaries-only” formula (second line of table) predicts a nonzero 
forward-scattered field in the limit of vanishing bed thickness.  This is clearly non-physical.     
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Forward Scattering Formulae (zr  >  zbot) 
 
 
Exact For-Scattering (including all intrabed multiples): 
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Primaries-Only For-Scattering: 
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Primaries-Only and No-Transmission Loss For-Scattering: 
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First Born Approximation For-Scattering: 
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Table 7.2.  Forward-scattering formulae (zr > zbot). 
__________________________________________ 
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7.7 Born Scattering Examples   
 
As indicated previously, the physical essence of the First Born Approximation is a replacement of a 
material parameter perturbation by an effective (i.e., roughly equivalent in effects) body source of 
electromagnetic waves.  This body source distribution coincides with the material perturbation in 3D 
space.  The mathematical development in Appendix D indicates that perturbations in current conductivity 
σ(x), electric permittivity ε(x), and magnetic permeability µ(x) generate effective conduction current, 
displacement current, and magnetic current body sources, respectively:  
 

),()(),( tt inceff xexxj  ,         (D1.4a again) 
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[The “δ” pre-symbol denotes a perturbation in a material parameter.] Conduction and displacement 
current body sources have SI unit A/m2 (areal current density), whereas the magnetic current body source 
has SI unit V/m2 (areal potential density).  Sources are also proportional to the primary (or “incident” or 
“reference”) electromagnetic field vectors einc(x,t) and hinc(x,t).  
 
Figure 7.1 below illustrates a First Born Approximation (FBA) scattering situation for the case of a thin 
geologic layer possessing a conductivity contrast with a surrounding homogeneous wholepace (i.e., 
medium #1 = medium #3 in prior notation).  The contrasting geologic layer (depicted as light brown 
color in the earlier Figure 2.1) is now replaced by body source distribution of electric current, 
intentionally shown by a different green color.  The original top and bottom bed-bounding interfaces are 
now drawn as dashed, indicating that the layer as a physical medium parameter contrast no longer exists; 

rather, it has EM parameters  111 ,,   identical to the overburden and substratum.  The effective 

current density body source is illustrated by the set of horizontally-directed green arrows.  These decrease 
in magnitude from top to bottom because the incident electric field (downward-propagating red plane 
wavefronts in upper left) decays as it traverses the original layer with contrasting conductivity σ2 ≠ σ1. 
The current density body source gives rise to back-scattered (upward-propagating) and for-scattered 
(downward-propagating) plane electric field wavefronts, also illustrated in red. 
 
Our first examples of FBA scattered responses are displayed in the following Figure 7.2.   Back-scattered 
(i.e., zr < ztop) Ex-component signals generated by four thin beds (hbed = 1 cm) having strong conductivity 
contrasts with the background are plotted.  The source waveform consists of 100 periods of a 1 Hz 
sinusoid, with unit amplitude 1 V/m; source is coincident with the back-scattering receiver at zs = zr = –
100 m.  Four full periods of the recorded scattered signals are plotted (from 4 s to 8 s in order to avoid 

turn-on effects at t=0 s). The background medium is characterized by    S/m 02.0,,10,, 00111   . 

 
Top and bottom panels of Figure 7.2 compare exact and First Born Approximation back-scattered 
responses, respectively, as the conductivity assigned to the thin layer ranges from σbed = σ2 = 103 S/m (red 
curves), to 104 S/m (green curves), to 105 S/m (blue curves), to 106 S/m (brown curves).  Hence, the 

dimensionless conductivity contrast ratio 12
ˆ   ranges from 105 to 108, implying that these are very 

strong conductivity contrast beds.     
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Figure 7.1. Schematic depiction of First Born Approximation scattered wavefields (upward and 
downward propagating red plane wavefronts) for the case of a thin geologic layer possessing a contrast in 
current conductivity with respect to a homogeneous background.  The material parameter contrast of the 
layer is replaced by a horizontally-directed electric current body source (green arrows) with the same 
vertical extent.  
________________________________________     
 
 
Exact and FBA back-scattered responses are calculated via formulae (5.30a) and (7.51a) respectively, 

specialized to this case of no permeability and no permittivity contrast (i.e., 1ˆˆ   ): 
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The low-frequency complex-wavenumber ratio, highly accurate for the source frequency of 1 Hz, is given 

by  ˆ)()()(ˆ
12  KKK .  However, algorithm THEMBED utilizes the exact (i.e., full spectral 

band) expression for the complex wavenumber ratio for its internal calculations. 
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Figure 7.2.  Exact (upper panel) and First Born Approximation (lower panel) back-scattered responses 
induced by a strong current conductivity contrast in a thin geologic layer with thickness hbed = 1 cm.  Red, 
green, blue, and brown curves correspond to σbed = 103, 104, 105, and 106 S/m, respectively.   Blue and 
brown sinusoidal curves plot well off scale in bottom panel. 
__________________________________________ 
 
Exact back-scattered wavefields plotted in the top panel of Figure 7.2 approach a limiting value (equal to 

the source level 1 V/m) as conductivity contrast ̂ increases.  This is consistent with equation (7.58a) 

above (which approaches –1 as  ̂ ).  Note the interesting phase lag of the sinusoidal signals.  

However, the FBA back-scattered wavefields in the bottom panel grow without bound as ̂ increases, 
consistent with equation (7.58b).  There does not appear to be a progressive phase lag with increasing bed 
conductivity. 
 
The two red curves in Figure 7.2, appropriate for the smaller bed conductivity σbed = 103 S/m, are nearly 
identical.  The next Figure 7.3 plots both exact (solid curves) and FBA (dashed curves) back-scattered 
responses on the same set of axes, for more moderate contrasts in bed conductivity.   The red curves are 
the same as in Figure 7.2, but note the expanded (×10) vertical plot scale.           
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Figure 7.3.  Exact (solid curves) and First Born Approximation (dashed curves) back-scattered responses 
induced by moderate current conductivity contrast in a thin geologic layer with thickness hbed = 1 cm.  
Brown, blue, green, and red curves correspond to σbed = 100, 101, 102, and 103 S/m, respectively.  Solid 
red curve is identical to previous Figure 7.2.  Note expanded vertical scale of 10× compared with prior 
figures.  
_____________________________________________  
 
For low values of bed conductivity contrast, dashed and solid curves overplot in Figure 7.3, indicating 
that the FBA is a reasonable approximation in this regime.  However, σbed = 103 S/m (corresponding to  

510ˆ  ) leads to a discernable amplitude difference between exact and FBA back-scattered response at 
this plot scale.  The obvious conclusion is that the FBA becomes progressively more inaccurate (in the 
sense of over-estimating the scattered field magnitude) as bed conductivity contrast increases.  
Interestingly, Figure 7.3 appears to indicate that the FBA response lags the exact response in time.   
 
 
7.8 Born Scattering Accuracy 
 
The numerical examples displayed in the previous section motivate an examination of the accuracy of the 
First Born Approximation for scattered EM wavefields. We seek to determine the ranges of the 

controlling parameters (i.e., bed thickness h, conductivity contrast ratio̂ , and permeability contrast 

ratio ̂ ) where the FBA constitutes a reasonably accurate estimate of the exact scattered wavefields.  The 

philosophy is identical to that in Hudson and Heritage (1981), although their work is in the context of 
elastic scattering by a small spherical inclusion.  By slightly modifying the previous equations (5.32a and 
b), we obtain the following expressions for the exact back-scattered and for-scattered electric fields as 
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            (7.59a) 
 
and 
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            (7.59b) 
 
respectively.  Recall that the dimensionless frequency-dependent parameter β1(ω) is given by 
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where we adopt the usual low-frequency approximation for the complex-wavenumber.  In this frequency 

range 111   , the wavelength of the EM wave is given by  111 22)(  . 

 

Expanding the above formulae to first-order in the assumed small parameter )(ˆˆ
1   gives the 

interesting approximations 
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In each expression we also take 1
)(1 

 
e .  The layer midpoint position zmid is held fixed.  Each 

expression is directly proportional to )(1  .  A small magnitude for both )(ˆˆ
1   and )(1   is 

readily achieved by taking the thickness-to-wavelength ratio 1)(1 h , independent of the two 

parameter contrast ratios ̂  and ̂ .  [However, it is clear that if  ˆˆ  is a large number, then 

)(~)( 11  h must be made very small in order for (7.60a and b) to hold.]   

 
Expressions (7.60a and b) also provide a (partial) mathematical explanation for the numerical results 
illustrated in subsection 6.1.5 (Fixed Bed Conductance; Backward-Scattering) and 6.1.6 (Fixed Bed 

Inductance; Forward-Scattering). The product of ̂ and )(1   is directly proportional to the bed 

conductance hS 22   (SI unit: S); similarly, the product of ̂ and )(1   is proportional to the bed 

inductance hL 22   (SI unit: H).  Working with equation (7.60a) as an example, the thin-bed back-

scattered response re-written as 
 

 
)(

)1(
 ),2(),(

1

2

1

2

1



















LSi
zzEzE rmidincrbak . 

 



101 

Next, suppose the background medium parameters 1 , 1  (and hence )(1  ) are held fixed, and the bed 

parameters 2 and h are varied such that the conductance S2 remains invariant. Then, the above 

expression indicates that the back-scattered field bakE  is also (nearly) invariant, provided that the term 

)()( 112112  hL  is small.  This is indeed the case for Figure 6.11.  A similar argument 

applies to the fixed-inductance forward-scattered responses of Figure 6.12, for which expression (7.60b) 
is recast as   
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Fixed inductance L2  leads to a fixed for-scattered field forE , provided the term involving  conductance S2 

remains small.  An important proviso is that the bed is considered thin with respect to the incident 

medium wavelength, so  that any term with 1)(1 h can be neglected.  The exact scattering 

formulae (7.59a and b), appropriate for arbitrary bed thickness, do not exhibit this invariance. 
 
Next, working with the previous equations (7.52a and b) for the FBA back-scattering and for-scattering 
formulae yield the variants: 
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For zr > zbot:    
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The second expression (7.61b) is identical to the thin-bed for-scattering expression (7.60b).  Moreover, 

for 1)(1   we have   )()(sinh 11   , and the first expression (7.61a) reduces to the thin-bed 

back-scattering expression (7.60a). So, the important conclusion is that a thin bed, defined by the 

condition 1)(1 h , has an FBA scattering response the same as the exact scattering response. This 

is consistent with the deduction of the previous sub-section 7.6.4, although via a slightly different route. 
 
In order to quantify the accuracy of FBA scattering, consider two complex-valued ratios formed from the 
FBA and exact scattered EM fields as 
 

),(

),(
)(






rbak

bakrB

bak zE

zE
BE  ,   

),(

),(
)(






rfor

forrB

for zE

zE
BE  .            (7.62a,b) 

 
Substituting in the above expressions and simplifying yields (next page): 
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where 
 ˆˆ2

ˆˆ
ˆ



 
g  is a real-valued parameter formed from the parameter contrast ratios.  [Interestingly, 

parameter ĝ is the ratio of the arithmetic mean to the geometric mean of ̂  and ̂ .  Does this mean 

anything profound?  Probably not.]  As a check, we immediately find that as 0)(1 h , then 
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which is consistent with the above analysis.  In the thin bed limit, the FBA and exact scattered responses 
become identical. Additionally, consider a layer where the conductivity and permeability contrast ratios 

have the same value:  r  ˆˆ , implying 1ˆ g .  Then we have 
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Hence, as r →1 (implying no material property contrast for the layer), the Born-to-Exact scattering ratios 
again approach 
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The latter limiting case is easily obtained via L’Hopital’s Rule.  Both the FBA and the exact scattered 
fields vanish (obviously) for this “no contrast layer” case.  However, their ratios approaches unity. 
 
The Born-to-Exact scattering response ratios (7.63a and b) (as well as the underlying exact responses 
(7.56a and b) and FBA responses (7.59a and b)) are exceedingly important, in that they clearly exhibit 

dependency on only three dimensionless parameters 12
ˆ   ,  12

ˆ   , and )()(ˆ 1  hh    

[Since we have already specialized to low-frequency, or the geophysical  induction regime, the remaining 

dimensionless parameter ratio 12
ˆ   does  not  enter the formulae.] The following figures illustrate 

ratios (7.63a and b), plotted as a logarithmic amplitude ratio above the 2D plane of ̂log10  and ̂log10 .  
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Figure 7.4.  Backward-scattering (top panel) and forward-scattering (bottom panel) logarithmic 
amplitude ratios of FBA to Exact scattered responses, calculated for a thin layer (h = 1 cm) and an 
incident EM sinusoidal signal with frequency f = 1 Hz. Background conductivity σ1 = 0.1 S/m and 

permeability µ1 = µ0, implying thickness-to-wavelength ratio is 
6

1 10h .  Paramagnetic/diamagnetic 

regions reside above/below the horizontal dashed lines.  
_______________________________________  
 
 
Figure 7.4 above depicts the Born-to-Exact amplitude ratios, for both backward- and forward scattering.  

