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ABSTRACT

Electric field and magnetic field reflection and transmission responses generated by a plane wave
normally incident onto a finite-thickness geologic layer are mathematically derived and numerically
evaluated. A thin layer with enhanced electric current conductivity and/or magnetic permeability is a
reasonable geophysical representation of a hydraulic fracture injected with a high-contrast proppant pack.
Both theory and numerics indicate that backward- and forward-scattered electromagnetic