The choice of incident medium #1 parameters implies 
642

1 10m10m10  h , so that the 

calculation is well within the thin bed regime.  Consistent with the above analysis, the FBA and exact 
responses are nearly the same, and hence their ratio is unity; both plots are nearly completely green 

(logarithm 0).  Only at very large conductivity contrast 
610~̂ does the FBA amplitude exceed the exact 

amplitude. The horizontal dashed lines at 0ˆlog10   separate zones of paramagnetic ( 02   ) and  
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diamagnetic  ( 02   ) material for the layer.  If diamagnetism in geologic materials is considered rare 

or impossible, then the zone below the dashed lines should be ignored.  However, some common 
materials possess relative magnetic permeabilities slightly less than unity (i.e., copper: 0.999994, water: 
0.999992, bismuth:  0.999834; see https:/en.wikipedia.org/wiki/Permeability_(electromagnetism) ).   
 

                      
 

            
         
Figure 7.5.  Same as Figure 7.4, except for a thicker layer (h = 10 m) and a higher frequency incident 
signal (f = 10 Hz). 
_______________________________________  
 
FBA-to-Exact logarithmic amplitude ratios for a thicker layer (h = 10 m) and a higher frequency (f = 10 

Hz) are illustrated in Figure 7.5.  The thickness-to-wavelength ratio is
3

1 10162.3 h , which is still 

small.  However, FBA scattering response amplitudes are now significantly greater than exact amplitudes 
for large conductivity contrasts. Moreover, back- and for-scattered ratios have different appearances, 

particularly near the line defined by  ˆˆ  , where a “valley” develops in the backward response. 
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Figure 7.6.  Same as Figure 7.5, except a larger magnetic permeability 01 10  is assigned to the 

background medium. 
_________________________________________ 
 
Finally, Figure 7.6 depicts the two logarithmic amplitude ratios (again for h = 10 m and f = 10 Hz) where 

the background medium magnetic permeability is increased to 01 10  . The dividing line between 

zones of paramagnetism and diamagnetism is depressed to 1ˆlog10  .  Layer thickness-to-incident 

wavelength ratio is now 
2

1 10h .  FBA response significantly exceeds the exact response over a 

broader range of conductivity contrast, and the valley of dimished FBA responses pulls in closer to the 
origin. In the upper right corner, a zone of NANs (grey color) develops, suggesting that the numerical 
evaluation is not well-posed in this area. 
 
A conclusion evident in all three figures is that the FBA scattered response amplitude exceeds the exact 
scattered response if the layer possesses strong conductivity contrast with the surrounding medium.  

Moreover, this effect is enhanced by thicker layers and higher frequencies, as this increases ratio 1h . 
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8.0 SUMMARY AND CONCLUSIONS  
 
Plane wave reflection and transmission responses, for the electric E and magnetic B wavefields, have 
been developed for a simple geologic model consisting of a homogeneous and isotropic layer situated 
between two (potentially dissimilar) halfspaces.  A plane electric wave is normally incident upon the top 
interface of the layer.  The reflected response includes the two primary reflections from top and bottom 
interfaces, as well as all intrabed multiples.  The transmitted response is formed from the direct (i.e., 
propagating straight through) wave, together with all trailing intrabed multiples.  Each multiple is delayed 
by the two-way traveltime within the layer, and is also attenuated by the electrically conductive material.  
In general, layer thickness h need not be small compared to an incident wavelength.  A novel aspect of the 
present development is inclusion of intrabed E and B responses, which might be observed via borehole 
emplacement of a receiver within the layer. 
 
Scattered wavefields (in the backward and forward directions) are obtained by subtracting a suitable 
reference (or background) medium response. Hence, a scattered response may be thought of as directly 
attributable to perturbations in medium properties induced by the presence of the layer.  A common 
reference medium is a homogeneous and isotropic wholespace, for which the reference response is a 
plane progressing EM wave.  Then, the back-scattered response is the same as the reflected response, and 
the for-scattered response equals the transmitted response minus the direct wave.  This situation applies to 
a hydraulic fracture created entirely within a spatially-extensive homogeneous geologic formation.  
However, a fracture might follow a pre-existing path of weakness, like an interface between two different 
rock formations.  Our mathematical formalism applies to either case, although our numerical simulations, 
performed with algorithm THEMBED, apply to the simpler situation of a fracture emplaced within a 
homogeneous wholespace. 
 
Extensive numerical simulations with algorithm THEMBED reveal the basic characteristics of reflected 
and transmitted responses, as well as back- and for-scattered responses, as layer characteristics (i.e., bed 
thickness, bed conductivity, permeability, and permittivity) are varied.  In the low frequency regime 
commonly used in EM exploration geophysics, permittivity contrast appears to have negligible influence.   
 
The First Born Approximation (FBA) scattering response is, as the name obviously implies, an 
approximation to the actual scattered response of a geologic layer, and is developed by replacing the layer 
with an “equivalent” or “effective” body source distribution of EM waves. Perturbations in 
conductivity/permeability/permittivity imply body sources of conduction/magnetic/displacement current, 
respectively.  In the limit of a thin layer (with respect to a wavelength of the incident wave within the 
background medium) and mild medium parameter contrasts, the FBA scattering response agrees with the 
actual scattering response, both mathematically and numerically. However, as parameter contrast 
increases, the FBA scattering response grows without bound, whereas the actual scattering response 
asymptotes to a fixed value.  This interesting effect has been recently observed in DC potential field 
calculations by Weiss et al. (2015).  Clearly, FBA scattering over-estimates the amplitudes of actual 
scattering as medium parameter contrasts increase.  FBA theory also indicates invariant back- and for-
scattering responses, for layers with fixed conductance (thickness × conductivity), inductance (thickness 
× permeability), and capacitance (thickness × permittivity) product. This invariance is not predicted by 
the actual, or exact, scattering formulae.  Thus, the ability to resolve layer thickness and a corresponding 
layer parameter in an EM scattering experiment is probably severely limited.  
 
The importance of the First Born Approximation formalism resides in its simple description of wavefield 
scattering phenomena, as well as its practical utility in numerical representation of small-spatial-scale 
perturbations on a 3D grid via an equivalent body source.  However, it should always be remembered that 
the FBA is an approximation to reality. 
 
Finally, we remind the reader that an obvious extension of the present analysis involves a non-normal 
incident plane EM wave onto the geologic layer.  Figure 8.1 below depicts raypaths of reflected and 
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transmitted responses. Unlike the previous Figure 2.1, these are actual raypaths, inclined from the 
vertical. 
 

 
Figure 8.1.  Non-normal incidence plane wave reflected and transmitted responses of a geologic layer.  
____________________________________________ 
 
 
Note that in general, the raypaths, and hence the wavefronts, have different (non-vertical and non-
horizontal) angular orientations in the overburden and substratum.  Angles within  the  layer and  

substratum are governed by Snells’ Law of  Refraction:    incbed fcfc  sin)()(sin 12   and 

  bedtrn fcfc  sin)()(sin 23 .  In the simpler (and perhaps more realistic) case where medium #3 = 

medium #1, then inctrn   and raypaths/wavefronts are oriented similarly in both media.  In the low-

frequency range commonly employed in geophysical electromagnetics, the phase speed ratios in Snells’ 

Law are independent of frequency:     ˆˆ1)()( 212112 fcfc .  Careful analysis of 

this situation awaits a future generation of geophysicists!      
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10.0 APPENDIX A:  PLANE ELECTROMAGNETIC WAVES 
 
In this Appendix, we develop the mathematics of plane electromagnetic wave propagation within a 
homogeneous and isotropic medium from fundamental principles of electromagnetism. 
 
A1.0 EH Partial Differential System 
 
We start with two of the fundamental Maxwell equations that govern electromagnetic phenomena: 
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where the four dependent variables are 
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2m

sV
T


 , 

 

),( txd :  electric displacement vector,  SI unit: 
22 m

sA

m

C 
 , 

 

),( txe :  electric field vector,  SI unit: 
m

V

C

N
 , 

 

),( txh :  magnetic intensity vector,  SI unit: 
m

A
. 

 
The particular variable names used here are taken from Reitz and Milford (1967).  Within the geophysical 
discipline, e(x,t) and h(x,t) are commonly referred to as the “electric” and “magnetic” field vectors, 
respectively.  Ward and Hohmann (1987, p. 132) refer to d(x,t) as the “dielectric displacement”  vector 
and e(x,t) as the “electric field intensity” vector.  Alternately, e(x,t) and h(x,t) are called the electric and  
magnetic “field strength” vectors, and d(x,t) and b(x,t) are the associated electric and  magnetic “flux 
density” vectors, respectively (de Hoop, 1992).      
 
Next, introduce three electromagnetic constitutive relations appropriate for linear, time-independent, and 
isotropic media as: 
 

),(),( )(),( ttt s xbxhxxb   ,        (A1.2a) 

 

),(),( )(),( ttt s xdxexxd   ,         (A1.2b) 

 

),(),( )(),( ttt s xjxexxj  .         (A1.2c) 

 
The medium is characterized by the three scalar parameters 
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µ(x):  magnetic permeability, SI unit:  
m

H

A/s

V/m
 , 

 

ε(x):  electric permittivity,  SI unit:  
m

F

V/s

A/m
 , 

 

σ(x):  current conductivity,  SI unit:  
m

S

m

1

m

A/V



 . 

 
We take the magnetic permeability and electric permittivity to be intrinsically positive (and bounded from 
below by the corresponding free space values ε0 and μ0).  However, the current conductivity may equal 
zero, as in an absolute vacuum containing no electric charges.   
 
Symbols with subscript “s” on the right hand sides in the above constitutive relations represent body 
sources (i.e., impressed or imposed or artificially generated values) of the various quantities.  An electric 
current source, represented by the current density vector js(x,t), is probably the commonly-used type of 
source in electromagnetic geophysics.  However, the magnetic induction source bs(x,t) is not unusual, 

although it often shows up  in the time-differentiated form ttt ss  ),(),( xbxk and is referred to as a 

magnetic current body source.  The displacement current body source ttt ss  ),(),( xdxl appears to 

be novel, and is included here mainly for completeness and consistency.  However, it will be 
demonstrated in Appendix D that all three body source types are required for a proper description of EM 
scattering in the First Born Approximation. 
 
Substituting the three constitutive equations into the two Maxwell equations yields the coupled first-order 
system of inhomogeneous partial differential equations: 
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xh
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These are six coupled PDEs governing six dependent variables (three components of e(x,t) and three 
components of h(x,t)).  There are three medium parameters and three distinct body source types.  We 
refer to the PDE system (A1.3a and b) as the “EH equations” or the “EH system”, after the two dependent 
variables contained therein.  Interestingly, the derivation of the EH PDE system does not explicitly utilize 
the two Gauss laws of Maxwell’s equations.  Rather, only the Faraday law and the Ampere-Maxwell law 
are used. 
 
A2.0 Separated Partial Differential Equations  
 
Next, specialize to a homogeneous body where the medium parameters do not depend on position x:  ε(x) 
= ε, μ(x) = μ, and σ(x) = σ.  Then the two first-order PDEs of the EH system may be combined to yield 
two separated second-order PDEs governing the electric vector and the magnetic vector.  These are (next 
page): 
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where the vector differential operator identity 
2div   gradcurlcurl is used.  Interestingly, the left-

hand-sides of both expressions possess the same mathematical form.  However, the second-order spatial 
derivative terms grad div e(x,t) and grad div h(x,t) may be simplified by exploiting the two Gauss laws 
of Maxwell’s equations and the charge continuity equation.  The Gauss laws are 
 

0),( div txb ,      (magnetic Gauss law)   (A2.2a) 

 

0),(),( div  tt xxd  ,    (electric Gauss law)   (A2.2b) 

 

where ),( tx  is an additional (scalar-valued) dependent variable called the free charge density or the 

mobile charge density (SI unit: C/m3).  The charge continuity equation is  
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,    (charge continuity equation)  (A2.2c) 

 
which links the charge density to the current density vector j(x,t). 
 
Combining the magnetic Gauss law div b(x,t) = 0 with the constitutive relation (A1.2a) gives (for 
homogeneous media) div h(x,t) = (–1/μ) div bs(x,t).  Thus 
 

),( div 
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),( div tt s xbgradxhgrad


 .       (A2.3a) 

 
This expression will be used to eliminate the grad div h(x,t) term in (A2.1b).  The analogous situation for 
the grad div e(x,t) term in (A2.1a) is more complicated.  Combining the electric Gauss law div d(x,t) = 
θ(x,t) with the constitutive relation (A1.2b) gives (again for homogeneous media) 
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 Now, differentiate with respect to time, and substitute from the charge continuity equation (A2.2c) to 
obtain 
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Next, substitute from the constitutive relation (A1.2c) for the current density vector j to obtain  
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This is a first-order, inhomogeneous ordinary differential equation for the divergence of the electric field 
vector div e(x,t).  The solution is 
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where H(t) is the Heaviside unit step function, and the asterisk denotes convolution with respect to the 
independent variable t.  Taking the gradient gives the required expression 
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since the gradient operation distributes over temporal convolution and differentiation. 
 
Expressions (A2.3a and b) indicate that the grad div terms on the left sides of equations (A2.1a and b) 
may be exchanged for body source terms, yielding 
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and  
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These are uncoupled three-dimensional (3D) inhomogeneous partial differential equations for the electric 
and magnetic field vectors.  Ward and Hohmann (1987, page 136) give homogeneous (i.e., vanishing 
right side) versions of these expressions. 
 
Compared to the first-order EH system (A1.3a and b), the second-order PDEs (A2.4a and b) exhibit 
greater complexity in the inhomogeneous terms representing body sources of EM waves.  In particular, all 
three medium parameters appear, and various terms contain higher-order space and time (and even 
mixed) partial derivatives.  There is also a temporal convolution. 
 
The PDEs may be re-written in terms of a wavespeed c∞ and a “transition” angular frequency ωt defined 
as 
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1c ,      t ,           (A2.5a,b) 
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It will become apparent that c∞ is the phase speed of the infinite frequency plane wave Fourier 
component.  Moreover, ωt is an angular frequency that (roughly) corresponds to the transition from EM 
diffusion (for ω < ωt) to EM wave propagation (for ω > ωt).  The remaining parameter in (A2.6a,b) is the 
magnetic permeability μ, which occurs only in conjunction with body source terms.  
 
A3.0 One-Dimensional Plane Waves 
 
Assume that all medium parameters, body sources, and wavefield variables depend only on the single 
space coordinate z.  Partial derivatives with respect to x and y vanish.  Then, in Cartesian coordinates, the 
six PDEs of the first-order EH system (A1.3a and b) are written as 
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The particular grouping of the equations facilitates subsequent analysis.  The mathematical structure of 
system (A3.1) (containing ex and hy) and is identical to that of system (A3.2) containing (ey and hx).  
Hence, in the present study, we choose to work with the first system (A3.1).  The third system (A3.3) 
indicates that the ez and hz components of the field vectors are activated independently in this one-
dimensional (1D) situation.  It is straightforward to demonstrate that the solutions are 
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respectively.  The asterisk denotes temporal convolution and H(t) is the Heaviside unit step function.  
ωt(z) = σ(z)/ε(z) is the depth-dependent transition angular frequency.  Thus, the ez and hz components are 
coincident in depth z with the 1D body source terms.  For vanishing z-component body sources, which we 
assume in this study, both components must also vanish.  Hence, we are left with the first-order system 
(A3.1a and b). 
 
Next, assume a homogeneous electromagnetic medium with ε(z) = ε, μ(z) = μ, and σ(z) = σ. Then, 
equations (A3.1a and b) may be combined to yield the two separated second-order PDEs   
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            (A3.4b)  
 
governing the x-component of the electric vector and the y-component of the magnetic vector, 
respectively.   The left hand sides are identical, whereas body source terms on the right hand sides differ. 
As expected, the exact same equations are obtained by specializing the second-order PDEs (A2.4a and b) 
to the one spatial dimension z.  Although each equation may be solved independently, it is often simpler 
to solve (A3.4a) for the electric vector component, and then use the 1D form of Faraday’s law (A3.1b) to 

obtain the derivative thy  .   

 
In terms of the transition frequency ωt and infinite frequency phase speed c∞, PDEs (A3.4a and b) become 
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            (A3.5b)  
 
Perhaps a wave propagation geophysicist would be more inclined to write the two PDEs in this particular 
form.  For ωt = 0 (corresponding to vanishing conductivity σ = 0), the expressions reduce to 
(inhomogeneous) scalar wave equations.  Expression (A3.4) or (A3.5) correspond to plane 
electromagnetic wave propagation in the ±z-directions. 
 
A4.0 Frequency-Domain Equations 
 
Mathematical theory in electromagnetism is often facilitated by transforming to the frequency-domain.  
The definition of the forward Fourier transform, from time t to angular frequency ω, used in this study is 
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An upper case letter denotes the Fourier transform of the lower case counterpart.  Definition (A4.1) 
implies the differentiation theorem 
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where the double-headed arrow signifies Fourier transform pairing. 
 
A4.1 Helmholtz Equation 
 
Fourier transforming PDE (A3.5a) yields the inhomogeneous Helmholtz equation (an ordinary 
differential equation or ODE): 
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where the squared complex wavenumber is given by 
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Recall that the infinite-frequency phase speed c∞ and transition frequency ωt are defined by 
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respectively.  The transition frequency separates (roughly) the frequency ranges for electromagnetic wave 
diffusion (|ω| << ωt) and electromagnetic wave propagation (|ω| >> ωt).  Equation (A4.3) is often referred 
to as the dispersion relation for EM wave propagation. 
 
The general solution of Helmholtz equation (A4.2) consists of i) the general solution of the homogeneous 
version (i.e., with vanishing right-hand-side), plus ii) any particular solution of the inhomogeneous 
version.  The homogeneous Helmholtz equation is 
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with general solution on a finite interval 21 zzz  given by 
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A(ω) and B(ω) are complex-valued constants (depending only on frequency ω) that are determined by 
prescribing boundary conditions on the electric vector. 
 
Suppose values of the electric vector at the two endpoints are prescribed.  Then 
 

 ))((sinh2

),(),(
)(

12

)(

1

)(

2
21

zziK

ezEezE
A

ziK

x

ziK

x















,       
 ))((sinh2

),(),(
)(

12

)(

2

)(

1
12

zziK

ezEezE
B

ziK

x

ziK

x















, 

 

Where the hyperbolic sine of a complex number Z = X+iY is   2)sinh( ZZ eeZ   .  The general 

solution becomes  
 




































))(())((

))(())((

2))(())((

))(())((

1
1212

11

1212

22

),(),(),(
zziKzziK

zziKzziK

xzziKzziK

zziKzziK

xx
ee

ee
zE

ee

ee
zEzE









 . (A4.6a) 

 
We re-write this in the seemingly more complicated form 
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(A4.6b) 
 
The value of this re-formulation will become evident by considering the following two cases: 
 
Case 1:  z2 → +∞.  Then, since the complex wavenumber K(ω) has a positive imaginary part, 
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 (this will be demonstrated in the next sub-section).  We have 
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This corresponds to plane wave propagation in the +z direction.  The boundary condition prescribed at 
endpoint z2 is “infinitely far away” and has no influence on the solution. 
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Case 2:  z1 → −∞.  Then 01)(


 ziK
e


 and we have 
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This corresponds to plane wave propagation in the −z direction.  The boundary condition prescribed at 
endpoint z1 is also “infinitely far away” and has no influence on the solution. 
 
The mathematical “tag” identifying plane wave propagation in the + or – z-directions is the sign of 
coordinate z in the exponents of equations (A4.7a and b).  A physical requirement of plane 
electromagnetic wave propagation is that attenuation (associated with the imaginary part of the complex 
wavenumber K(ω)) must always “accumulate” (implying amplitude diminishes) for either propagation 
direction.  This is achieved by z increasing in (A4.6a) (implying (z−z1) gets larger) and z decreasing in 
(A4.6b) (implying (z2−z) gets larger).  We repeatedly use this rule in the main text in developing the 
reflection and transmission responses of a geologic layer, even when plane wave propagation intervals are 
not semi-infinite. 
 
A4.2 Phase Speed and Attenuation Factor    

Following Aki and Richards (1980, equation (5.71) on page 172), the phase speed c(ω) and attenuation 
factor α(ω) are defined in terms of the real and imaginary parts of the complex wavenumber as 
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The complex wavenumber must be anti-Hermitian (i.e.,
 )()(  KK ) in order that the Fourier- 

transformed electric vector component  ziKEzE xx )(exp),0(),(    is Hermitian. (i.e., 

 ),(),(  zEzE xx ).  This is a requirement for the time-domain electric vector ex(z,t) to be real-

valued (see Bracewell, 1965, page 178).  Hence, the phase speed and attenuation factors are even 
functions of angular frequency.  The frequency-domain solution form can be written as 
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The plane wave electric field vector advances with speed c(ω) in the ±z-directions, and its amplitude 
diminishes exponentially with distance according to the factor α(ω).  Upper and lower signs are used for 
+z-direction propagation (where coordinate z increases) and –z-direction propagation (where z decreases), 
respectively.  The phase speed and attenuation factor are positive (or non-negative at non-zero frequency) 
and even functions of angular frequency.  Clearly, the amplitude of the Fourier component will decay by 
the amount 1/e ≈ 0.37 in a distance δ(ω) = 1/α(ω). Distance δ(ω) is referred to as the skin depth. 
 
Explicit expressions for the phase speed and attenuation factor in terms of angular frequency are readily 
derived.  Squaring expression (A4.8) for the complex wavenumber gives 
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and this must equal (from the dispersion relation (A4.3)) 
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Equating real and imaginary parts gives a pair of nonlinear algebraic equations for c(ω) and α(ω): 
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Interestingly, the second expression implies that the attenuation factor is directly proportional to the phase 

speed:   )(2)( 2  cct  .  Solving for each yields 
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and 
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where   ct 2 .  These expressions are appropriate for non-zero conductivity σ (implying non-zero 

transition frequency ωt).  If conductivity vanishes, then we have c(ω) = c∞ and α(ω) = 0.  The common 
right-hand-side of (4.10a and b) is consistent with the functional form given in Løseth et al. (2006)).  
 
Limiting values of the phase speed are 
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This justifies using the symbol c∞ for 1 .  The analogous limiting values of the attenuation factor are 
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α∞ is referred to as the infinite-frequency attenuation factor.  At the transition frequency ω = ωt, we have  
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Thus, the phase speed and attenuation factor achieve about 91% of their infinite-frequency values at the 

transition frequency.  For small values of dimensionless angular frequency 1t , the above 

expression (A4.10a or b) for phase speed/attenuation factor is expanded to first order, yielding 
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This square root dependence on frequency is appropriate for a diffusion process.  Substituting the 
expressions for c∞, α∞, and ωt gives the equivalent forms 
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For low frequencies, phase speed and attenuation factor are independent of the electric permittivity ε of 
the medium. 
 

For large values 1t , the expansion is 
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which clearly indicates the two limiting values c(+∞) = c∞ and α(+∞) = α∞.   
 
The explicit functional forms of equations (A4.10a and b) are useful for determining limiting values and 
understanding dependencies on parameters, etc.  However, for numerical evaluation purposes, phase 
speed and attenuation factor are conveniently obtained from the real and imaginary parts of the complex 
wavevector K(ω) of equation (A4.8) as:  
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A low-frequency approximation to the complex wavenumber is readily assembled from the phase speed 
and attenuation factor approximations as 
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where sgn(ω) is the sign function (= ω/|ω| for ω ≠ 0, zero otherwise) and δ0(ω) is the null function (= 0 
for ω ≠ 0, one otherwise) (Bracewell, 1965).  Note that this approximation is Hermitian anti-symmetric 
(i.e., real part odd and imaginary part even) as required. The low-frequency approximation is independent 
of the electric permittivity ε.   
 
Finally, a high-frequency approximation to the complex wavenumber is 
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Retaining a non-zero imaginary part in the approximation enables attenuation of a propagating high-
frequency EM wave.  Otherwise, vanishing conductivity σ = 0 implies the complex wavenumber is K(ω) 
= ω/c∞  (i.e., pure real) appropriate for wave propagation without attenuation and dispersion. 
 
A4.3 Group Speed 
 
Group speed g(ω) is obtained from the phase speed c(ω) via the formula 
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Then, from the above phase speed expression, we have 
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Hence, the explicit expression for group speed is 
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with specific values 
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Low-frequency and high-frequency expansions are 
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respectively. At low frequencies, group speed is exactly twice the phase speed (see equation (A4.11) 
above). Interestingly, the high frequency approximation indicates that group speed g(ω) exceeds the 
infinite frequency phase speed c∞ (in contrast with the analogous situation for phase speed c(ω)).  
 
For numerical calculations, group speed may be obtained from the derivative of the complex wavenumber 
via 
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as in Aldridge (2013) for seismic wave propagation. 
 
A4.4 Quality Factor 
 
The quality factor function Q(ω) is another diagnostic frequency function for wave propagation problems 
(although it is much more common in seismics than in electromagnetics).  Quality factor may be written 
as a combination of phase speed and attenuation factor as 
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(O’Connell and Budiansky, 1978).  Since phase speed and attenuation factor are even functions of 
frequency, the quality factor is an odd function of frequency.  Substituting expressions (A4.10a and b) for 
c(ω) and α(ω) and engaging in some algebraic manipulation yields the remarkably simple result 
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The quality factor for electromagnetic wave propagation is a linear function of frequency which vanishes 
at DC.  At the transition frequency ωt = σ/ε, quality factor equals unity.   
 
In the special case of a vacuum where the medium conductivity σ vanishes, then the transition angular 
frequency ωt = 0.  The phase and group speeds are independent of frequency and equal c∞.  The 
attenuation factor vanishes and the quality factor is infinite.  Substitution of the low-frequency 
approximations (A4.12a and b) for the phase speed and attenuation factor into the quality factor definition 
yields Q(f) ≈ 0, which is characteristic of a diffusion process (e.g., Aldridge, 2013).  
 
Figure A1 displays curves of phase speed, attenuation factor, group speed and quality factor as functions 
of dimensionless frequency f / ft , for an electromagnetic medium defined by the parameter values: 
 

relative electric permittivity 0.100  , 

 

relative magnetic permeability 0.10  , 

  

current conductivity 01.0  (A/V)/m =  S/m . 
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Figure A1.  Diagnostic frequency functions for electromagnetic wave propagation, plotted with respect to 
dimensionless frequency f / ft.    Blue curve is phase speed c(f) and attenuation factor α(f), normalized by 
the respective infinite frequency values.  Red curve is group speed g(f), also normalized by the infinite 
frequency value.  Green curve (linear with frequency) is quality factor Q(f) = f / ft . 
___________________________________________ 
 
Phase speed, attenuation factor, and group speed are normalized by their respective infinite frequency 
values.  With this normalization, phase speed and attenuation factor curves are identical, and thus are 
plotted as the single blue curve.  For large values of frequency, the dimensionless phase and group speed 
curves approach unity (from below and above) implying that the physical phase and group speeds 

approach m/s 10  480.91 7 c .  This is about 31.6% of the speed of electromagnetic waves in 

a vacuum (
8

00 10  998.21  vacc  m/s).  Group speed exceeds the asymptotic limit by about 

8.9% at 0.58ft .  The transition frequency is ft = 1.798 × 107 Hz (or about 18 MHz).  Quality factor equals 
unity at this frequency, and phase speed, group speed, and attenuation factor are (roughly) constant above 
ft , corresponding to wavelike propagation.  The infinite frequency attenuation factor is α∞ = 0.596 m-1.  
 
The electromagnetic spectral range used in geophysical exploration is typically much lower than the 
transition frequency ft .  Hence, Figure A2 depicts normalized phase speed, attenuation factor, and group 
speed vs. frequency from DC up to 10 kilohertz.  These curves, calculated via the exact formulae, are 
indistinguishable from the approximations (A4.12a and b) over this low frequency range.  Quality factor 
is nearly zero, indicating that EM propagation is almost perfectly diffusive.   
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Figure A2.  Diagnostic frequency functions for electromagnetic wave propagation, plotted with respect to 
physical frequency f in kilohertz.  Blue curve is phase speed c(f) and attenuation factor α(f), normalized 
by the respective infinite frequency values.  Red curve is group speed g(f), also normalized by the infinite 
frequency value.  Green curve (linear with frequency) is quality factor Q(f).  
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11.0 APPENDIX B:  REFLECTION AND TRANSMISSION COEFFICIENTS 
 
B1.0 Derivation 
 
Figure B1 below depicts the geometric framework used for deriving expressions for normal incidence 
plane wave reflection and transmission coefficients.   Medium #1 (characterized by homogeneous and 
isotropic EM parameters ε1, μ1, σ1) is separated from medium #2 (ε2, μ2, σ2) by a plane horizontal interface 
located at level z = zint.  A plane EM wave is incident onto the interface from medium #1; this gives rise to 
reflected (in medium #1) and transmitted (in medium #2) plane waves. 
 

 
 
Figure B1.  Geometric setup of the normal incidence plane wave reflection / transmission problem.  Unit 
propagation direction vectors of the plane wavefronts are ninc = ntrn = +ez and nref = ‒ez. 
____________________________________ 
 
Incident, reflected, and transmitted electric fields are given by  
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Note that the reflected plane electric wave propagates in the –z direction.  The associated incident, 
reflected, and transmitted magnetic fields are calculated from the Faraday law via 
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Hence, we obtain 
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Note that the polarity of the reflected magnetic vector component is reversed with respect to the incident 
magnetic vector component (and this is depicted in Figure B1). 
 
At the interface, the tangential components of both the electric and magnetic vectors must be continuous: 
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Then, substituting from the above expressions yields 
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where the incident x-component of the electric vector at the horizontal interface z = zint is defined as  
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These two wavefield continuity conditions are re-written in matrix/vector form as 
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where a common divisor by angular frequency ω has been canceled from the second equation.  Next, we 
define the reflection coefficient R(ω) and transmission coefficient T(ω) as 
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Then, the above matrix/vector equation is put into the form 
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The determinant of the 2 × 2 coefficient matrix is )()(1)( 1221  KK , which is non-zero.  

Hence, the reflection and transmission coefficient solutions are 
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These expressions are consistent with equations (3.50) and (3.51) on page 188 in Ward and Hohmann 
(1987).   
 
The reflection and transmission coefficients are complex-valued and frequency-dependent.  The complex 
wavenumbers are Hermitian skew-symmetric (i.e., K(‒ω) = ‒K(ω)* where the asterisk denotes complex-
conjugation).  Hence, it is straightforward to demonstrate that the reflection and transmission coefficients 
are Hermitian symmetric (which is equivalent to real part even in ω and imaginary part odd in ω): 
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In turn, Hermitian symmetry implies that the time-domain reflected and transmitted electric vectors are 
real-valued, as is required. 
 
Low- and high-frequency approximations to the reflection/transmission coefficients may be obtained.  At 
low frequencies, the complex wavenumber is approximated by 
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where sgn(ω) is the sign function and δ0(ω) is the null function. The second factor in expression (B11) is 
necessary to obtain Hermitian skew-symmetry, but is often omitted.  The low-frequency reflection and 
transmission coefficients become 
 

2211

2211








R ,   

2211

112






T .          (B12a,b)  

 
The low-frequency approximations are real-valued and independent of frequency (and independent of 
electric permittivity ε).  Note that T = 1+R still holds.  In the limit as one or the other conductivity 
approaches infinity (corresponding to say, pure metal) we have 
 

2  and  11  TR ,                    and                    0  and  12  TR . 

 
[In fact, these two results hold for the exact reflection/transmission coefficient formulae (B9a and b), 
without low-frequency approximation.]  So, an electromagnetic wave incident onto pure metal (i.e., from 

medium #1 with 1  finite to medium #2 with 2 ) is totally reflected, with no transmission into the 

metal.  Although it is tempting to consider the other limiting situation where one or the other halfspace is 
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vacuum, corresponding to zero-valued conductivity σ, that would violate the low-frequency assumption 
inherent in (B11).  
 
The high-frequency approximation to the complex wavenumber is 
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Dependence on current conductivity σ is retained in the imaginary part.  The reflection and transmission 
coefficients become 
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with T(ω) = 1 + R(ω).  Reflection and transmission coefficients are complex-valued and frequency-
dependent.  However, in the infinite frequency limit, we obtain the real-valued and frequency-independent 
forms 
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where the expressions are written as equalities.  Note the interestingly mathematical similarity to the low-
frequency analogues (B12a,b).  If both conductivities vanish in (B14a,b) (implying both media are 

vacuum with 021   and 021   ) then R = 0 and T = 1. [This result also holds for the exact 

reflection/transmission coefficient formulae (B9a and b).]  Moreover, as conductivity approaches infinity 
(implying media are pure metal) then the previous results remain valid:  
 

2  and  11  TR ,                    and                    0  and  12  TR . 

  
 
B2.0 Reflection Coefficient Magnitude 
 
The series summation approach pursued in the main text for deriving the total reflection response of a thin 

geologic bed requires the inequality 1)()(  bottop RR , where )(topR and )(botR are the normal 

incidence reflection coefficients associated with the top and bottom bed-bounding interfaces.  This 
condition enables the summation to pass from a finite number N to an infinite number N → ∞ of terms.  
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We now establish the inequality.  Since )( )()()(  bottopbottop RRRR  , it is sufficient to show 

that the modulus of a single reflection coefficient is less than unity.    
   
From equation (B9a) above, write the normal incidence reflection coefficient as 
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where the dimensionless complex number Z(ω) = X(ω) +i Y(ω) is defined as 
 

)(

)(
)(

12

21






K

K
Z  .          (B16b) 

 

Substituting in the complex wavenumber )()()(  icK  in terms of phase speed c(ω) and 

attenuation factor α(ω) gives the real and imaginary parts of Z(ω) as 
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and 
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Recall that the phase speed and attenuation factor are even and positive functions of angular frequency ω 
(although they both vanish at ω = 0).  Hence, real and imaginary parts are even and odd in angular 
frequency, respectively.  Moreover, the real part X(ω) is strictly positive, whereas the imaginary part Y(ω) 
may be positive, zero, or negative.  Clearly, if the two media are identical, then X(ω) = 1 and Y(ω) = 0, 

and the reflection coefficient R(ω) vanishes.  At DC frequency 1221)0( X  and 0)0( Y , 

and the real-valued R/T coefficients of (B12a and b) are obtained. As frequency approaches infinity 

1221)( X and 0)( Y , and the real-valued R/T coefficients of (B15a and b) are obtained. 

 
We work with the squared modulus of the reflection coefficient.  It is straightforward to show that 
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Hence, the squared modulus is the ratio of the difference of two positive numbers to the sum of the same 
two positive numbers.  [As the third term on the RHS above indicates, the difference in the numerator is 
always positive.]  This implies that the squared modulus is less than unity, which is sufficient proof that 
the modulus of the reflection coefficient is also less than unity.  If follows that the modulus of the 

reflection coefficient product 1)()(  bottop RR .  QED. 

 
The maximum modulus of the normal incidence reflection coefficient is unity.  What about the minimum 
modulus? The foregoing analysis prompts an interesting question: can the normal incidence 
electromagnetic reflection coefficient vanish, for a model other than the trivial situation where medium #1 
is identical to medium #2?  Equation (B16a) above indicates that the reflection coefficient R(ω) equals 
zero when the complex number Z(ω) equals unity.  Proceed by squaring the definition (B16b) for Z(ω), 
and then substituting in the squared complex wavenumber 
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where  t  is the transition (angular) frequency. The result is 
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where ω1 and ω2 are transition frequencies for media #1 and #2, respectively.  Next, define three 
dimensionless ratios of medium properties as 
 

12  r ,                       12  r ,                       12  r ,       (B20a,b,c) 

 

and recognize that  rr12 . Then quantity Z(ω)2 can be recast as 
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Interestingly, this relation indicates that the normal incidence plane wave reflection coefficient between 
two homogeneous and isotropic media (which includes six independently-specifiable EM parameters) can 
be expressed in terms of four parameters (three dimensionless ratios and a single transition frequency).   
 

We now ask an equivalent question: can 1)( 2 Z ?  Inspection reveals two obvious cases where the 

answer is clearly “yes”: 
 

Case 1:  DC frequency 0 .  Then choose rrr   , where r  is any positive real number. Then 

1)0( 2 Z , implying 1)0( Z , implying 0)0( R  or )0(R . [The latter is an extraneous root 

introduced into the solution.]  Even though the electric permittivities ε1 and ε2 of the two media may 
differ, the DC reflection coefficient vanishes. 
 

Case 2:  Choose rrrr   .  Then 1)( 2 Z , implying 1)( Z , implying 0)( R  or 

)(R .  The reflection coefficient vanishes for all frequencies.  This is the interesting case where 

medium #2 is a scaled version of medium #1:    111222 ,,,,  r .  In effect, medium #2 is 
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completely transparent to an incident EM wave; the transmission coefficient is T(ω) = 1 + R(ω) = 1.  This 
constitutes a generalization of the previously-noted trivial case where r = 1. 
 
Moreover, these appear to be the only two cases with vanishing normal-incidence reflection coefficient.  

Solving expression (B21) with 1)( 2 Z  for the dimensionless frequency 1 gives 
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Hence for general  rrr  and , , , there is no real-valued frequency that satisfies this relation.  For 

1 rr  (Case 1), real-valued ω = 0 satisfies; if in addition 1 rr (Case 2), then the frequency for 

vanishing R(ω) is indeterminate. 
 
Upon further reflection (ha ha!), equation (B19) above suggests that only three parameters determine a 
normal incidence reflection coefficient: 
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Note that parameters p and q are dimensionless.  Quantity Z(ω) is re-written in terms of the parameters as 
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Expanding to first-order in dimensionless frequency ω/ω1 yields 
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Finally, substituting this into equation (B16a) for the normal incidence reflection coefficient gives the 
first-order expansion 
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where the DC reflection coefficient is 
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The dependence on only three parameters is obvious in approximation (B23a); note that the first-order 
term vanishes for q = 1.  Re-writing the reflection coefficient in terms of the material parameter ratios 
(B20a,b,c) yields the form 
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So, the zeroth-order term DC reflection coefficient R(0) vanishes for rrr   (as per Case 1 above) 

yielding the first-order approximation 
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If in addition rr  (as per Case 2 above), then the first-order term also vanishes.  The analysis for Case 

2 clearly indicates that all higher-order terms in a frequency series expansion must vanish. 
 
Figure B2 illustrates the phenomenon of zero-valued EM reflection coefficients.  A three layer earth 

model is considered, with relative (i.e., dimensionless) permittivity 0
ˆ   , permeability 0

ˆ   , 

and conductivity ref ˆ (with S/m 1ref ) for the three media given by: 

Medium #1:     1,1,1ˆ,ˆ,ˆ
111  , 

Medium #2:     10,10,10ˆ,ˆ,ˆ
222  , 

Medium #3:     1,1,1ˆ,ˆ,ˆ
333  . 

Hence, layer parameters are 10 times larger than those of the overlying and underlying halfspaces.  Both 
the top-bed and bottom-bed reflection coefficients vanish.  The total reflection response of the bed, as 
indicated in the top panel of Figure B2, equals zero.  In effect, the embedded layer (h = 10 m thick) is 
transparent to EM plane waves normally incident from the overlying medium #1.  When the conductivity 

of the layer is changed to S/m 15ˆ
2   (and all other medium parameters remain the same), the results 

depicted in Figure B3 are obtained.  A weak inverted-polarity reflection appears, although the transmitted 
response appears virtually identical to that in Figure B2.   
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Figure B2. Reflected (top panel) and transmitted (bottom panel) electric vector x-components from an 
“invisible” or “transparent” geologic layer with thickness h = 10 m.  Relative (i.e., dimensionless) 

permittivity 0
ˆ   , permeability 0

ˆ   , and conductivity ref ˆ (with S/m 1ref ) for the 

three media are:         1,1,1ˆ,ˆ,ˆ
111  ,           10,10,10ˆ,ˆ,ˆ

222  ,           1,1,1ˆ,ˆ,ˆ
333  . 

The reflected response vanishes because both the top-bed and bottom-bed reflection coefficients 
numerically equal 0.0. 
 
 
 
 
 
 
 



136 

 

 
Figure B3. Reflected (top panel) and transmitted (bottom panel) electric vector x-components from a 
geologic layer with thickness h = 10 m.  All medium parameters are the same as in Figure B2, except the 

relative (i.e., dimensionless) conductivity ̂  assigned to the layer (medium #2) is S/m 15ˆ
3  .  A weak 

reflected response is generated, and the transmitted response appears to be nearly unchanged (compare 
with Figure B2).      
_______________________________________ 
 
We have obtained a similar “reflectionless” response using an embedded layer with parameters equal to 
1/10 of the enclosing two halfspaces, although these are not displayed here.  Modeling results in Figures 
B2 and B3 are obtained with an EK source wavelet (see Aldridge, 2013, page 36) with duration T = 1 
second and unit amplitude.  A 50% duty cycle alternating-polarity sequence of wavelets is used; the first 
two pulses are visible in the bottom panels.  Receivers sensing reflected and transmitted EM responses are 
located 50 m from the center of the embedded geologic layer. 
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The existence of a zero-valued normal incidence reflection coefficient does not appear to be well-known 
in electromagnetic geophysics.  Perhaps it is difficult to engineer a material where all three EM medium 
parameters scale identically.  Some discussion of the analogous phenomenon in seismic geophysics is 
given by Levin (1986), who considers a non-normal incident compressional elastic wave.  The normal 
incidence elastic (P-wave or S-wave) reflection coefficient is commonly given by 
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where ρ is mass density and v is wavespeed (either P or S).  Quantity Z is defined as vrr
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the product of the two dimensionless parameter ratios 12  r and 12 vvrv  . Clearly 1 vrr  

implies R = 0.  However, if density and velocity of medium #2 are scaled by the same factor r, a 
vanishing reflection coefficient is not obtained.  Consider re-parameterizing the reflection coefficient in 
terms of mass buoyancy b ≡ 1/ρ or slowness s ≡ 1/v.  The reflection coefficient becomes  
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Quantity Z is now re-cast as a quotient of two dimensionless parameter ratios.  If both ratios scale by the 
same factor, then Z = 1 and the reflection coefficient vanishes.  So, the key to obtaining a zero-valued 
reflection coefficient is to find a suitable parameterization that makes quantity Z contain only quotients of 
dimensionless parameter ratios, as equation (B21) above is.   
 
B3.0 Electromagnetic Fields 
 
Finally, we give the reflected and transmitted electric and magnetic vector components.  From equations 
(B1b and c) above, the Fourier transformed electric vectors are 
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Reflected and transmitted Fourier transformed magnetic fields, from equations (B3b and c), are 
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At low frequencies, the multiplicative factor K(ω)/ω is given by 
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which presents a problem for numerical evaluation at DC frequency.  
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12.0 APPENDIX C:  ALTERNATIVE DERIVATIONAL APPROACH 
 
The derivational approach pursued in the main text involves summing terms in an infinite series.  Each 
term represents a particular reflected or transmitted phase.  Remarkably, the series may be evaluated in 
closed form via the famous geometric progression formula.  In this Appendix, we pursue an alternative 
derivational approach that yields (as fully expected!) identical results for the reflected and transmitted 
responses.  In the limit as the number of terms in the series becomes infinite (and provided a 
mathematical condition on the reflection coefficients is satisfied; see Appendix B) the two approaches are 
demonstrated to be equivalent. 
 
Within a homogeneous and isotropic medium, plane wave solutions of the frequency-domain Maxwell 

equations are proportional to the complex exponentials  ziK )(exp  , where K(ω) is the complex 

wavenumber.   Hence, within media #1, #2, and #3, the x-components of the electric vector may be 
written in the general forms  
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Terms proportional to  ziK )(exp   represent downward propagating (+z direction) energy, whereas 

those proportional to  ziK )(exp   represent upward propagating (‒z direction) energy.  The four 

frequency-dependent coefficients A(ω), B(ω), C(ω), and D(ω) are determined by imposing boundary 
conditions at the two horizontal interfaces.  Note that, as per expression (C1b), there are both upward and 
downward propagating waves within the thin bed. 
 
Magnetic vector y-components are obtained from the Fourier-transformed Faraday law via 
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Hence, the y-components of the magnetic vector are given by 
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At the two interfaces z = ztop and z = zbot, the electric and magnetic vector components are continuous.   
Application of these boundary conditions yields the four expressions 
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Or, organized as a 4 × 4 system of linear algebraic equations: 
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Rather than solve this 4 × 4 system directly, we reduce it to a simpler 2 × 2 system.  The first and last 
equations of (C5) are written as 
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respectively.  Then, eliminating coefficients A(ω) and D(ω) from system (C5) yields 
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The determinant of this 2 × 2 system is 
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Then, the determinant of 2 × 2 system (C7a,b) is re-expressed as 
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where bed thickness is h = zbot – ztop.   Interestingly (and not surprisingly), the determinant contains the 
factor obtained from summing the infinite series (3.4b).  Solution of 2 × 2 system (C7) for coefficients 
B(ω) and C(ω) yields 
 

hiK

bottop

ziKhiKzziK

topsinc

eRR

eeeRzE
B

botstop

2)(

)()())((

2

221

1

)1)(,(
)(














 ,     (C8a)  

 

hiK

bottop

ziKhiKzziK

bottopsinc

eRR

eeeRRzE
C

botstop

2)(

)()())((

2

221

1

)1)(,(
)(














 .    (C8b) 

 
Substituting into equations (C6a and b) gives solutions for the remaining coefficients A(ω) and D(ω) as 
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Finally, introducing the coefficients into equations (C1a,b,c) gives the electric vector x-components in the 
three media as (next page): 
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where we have explicitly re-introduced the frequency-dependence of the two reflection coefficients.  
Equation (C9a) contains the thin bed reflection response (in addition to the incident wave), and equation 
(C9c) is the thin-bed transmission response.  These are identical to equations (3.13) and (4.3b) of the main 
text.  Expression (C9b) is new; it yields the response within the thin bed (i.e, for ztop < z < zbot), and is 
comprised of both upward and downward propagating waves. 
 
Equations (C3a,b,c) above give the magnetic vector y-components within the three media. Thus, magnetic 
induction vector components (= μHy) are 
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and 
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Expressions (C10a and c) are consistent with equations (3.15a) and (4.6a) of the main text.  Note the sign 
changes in equations (C10a and b) compared with (C9a and b)! 
 
An interesting observation from the analysis in this Appendix is that the inequality condition 

1)()(  bottop RR  is not required to establish the correct reflection, transmission, and intrabed EM 

responses.  This contrasts with the series summation approach utilized in the main text, where this 
condition is explicitly required for the number of terms in the finite sum to become infinite.  Hence, we 
conclude that the inequality condition is an “automatic” or “necessary” result arising from basic 
electromagnetic theory, not requiring an additional proof (as we give in Appendix A).     
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13.0 APPENDIX D:  FIRST BORN APPROXIMATION 
 
D1.0 Heterogeneous Medium 
 

Consider a set of electromagnetic body sources (i.e., current density ),( ts xj , magnetic induction 

),( ts xb , and electric displacement ),( ts xd ) applied to an isotropic medium characterized by 

permittivity ε(x), permeability μ(x), and conductivity σ(x).  Within the three-dimensional volume V 
occupied by the body, the electric field vector e(x,t) and magnetic field vector h(x,t) satisfy the coupled 
first-order partial differential system (i.e., the EH  PDE system (A1.3a and b)): 
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Electric and magnetic boundary conditions are applied to the surface S bounding V (this surface may be 
infinitely far away).  We adopt a general point of view that these boundary conditions are represented by 
linear differential operators acting on the electric and magnetic vectors: 
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where SSS wv  , and  v(x,t)  and  w(x,t) are prescribed vector-valued functions.  Operators Ge and 

Gh may involve space and time differentiations, but linearity in the sense of the additive superposition 
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must hold.  Finally, at time t0, the initial conditions  
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hold throughout V and on S.  
 
Now consider a medium occupying the same volume V, but characterized by the slightly different 
electromagnetic parameters 
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The two space-dependent perturbations δε(x) and δμ(x) are considered small compared to ε(x) and μ(x), 
respectively.  However, in the case where the conductivity σ(x) vanishes (i.e., the medium at x is 
vacuum), then perturbation δσ(x) is obviously not small compared to σ(x).  Moreover, a slightly different 
set of body sources, boundary conditions, and initial conditions are applied to this perturbed medium.  
These new sources of electromagnetic waves are given by 
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The above EM wavefield body sources, boundary conditions, and initial conditions generate perturbed 
electric and magnetic field vectors given by 
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respectively, where δe(x,t) and δh(x,t) represent corresponding small variations.  These new electric and 
magnetic fields satisfy the coupled EH PDE system 
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for x within V.  On the bounding surface S, the electric and magnetic conditions 
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     wh Stttt  xxδwxwxδhxhG for    ),(),(,, ,      (D1.2d) 

 
hold.  Finally, at time t0, the total EM wavefield satisfies the initial conditions 
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throughout V and on S. 
 
Subtracting equations (D1.1a,b) from (D1.2a,b) gives 
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This system is simplified by neglecting the terms (in square brackets) that are products in (presumed) 
small quantities.  Thus, the PDEs governing the perturbation electromagnetic wavefield become 
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where approximate equality symbols indicate that the expressions are appropriate for small material 
parameter perturbations.  Additionally, subtracting equations (D1.1c-f)) from (D1.2c-f)) implies that the 
perturbation wavefield satisfies (exactly!) the boundary and initial conditions 
  

   ve Stt  xxδvxδeG for    ),( , ,      wh Stt  xxδwxδhG for     ),(, ,           (D1.3c,d) 

 

  )(, 00 xδexδe t ,          )(, 00 xδhxδh t .            (D1.3e,f) 

 
Note that we have appealed to the linearity property of differential operators Ge and  Gh in obtaining 
equations (D1.3c and d).   
 
The solution of equations (D1.3) constitutes the First Born Approximation for the perturbation wavefield.  
These expressions have a straightforward interpretation.  The perturbation wavefield [δe(x,t) and δh(x,t)] 
propagates within the original (i.e., unperturbed) medium characterized by parameters ε(x), μ(x), and σ(x).  
This wavefield is generated by a combination of time-varying body sources [δjs(x,t), δds(x,t), and 
δbs(x,t)], time-varying boundary conditions [δv(x,t) and δw(x,t)], as well as time-invariant initial 
conditions [δe0(x) and δh0(x)].  However, in a typical electromagnetic experiment, it is unlikely that all of 
these source types will be simultaneously active.  Finally, the perturbation wavefield is also sourced by 
effective body sources that depend on the material parameter perturbations: 
 

),()(),( tteff xexxδj  ,         (D1.4a) 

 

),()(),( tteff xexxδd  ,         (D1.4b) 

 

),()(),( tteff xhxxδb  .         (D1.4c) 

 
Clearly, these effective body sources vanish at positions x in V where the material property perturbations 
equal zero.  The sources are also directly proportional to the primary (or “incident” or “reference”) 
electromagnetic field vectors e(x,t) and h(x,t).    
 
The first Born approximation may be advantageously utilized in electromagnetic modeling in the 
following manner: First, given a “background” model represented by the three EM parameters 
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),( and ),( ),( xxx   the EH partial differential system (D1.1a,b) is solved for the electric vector e(x,t) 

and magnetic vector h(x,t) [subject to the boundary conditions (D1.1c,d) and initial conditions (D1.1e,f)].  
This electromagnetic field is referred to as the “primary” or “incident” EM wavefield.  During this 
modeling run e(x,t) and h(x,t) are stored at all positions x in the model where  perturbations to the three 

medium parameters )( and ),( ),( xxx  are subsequently inserted into the background model.  

Next, partial differential system (D1.3a,b) is solved for perturbations δe(x,t) and δh(x,t) to the primary 
electric and magnetic vectors.  PDE system (D1.3a,b) is mathematically identical to the original system 
(D1.1a,b); only the right-hand-side terms representing body sources of EM waves change.  Hence, the 
same numerical algorithm may be used for solution.  According to equations (D1.4a,b,c), the effective 
body sources (conduction current, electric displacement, magnetic induction) for this second modeling 
run are localized in the EM earth model at precisely those positions where corresponding perturbations to 

medium parameters )( and ),( ),( xxx  are inserted.  The sources are directly proportional to the 

strength of the perturbations, as well as the primary field vectors. The total electromagnetic response at 
any receiver position xr is well-approximated by the sums e(xr,t) + δe(xr,t) and h(xr,t) + δh(xr,t). 
 
An advantage of this First Born Approximation approach is that it provides a mechanism for modeling the 
electromagnetic response to variations (or perturbations) in medium parameters that are small with 
respect to the spatial discretization basis (i.e., grid interval) of a numerical algorithm.  The obvious 
disadvantages are that 1) two modeling runs are necessary, and 2) the mathematical underpinning of the 
approach is approximate.  In particular, the method does not account for any wave scattering between the 
perturbations and the background earth model.  Nevertheless, if the magnitudes of the perturbations are 
small, the First Born Approximation is considered by geophysicists to be reasonably accurate.  
 
D2.0 Homogeneous Medium 
 
The first-order “δe-δh system” (D1.3a and b) above applies to heterogeneous media.  For homogeneous 
media (i.e., ε(x) = ε, μ(x) = μ, σ(x) = σ), the equations may be combined to yield separated second-order 
partial differential equations for δe and δh: 
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Note that each physical EM wavefield source term is mimicked by an analogous effective source (e.g., 
δjs(x,t) and δjeff(x,t), etc.). Eliminating the double curl partial differential operations via 

2div   gradcurlcurl yields the variants (next page): 
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The left-hand-sides of these two equations have the same mathematical form.  We now investigate 
whether the two grad div terms can be eliminated in favor of electromagnetic body sources, as in 
Appendix A.  Pursuing exactly the same analysis as there yields the two expressions 
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Interestingly, whenever a physical body source term appears, it is coupled with the analogous effective 
body source term.  Substituting these expressions into equations (D2.1a and b) yields 
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and 
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These have the same mathematical forms as partial differential equations (A2.4a and b) in Appendix A 
for the primary electric and magnetic fields e(x,t) and h(x,t), respectively.  In the common case where 
there are no additional body sources δjs, δds, and δbs active in the perturbed medium, then the secondary 
or scattered fields are governed by the simpler PDEs: 
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The scattered electromagnetic fields arise solely from spatially-dependent perturbations δε(x), δμ(x), and 
δσ(x) in the medium properties.  Often, the transition frequency ωt = σ/ε is so large that the convolutional 
source term can be neglected. 
 
D3.0 A Born Series 
 
The focus of the present work is the First Born Approximation (FBA).  However, there is some interest in 
the relationship of the FBA to higher-order Born Approximations (i.e., second, third,…and so on).  We 
develop one such relationship in this sub-section.  The mathematical approach is identical to that used by 
Snieder and Aldridge (1995) to develop higher-order perturbations to the eikonal equation for seismic 
wave propagation traveltimes. 
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The point of departure for the analysis is the first-order EH partial differential system (D1.1a,b) governing 
the electric vector e(x,t) and magnetic vector h(x,t).  As before, perturb the medium supporting EM wave 
propagation/diffusion according to  
 

)()()( 0 xxx   ,         )()()( 0 xxx   ,          )()()( 0 xxx   ,         (D3.1a,b,c) 

            
where η is a small dimensionless number (0 < η < 1) (basically, a bookkeeping parameter for the 
subsequent expansions).  Then, we assume that the EM wavefields can be expressed via the infinite series  
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Subscript n = 0,1,2,…. refers to the “order” of the EM wavefield perturbations.  We tacitly assume that 
the series expansions exist, in the sense of converging to finite values.  Proof of this proposition is well 
beyond the scope of this investigation; in fact, convergence is almost certainly situation (i.e., model) 
dependent.      
 
Substitute the perturbations (D3.1a,b,c) and the series expansions (D3.2a,b) into EH system, and collect 
terms in powers of η.  The Ampere-Maxwell Law (D1.1a) becomes. 
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The Faraday Law (D1.1b) becomes 
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Both equations can be satisfied by equating terms in successive powers of parameter η to zero.  This 
yields the following progression of EH PDE systems:   
 
Zeroth-order EH system: 
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First-order EH system: 
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Second-order EH system: 
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nth-order EH system: 
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Note that the coefficients on the left-hand-sides of all systems are the EM medium parameters of the 
“zeroth-order” or “background” or “reference” earth model.  Hence, the nth-order perturbations are 
thought of as propagating within the zero-order earth model.  Also, in developing the above PDE systems, 
we have not utilized any approximations, as in neglecting product terms in the previous derivation of the 
FBA.  An obvious solution strategy for this recurrent system of PDEs is as follows: 
 
Solve the zeroth-order EH system first, with physical body source terms on the right-hand-sides.  Then 
solve the first-order EH system with effective body sources that depend on zeroth-order solution.   This 
first-order solution is the classical “First Born Approximation”.  Then, solve the second-order EH system 
with effective body sources that depend on first-order solution. And so on… The same numerical 
algorithm can be used to solve for each perturbation order, because each of the above PDE systems is the 
same mathematical EH system.  The approach is algorithmically achievable because the effective body 
sources for the nth-order EH system depend on the previously-calculated (n-1)th-order wavefield 
perturbations. 
 
Finally, the total EM field propagating in the perturbed model (D3.1a,b,c) is constructed via the finite 
sums 
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where the sums are truncated at N terms.  An obvious question is “How is the numerical value of 
parameter η chosen?”; η = 1 is the logical choice.  However, we remark that equations (D3.8a and b) 
present a very inefficient means for conducting forward modeling of an EM wavefield; a total of N+1 
forward modeling runs is required to synthesize e and h!  Rather, a modern modeler would simply 
substitute the perturbed model (D3.1a,b,c) into the EH system (D1.1a,b,c) and pull the trigger (once) on a 
favored numerical algorithm.   
 
Perhaps the nth Born Approximation en(x,t) and hn(x,t) possesses theoretical or pedagogical utility. 
 
For the case of a finite-thickness geologic layer with a conductivity contrast, the First Born 
Approximation wavefield within the layer ztop < z < zbot is given by equation (7.29) of the text, repeated 
here as: 
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In the notation of the present Appendix D, this is interpreted as the electric field solution e1(x,t) of the 
first-order EH system (D3.5a,b) above (for the case when δε(x) = δµ(x) = 0).  So, similar to equation 
(7.21a) of the text, the effective current density body source for the second-order EH system (D3.6a,b) is  
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or, after Fourier transforming to the frequency-domain            
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We could attempt to develop a solution for the Second Born Approximation (SBA) wavefield by Fourier 
transforming to the wavenumber (k) domain and following the analysis of the previous sub-section 7.3.  
However, all we do here is note that the SBA effective current density source is proportional to the 

squared conductivity contrast 
2

12 )(    and the incident wavefield ),( zEinc .  Compare with the FBA 

source of equation (7.24).  The detailed development of the SBA scattered field term is left for  the future.     
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14.0 APPENDIX E:  FREQUENCY SPECTRUM OF AN ALTERNATING POLARITY  
                                    PULSE SEQUENCE  
 
A common energy source signal used in electromagnetic (EM) geophysical prospecting consists of a 
periodic sequence of square pulses with alternating polarity.  After transients associated with signal turn-
on have decayed, the signal observed at a remote sensor will also be an alternating polarity pulse 
sequence with the same period.  However, the pulse shape is no longer square due to attenuation and 
dispersion of the propagating/diffusing EM wave.  In this Appendix, we develop formulae for the 
frequency spectrum of an alternating polarity pulse sequence.  The formulae contain three parameters 
(fundamental period P, number of periods NP, and in the duty cycle percentage d) that can be adjusted to 
optimize various aspects of the frequency spectrum.      
 
E1.0 Transform of a Pulse Sequence 
 
Let w(t) be a time-domain wavelet (or pulse) with frequency-domain Fourier spectrum W(ω).  Then, a 
finite sequence of N alternating-polarity pulses may be constructed via 
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where T is a fixed lag time (or delay time) between successive pulses.  The Fourier transform of the pulse 
sequence s(t) is easily calculated as 
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            (E1.2) 
The finite sum has been evaluated via the famous geometric progression formula 
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where z is a complex number.  Interestingly, if the modulus of z is less than unity, then the limit of 
equation (E1.3a) as N approaches infinity yields 
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However, we cannot take advantage of this result in the Fourier transform expression (E1.2) above, as the 

modulus of 
Tiez  is exactly unity. 

 
Equation (E1.2) indicates that the Fourier transform of a pulse sequence is obtained by multiplying the 
transform of the underlying pulse by a complex-valued factor (in square bracketes0.  Our primary concern 
here is with the amplitude spectrum of the pulse sequence.  This is easily calculated as 
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Pulse sequence (E1.1) is parameterized in terms of 1) the lag time between successive pulses T, and 2) the 
total number of pulses N.  However, from the vantage point of electromagnetic geophysics, perhaps a 
more useful parameterization involves the fundamental period P of the pulse sequence, and the total 
number of periods NP.  For an alternating-polarity sequence, the period is just 
 

TP 2 .           (E1.5a) 
 
That is, the period is twice the lag time.  Furthermore, it is useful (and simple) to restrict consideration to 
an integer number of periods.  The number of pulses is then 
 

PNN 2 .           (E1.5b) 

 
That is, there are two pulses per period.  [An obvious implication is that we do not consider sequences 
consisting of an odd number of pulses, which would have a non-zero dc spectral value equal to the area 
under a single pulse.]  Amplitude spectrum (E1.4) becomes 
 

)2/cos(1

)cos(1
 )()(

P

PN
WS P









 .        (E1.6) 

 
 
If waveform w(t) is the Dirac delta function δ(t), then the amplitude spectrum |W(ω)| = 1.  Hence, the 
second factor in equation (E1.6) is just the amplitude spectrum of an alternating polarity “spike 
sequence”.  The following set of eight panels depicts the amplitude of this factor as a function of 
frequency over the range f = 0 Hz to f = 6 Hz.  The fundamental period is fixed at P = 1 s, and the number 
of periods increases from NP = 1 to Np = 128 in powers of 2.  Note that the logarithmic amplitude 

spectrum  refAfA )(log10  is plotted, with respect to reference value Aref = 1 s = 1/Hz.  Spectral peaks 

are located at odd integer multiples of the fundamental frequency 1/P = 1 Hz (where the denominator in 
(E1.6) vanishes).  These “primary peaks” increase in height and decrease in width as NP increases.  
Additionally, numerous secondary peaks and zeros appear between the primary peaks.  Since the interval 
between an adjacent secondary peak and zero diminishes as NP increases, it is difficult to state just what 
value the spectrum assumes between primary peaks.  However, the envelope of the spectrum 

   2/1
cos1


 fP is independent of NP and remains invariant. 
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Figure E1a. Amplitude spectrum of an alternating polarity spike sequence with a single period NP = 1. 
 
 

 
Figure E1b.  NP = 2. 
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Figure E1c.  NP = 4. 
 
 

 
Figure E1d.  NP =8. 
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Figure E1e.  NP = 16. 
 
 

 
Figure E1f.  NP = 32. 
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Figure E1g.  NP = 64. 
 
 

 
Figure E1h.  NP = 128. 
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E1.1 Peak Amplitude Analysis 
 
The zeros of the denominator in the second factor (i.e., containing the square root) in equation (E1.4) 
occur at 
 

P
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However, this factor is indeterminate (~0/0) at these frequencies, rather than infinite.  Utilize L’Hopital’s 
rule to determine the peak amplitude at these frequencies.  Let B(f) denote the argument of the square root 
in (E1.6): 
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application of L’Hopital’s rule.  Then  
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It is straightforward to demonstrate that
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.   Hence, the peak spectral amplitude 

value at frequency fl is given by 
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The peak amplitude is directly proportional to the number of periods NP;  amplitude increases without 
bound as NP → ∞.    
 
E2.0 Square Pulse 
 
A commonly-used source pulse in electromagnetic geophysical prospecting is the square (or “boxcar”) 
pulse   
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where П(x) is the rectangle function of unit height and area (П(x) = 1 for |x| ≤ 1/2, zero otherwise).  The 
square pulse duration time is Tbox, so the onset time of the boxcar pulse (E2.1) is t = 0 s.  The Fourier 
transform of this wavelet is  
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where )()sin()(sinc xxx   is the well-known “sinc” function (Bracewell, 1965).  The complex 

exponential accounts for the time delay Tbox/2 with respect to t = 0.   Clearly, the modulus of (E2.2) is 
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The amplitude spectrum equals Tbox at f = 0 Hz, and has zeros at f = k/Tbox with k = 1,2,3,… The boxcar 
duration time Tbox can be taken to be a specified fraction (less than unity) of the lag time T:  
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where the positive number d, referred to herein as the “duty cycle percentage”, ranges from 0 to 100 
inclusive. 
 
With this re-parameterization, equation (E1.6) above is re-written in the form  
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The frequency amplitude spectrum of an alternating-polarity square pulse sequence depends on the three 
parameters i) period P, ii) number of periods NP, and iii) duty cycle percentage d.   
 
The first factor in (E2.5) (i.e., containing the sinc function) equals (d/100) (P/2) at zero frequency. 
However, multiplication by the second factor always annihilates the DC spectral component. Sinc 
function zeros occur at 
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So, the duty cycle percentage d influences the locations of these zeros.  Peak values of the square pulse 

amplitude spectrum occur at Plf l )12(  for l = 1,2,3… and equal 
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The peak amplitude is directly proportional to the product of the period P and the number of periods NP.  
The proportionality factor depends only on the duty cycle percentage d.  An alternative way to write the 
spectral peak amplitude function is 
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For a 100% duty cycle, the peak amplitudes are given by 
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For 50% duty cycle, we have 
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implying  
%100%100%50

)(707.0)( 21)(



dldldl fSfSfS .  For these two cases, amplitudes of 

the higher harmonics diminish monotonically, and inversely proportional to the odd integers. 
 

Figure E2 depicts normalized peak amplitude (i.e.,  Pl PNfS 2)(  ) for the first four spectral lines 

(i.e., l = 1,2,3,4), plotted with respect to duty cycle percentage d. 
 

                 
Figure E2. Normalized peak amplitude for spectral lines l = 1,2,3,4 as functions of duty cycle percentage. 
 
_________________________________________ 
 
Clearly, the amplitudes of all lines vanish for d = 0, as expected.  The amplitude of the fundamental 
frequency line (l = 1) exceeds all of the harmonics (l = 2,3,4,…) and is indeed maximized for 100% duty 
cycle.  Reading down the right edge of the plot yields the 1/(2l‒1) amplitude decay at 100% duty cycle, as 
predicted by equation (E2.8a).  But, the harmonics possess multiple maxima and zeros within the full 
range 0% < d < 100%!  Harmonic l has l equal maxima and l – 1 zeros (not counting the common zero at 
d = 0%).  Interestingly, over certain limited range of the duty cycle parameter, the amplitude of harmonic 
3 exceeds that of 2.  Similarly, there are ranges where harmonic 4 exceeds 3 (and even both 2 and 3). 
Finally, a harmonic is annihilated at a zero.  For example, the line with frequency f2 is removed from the 
spectrum if d/100 = 2/3. 
  
The ratio of two successive peak amplitudes is 
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(for l = 1,2,3,…) which is obviously independent of period P and number of periods NP.  Hence, a 
measurement of this amplitude ratio may serve to estimate an unknown duty cycle percentage d.  The 
amplitude of the first harmonic (l = 2) to the fundamental (l = 1) is  
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This approaches unity for vanishing duty cycle d.  Figure E3 depicts this amplitude ratio function.  Note 
the vanishing spectral amplitude ratio R1(66.7). 
 

                
 
Figure E3.  Ratio of spectral amplitude of first harmonic frequency (l = 2) to the fundamental frequency 
(l = 1) vs. duty cycle percentage.  
 
__________________________________________ 
 
 
E3.0 Examples 
 
The following Figure E4 depicts six normalized source amplitude spectra |S(f)|/|S(fPeak)| calculated with 
equation (E2.5) for a fixed fundamental period P = 1 s.  The number of periods ranges from NP = 1/2 in 
the top panel (implying a single square pulse) to NP = 100 in the bottom panel.  The duty cycle percentage 
is fixed at d = 50, which apparently corresponds to popular EM geophysical usage.  The displayed 
frequency range is 0 to 50 Hz, although equation (E2.5) was evaluated from DC up to 300 Hz.  The peak 
frequency fPeak used for normalization is the fundamental frequency f1 = 1/P = 1 Hz.  [Recall that Figure 
E2 indicates that the amplitude of the fundamental frequency spectral line is always the largest, for any 
duty cycle percentage.]   The plotted results replicate those contained in Aldridge (2014). 
 
The top panel plots |sinc(fP/4)|, or the (normalized) first term in equation (E2.5). The sinc function has a 
maximum at zero frequency, and exhibits an overall 1/f amplitude decay as frequency increases.  Zeros 
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occur at fk = 4k/P = 4k Hz for k = 1,2,3,…, or 4, 8, 12, 16, 20,…Hz.  Clearly, as the number of periods NP 
increases, the source spectrum approaches a line spectrum, with lines located at frequencies fl = (2l‒1)/P 
= (2l‒1) Hz for l = 1,2,3,…, or 1, 3, 5, 7, 9,… Hz.  These spectral lines correspond to the zeros of the 
denominator of the second term in equation (E2.5).  Note the diminishing amplitudes of the peak values 
as frequency increases.  Also note that, as NP increases from 1/2, the non-zero DC spectral value is 
annihilated.  This reflects the simple fact that an alternating polarity pulse sequence with an integer 
number of periods has no net area, or no net DC value. 
 
Although there is some non-zero fine structure to the amplitude spectra between the discrete spectral lines 
(as illustrated in Figure E1), this rapidly becomes invisible as the number of periods increases (and the 
normalization amplitude |S(f1)| increases).  The linear (rather than logarithmic) vertical plot scale also 
suppresses the intra-line fine structure.  
 
Various numerical values are tabulated below.  Calculations include NP = 1000, although that panel is not 
plotted because it appears identical to the NP = 100 panel.  Column two is the gain in signal-to-noise 
achieved by additive stacking of NP periods of recorded data. [An assumption is that ambient EM noise is 
zero mean, fixed standard deviation, and uncorrelated between successive periods.] 
 
NP                   GSNR             Peak frequency (Hz)             Bandwidth (Hz)             Peak Amplitude (s) 
 
1/2                    ---                          0.00                            0.00 to 126.17                     0.250  
1                       1.00                       0.92                            0.01 to 106.86                     0.454 
2                       1.41                       0.98                            0.01 to 101.10                     0.902 
3                       1.73                       0.99                            0.01 to   99.01                     1.352 
10                     3.16                       1.00                            0.01 to   99.00                     4.471 
100                   10.0                       1.00                            0.99 to   99.00                   45.016 
1000                 100                        1.00                            0.99 to   99.00                 450.158 
 
As the number of periods increases, the maximum frequency settles at 99.00 Hz, which is the point where 
the amplitude spectrum descends below 1% of its peak value at 1.00 Hz.  However, NP = 3 appears to 
yield virtually the same maximum frequency fmax!  Of course, the major problem is that such a low 

stacking fold yields only a modest gain in the signal-to-noise ratio (recall that GSNR = PeriodsN ).  

 
Note also that the peak spectral amplitude (which plots at 1.0 in the panels of Figure E4) increases with 
NP.  The values agree with those predicted by equation (E2.7a or b) above, for spectral line l = 1.  
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Figure E4.  Effect of increasing number of periods NP on frequency amplitude spectra, for fixed 
fundamental period P = 1 Hz and fixed duty cycle percentage d = 50%. 
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Figure E5 illustrates the effect of varying the duty cycle percentage d, while holding the fundamental 
period P (= 1 Hz) and number of periods NP (= 100) fixed.  Normalized amplitude spectra are again 
plotted.  Clearly, increasing the duty cycle percentage changes the overall shape of these line spectra.  The 
middle panel for d = 50% (which is the same as the bottom panel in the previous figure) appears identical 
to the bottom panel for d = 100%.  This agrees with the conclusions of equations (E2.8a and b).  
However, peak amplitudes differ, as tabulated here: 
 
 d (%)                    Peak frequency (Hz)             Bandwidth (Hz)             Peak Amplitude (s) 
 
  10                               1.00                               0.99 to 493.00                        9.959  
  25                               1.00                               0.99 to 237.00                      24.362 
  50                               1.00                               0.99 to   99.00                      45.016 
  75                               1.00                               0.99 to   97.00                      58.816 
  90                               1.00                               0.99 to   99.00                      62.878 
100                               1.00                               0.99 to   99.00                      63.662 
 
 
 
 
 
Recall that the positions of the spectral lines are independent of the duty cycle percentage, as indicated by 

expression (E1.7) above: Plfl )12(   = 1, 3, 5, 7, 9, 11,… Hz for the present examples.  However, 

the zeros of the multiplying sinc function do depend on the duty cycle parameter d, via equation (E2.6) 

above: )100/(2 dPkfk   for k = 1,2,3,…The presence of the additional parameter d enables us to 

position these zeros to coincide with some of the discrete spectral lines fl, and thus remove them from the 
amplitude spectrum. 
 
Guided by the spectral line amplitude curves plotted in Figure E2, choose d = 66.67% which implies fk = 
3, 6, 9, 12, 15, 18, 21,…Hz.  The top panel of Figure E6 indicates that the odd harmonics fl

  = 3, 9, 15, 21, 
…Hz are removed.  Choosing d = 40% as in the middle panel of Figure E6 implies sinc function zeros 
occur at frequencies fk = 5, 10, 15, 20, 25, 30, 35,… Hz.  The odd harmonics fl = 5, 15, 25, 35,…Hz are 
then removed.  However, Figure E2 indicates that the same harmonics may be removed by choosing d = 
80%.  The bottom panel of Figure E6 illustrates this situation.  Moreover, the relative suppression of the 
non-zero harmonics at fl = 3, 7, 9, 11, 13,…Hz appears superior.  This is consistent with Figure E3.  The 
geophysical advantages (or disadvantages) associated with modifying the source signal amplitude 
spectrum with this technique requires further study.   
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Figure E5. Effect of increasing duty cycle percentage d on frequency amplitude spectra, for fixed 
fundamental period P = 1 Hz and number of periods NP = 100. 
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Figure E6. Annihilation of certain spectral lines via judicious choice of zero locations for the multiplying 
sinc function.   Top panel:  lines at 3, 9, 15, 21,… Hz are removed via a 67% duty cycle.  Maximum 
amplitude = 55.133 s.  Middle panel: lines at 5, 15, 25, 35,… Hz are removed via a 40% duty cycle.  
Maximum amplitude = 37.420 s.  Bottom panel:  the same lines at 5, 15, 25, 35,… Hz are removed by an 
80% duty cycle.  Maximum amplitude = 60.546 s.  
 
______________________________________  
  
 
 
Finally, Figure E7 depicts frequency spectra of horizontal electric field components observed at a Salton 
Sea, California geothermal site and at an undisclosed Saudi Arabian oil field (Marsala et al., 2014).  Red 
and blue curves show prominent spectral lines at fl = 1, 3, 5, 7, 9, 11, 13, 15,… Hz, implying an EM 
source signal with a P = 1 s fundamental period.  No information is given regarding the number of 
periods NP, although the broad spectral peak at 1 Hz suggests a relatively low number (e.g., compare with 
Figure E4).  Amplitude falloff between f1 = 1 Hz and f2 = 3 Hz crudely picked from the plot is about R1(d) 
=  0.20 (although the vertical plot scale, in units of V/√Hz is rather confusing).  So, Figure E3 implies a 
duty cycle percentage of perhaps d ~ 55 or d ~ 80.  Within the limits of accuracy of picking the Figure E7 
curves, d ~ 50 (which we believe is common field practice) is perfectly acceptable.     
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Figure E7.  Frequency amplitude spectra of horizontal electric field measurements, from Marsala et al. 
(2014).  Red and blue curves are spectra from active-source EM data recorded in an undisclosed Saudi 
Arabian oil field, using two different types of sensors (but note different sensor spacings).  Green and 
black curves are ambient noise spectra (i.e., no active energy source) from EM data recorded at a Salton 
Sea geothermal site (also with different sensor spacings).  Note the prominent noise peak at 60 Hz.   
 
  
 
 
 
 
 
 
 
 
                  
 
 
 
 
 
 



171 

15.0 LIST OF FIGURES AND TABLES 
 
Figure 2.1.  Geometric setup of the geologic layer reflection / transmission problem.   
 
Figure 5.1. Reference or background model consisting of a single plane horizontal interface separating 
two (possibly dissimilar) upper and lower halfspaces. 
 
Figure 5.2. Logarithm of electromagnetic wavelength vs. logarithmic conductivity and logarithmic 
permeability, for frequency f = 1 Hz (top),  f = 10 Hz (middle), and  f = 100 Hz (bottom). 
 
Figure 5.3. Logarithm of electromagnetic wavelength vs. logarithmic conductivity and logarithmic 
permeability.  Top and middle panels are calculated with approximate (i.e., low-frequency) and exact 
formulae for frequency f = 1000 Hz, respectively.  Bottom panel is exact calculation for f = 10,000 Hz.  
Electric permittivity ε = 10 ε0 is used for the calculations. 
 
Figure 5.4. Logarithm of electromagnetic wavelength vs. logarithmic conductivity and logarithmic 
permeability, calculated with exact formula for frequency f = 100,000 Hz (top), and f = 1,000,000 Hz 
(bottom). respectively.  Electric permittivity ε = 10 ε0 is used for the calculations. 
 
Figure 5.5.  Logarithmic amplitude ratio of back-scattered to for-scattered electric field for a thin (hbed = 
1 cm) layer, at frequencies f = 0.1 Hz (top), f = 1 Hz (middle), and f = 10 Hz (bottom).  Scattering ratio is 

plotted vs. logarithmic conductivity contrast ratio 12  and logarithmic permeability contrast ratio 

12  . 

 
Figure 5.6.  Logarithmic amplitude ratio of back-scattered to for-scattered electric field for the layer in 
Figure 5.5, at higher frequencies f = 100 Hz (top) and f = 1000 Hz (bottom). 
 
Figure 5.7.  Same as Figure 5.5, except the scattering layer is relatively thicker (h = 10 m).  Top, middle, 
and bottom panels correspond to frequency f = 0.1 Hz, f = 1 Hz, and f = 10 Hz, respectively. 
 
Figure 5.8.  Same as Figure 5.6, except the scattering layer is relatively thicker (h = 10 m).  Logarithmic 
amplitude ratio of back-scattered to for-scattered electric field, at higher frequencies f = 100 Hz (top) and 
f = 1000 Hz (bottom).  
 
Figure 5.9.  Back-scattered (red trace) and for-scattered (green trace) sinusoidal waveforms (period P = 
1 s) generated by a thin layer (h = 1 cm) possessing both conductivity and permeability contrasts with a 
uniform background medium.  Amplitude ratio of the two signals is ~2212. 
  
Figure 6.1.  Electric vector component responses generated by a geologic bed with conductivity 

S/m 100bed  (5000 times larger than the background medium conductivity S/m 02.0bak ).  Top 

and bottom panels correspond to reflected and transmitted measurement geometries, respectively.  Green 
traces are homogeneous reference model responses and black traces are actual model (i.e., containing the 
geologic bed) responses.  Red traces are scattered responses, equal to black minus green traces.  Back-
scattered and fore-scattered responses are nearly identical for this thin geologic bed. 
 
Figure 6.2.  Magnetic vector component responses generated by the same geologic bed with medium 
parameters used for Figure 6.1. Top and bottom panels correspond to reflection and transmission 
measurement geometries, respectively. Except for a sign change, back-scattered and for-scattered 
responses are nearly identical for this thin geologic bed. 
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Figure 6.3.   Back-scattered Ex electric vector components (top panel) and By magnetic vector 

components (bottom panel) generated by a geologic bed with conductivity S/m 100bed  (5000 times 

larger than the background medium conductivity S/m 02.0bak ).  Bed permeability 0 bed and 

permittivity 010 bed  are identical to background values.  Bed thickness varies from h = 10 m (red 

curves) to h = 1 cm (brown curves).  
 
Figure 6.4.   For-scattered Ex electric vector components (top panel) and By magnetic vector components 
(bottom panel) generated by the same conductivity contrast geologic bed as in Figure 6.3. 
 
Figure 6.5.   Back-scattered EM field components generated by a geologic bed with fixed thickness 

cm 1bedh , and current conductivity bed varying between 105 S/m (red curves) and 102 S/m (brown 

curves).  Bed permeability 0 bed  and permittivity 010 bed  are identical to background. 

 
Figure 6.6.   For-scattered EM field components generated by the same conductivity contrast geologic 
bed as in Figure 6.5. 
 
Figure 6.7.   Back-scattered EM field components generated by a geologic bed with fixed thickness 

m 01bedh , and magnetic permeability bed varying between 0

410   (red curves) and 0

110  (brown 

curves).  Bed conductivity S/m 02.0bed  and permittivity 010 bed  are identical to background. 

 
Figure 6.8.   For-scattered EM field components generated by the same permeability contrast geologic 
bed as in Figure 6.7. 
 
Figure 6.9.  Back-scattered EM field components generated by a geologic bed with fixed current 

conductivity S/m 100bed  and magnetic permeability 0100 bed , and with thickness varying 

between m 10bedh  (red curves) to cm 1bedh  (brown curves). Bed permittivity 010 bed  is 

identical to background.  These layers have strong conductivity contrast (×5000) and permeability 
contrast (×100) with the background medium. 
 
Figure 6.10.   For-scattered EM field components generated by the same joint conductivity/permeability 
contrast geologic bed as in Figure 6.9. 
 
Figure 6.11.   Back-scattered EM field components generated by a geologic bed with fixed conductance 

(i.e., conductivity × thickness product) equal to 100 S.  Bed magnetic permeability 0 bed  and electric 

permittivity 010 bed  are identical to background values.  All curves overplot at this plot scale.  

 
Figure 6.12.   For-scattered EM field components generated by a geologic bed with fixed inductance (i.e., 

permeability × thickness product) equal to 104 H.  Bed current conductivity S/m 02.0bed  and electric 

permittivity 010 bed  are identical to background values.  All curves overplot at this plot scale. 

 
Figure 6.13.   For-scattered Ex field components generated by a thin geologic bed (hbed = 5 mm) with 
strong permittivity contrasts with the background medium.  Top / bottom panels correspond to layer 
relative permittivities of 4 × 106 and 1010, respectively.  Bed conductivity and permeability are the same 
as the homogenous background medium.  
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Figure 6.14.  Reflection/Transmission modeling geometry.  Ez-component electric field plane wave is 
incident from the left (x < –h/2) on a geologic layer of thickness h = 10 m.  Both reflected (x < –h/2) and 
transmitted (x > +h/2) electromagnetic plane waves are generated. 
 
Figure 6.15.  Back-scattered and for-scattered Ez-component traces generated by proximal (top panel) and 
distal (bottom panel) plane wave sources positioned at the vertical red arrows.  Maximum absolute 
amplitude within each panel is plotted at one trace spacing; positive lobes of the traces are shaded grey. 
 
Figure 6.16.  Logarithmic maximum relative Ez amplitude vs. receiver location for proximal (top) and 
distal (bottom) plane wave sources.  Source amplitude level is indicated by the horizontal black dashed 

line at 0.0.  Background medium conductivities are 2 =0.001 S/m (red curves), 0.01 S/m (blue curves), 

0.1 S/m (green curves), and 1.0 S/m (brown curves).  Solid and dashed amplitude profiles correspond to 
conductivity-only scattering, and joint conductivity and permeability scattering, respectively. The 
scattering zone is represented by the thin vertical brown strip.  
 
Figure 6.17.  Back-scattered and for-scattered By-component traces generated by proximal (top panel) 
and distal (bottom panel) plane wave electric field sources positioned at the vertical red arrows.  
Maximum absolute amplitude within each panel is plotted at one trace spacing; positive lobes of the 
traces are shaded grey. 
 
Figure 6.18.  Logarithmic maximum relative By amplitude vs. receiver location for proximal (top) and 
distal (bottom) plane wave sources.  Reference amplitude level is Bref = 1 T. Background medium 

conductivities are S/m 001.02  (red curves), 0.01 S/m (blue curves), 0.1 S/m (green curves), and 1.0 

S/m (brown curves).  Solid and dashed amplitude profiles correspond to conductivity-only scattering, and 
joint conductivity and permeability scattering, respectively. The scattering zone is represented by the thin 
vertical brown strip. 
 
Figure 7.1. Schematic depiction of First Born Approximation scattered wavefields (upward and 
downward propagating red plane wavefronts) for the case of a thin geologic layer possessing a contrast in 
current conductivity with respect to a homogeneous background.  The material parameter contrast of the 
layer is replaced by a horizontally-directed electric current body source (green arrows) with the same 
vertical extent.  
 
Figure 7.2.  Exact (upper panel) and First Born Approximation (lower panel) back-scattered responses 
induced by a strong current conductivity contrast in a thin geologic layer with thickness hbed = 1 cm.  Red, 
green, blue, and brown curves correspond to σbed = 103, 104, 105, and 106 S/m, respectively.   Blue and 
brown sinusoidal curves plot well off scale in bottom panel. 
 
Figure 7.3.  Exact (solid curves) and First Born Approximation (dashed curves) back-scattered responses 
induced by moderate current conductivity contrast in a thin geologic layer with thickness hbed = 1 cm.  
Brown, blue, green, and red curves correspond to σbed = 100, 101, 102, and 103 S/m, respectively.  Solid 
red curve is identical to previous Figure 7.2.  Note expanded vertical scale of 10× compared with prior 
figures. 
 
Figure 7.4.  Backward-scattering (top panel) and forward-scattering (bottom panel) logarithmic 
amplitude ratios of First Born Approximation to exact scattered responses, calculated for a thin layer (h = 
1 cm) and an incident EM sinusoidal signal with frequency f = 1 Hz.  Background conductivity σ1 = 0.1 

S/m and permeability µ1 = µ0, implying the thickness-to-wavelength ratio is 
6

1 10h .  

Paramagnetic/diamagnetic regions reside above/below the horizontal dashed lines.  
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Figure 7.5.  Same as Figure 7.4, except for a thicker layer (h = 10 m) and a higher frequency incident 
signal (f = 10 Hz). 
 

Figure 7.6.  Same as Figure 7.5, except a larger magnetic permeability 01 10  is assigned to the 

background medium. 
 
Figure 8.1.  Non-normal incidence plane wave reflected and transmitted responses of a geologic layer.  
 
Figure A1.  Diagnostic frequency functions for electromagnetic wave propagation, plotted with respect to 
dimensionless frequency f / ft.    Blue curve is phase speed c(f) and attenuation factor α(f), normalized by 
the respective infinite frequency values.  Red curve is group speed g(f), also normalized by the infinite 
frequency value.  Green curve (linear with frequency) is quality factor Q(f) = f / ft . 
 
Figure A2.  Diagnostic frequency functions for electromagnetic wave propagation, plotted with respect to 
physical frequency f in kilohertz.  Blue curve is phase speed c(f) and attenuation factor α(f), normalized 
by the respective infinite frequency values.  Red curve is group speed g(f), also normalized by the infinite 
frequency value.  Green curve (linear with frequency) is quality factor Q(f). 
 
Figure B1.  Geometric setup of the normal incidence plane wave reflection / transmission problem.  Unit 
propagation direction vectors of the plane wavefronts are ninc = ntrn = +ez and nref = ‒ez. 
 
Figure B2. Reflected (top panel) and transmitted (bottom panel) electric vector x-components from an 
“invisible” or “transparent” geologic layer with thickness h = 10 m.  Relative (i.e., dimensionless) 

permittivity 0
ˆ   , permeability 0

ˆ   , and conductivity ref ˆ (with S/m 1ref ) for the 

three media are:         1,1,1ˆ,ˆ,ˆ
111  ,           10,10,10ˆ,ˆ,ˆ

222  ,           1,1,1ˆ,ˆ,ˆ
333  . 

The reflected response vanishes because both the top-bed and bottom-bed reflection coefficients 
numerically equal 0.0. 
 
Figure B3. Reflected (top panel) and transmitted (bottom panel) electric vector x-components from a 
geologic layer with thickness h = 10 m.  All medium parameters are the same as in Figure B2, except the 

relative (i.e., dimensionless) conductivity ̂  assigned to the layer (medium #2) is S/m 15ˆ
3  .  A weak 

reflected response is generated, and the transmitted response appears to be nearly unchanged (compare 
with Figure B2).  
 
Figure E1a-h. Amplitude spectra of an alternating polarity spike sequence with NP periods. 
 
Figure E2. Normalized peak amplitude for spectral lines l = 1,2,3,4 as functions of duty cycle percentage. 
 
Figure E3.  Ratio of spectral amplitude of first harmonic frequency (l = 2) to the fundamental frequency 
(l = 1) vs. duty cycle percentage.  
 
Figure E4. Effect of increasing number of periods NP on frequency amplitude spectra, for fixed 
fundamental period P = 1 Hz and fixed duty cycle percentage d = 50%. 
 
Figure E5. Effect of increasing duty cycle percentage d on frequency amplitude spectra, for fixed 
fundamental period P = 1 Hz and number of periods NP = 100. 
 
Figure E6. Annihilation of certain spectral lines via judicious choice of zero locations for the multiplying 
sinc function.   Top panel:  lines at 3, 9, 15, 21,… Hz are removed via a 67% duty cycle.  Maximum 
amplitude = 55.133 s.  Middle panel: lines at 5, 15, 25, 35,… Hz are removed via a 40% duty cycle.  



175 

Maximum amplitude = 37.420 s.  Bottom panel:  the same lines at 5, 15, 25, 35,… Hz are removed by an 
80% duty cycle.  Maximum amplitude = 60.546 s. 
 
Figure E7.  Frequency amplitude spectra of horizontal electric field measurements, from Marsala et al. 
(2014).  Red and blue curves are spectra from active-source EM data recorded in an undisclosed Saudi 
Arabian oil field, using two different types of sensors (but note different sensor spacings).  Green and 
black curves are ambient noise spectra (i.e., no active energy source) from EM data recorded at a Salton 
Sea geothermal site (also with different sensor spacings).  Note the prominent noise peak at 60 Hz. 
 
 
Table 5.1.  Thin-bed time-domain scattering formulae. 
 
Table 5.2.  Thin-bed frequency-domain scattering formulae. 
 
Table 7.1.  Backward scattering formulae (zr  <  ztop). 
 
Table 7.2. Forward scattering formulae (zr  >  zbot). 
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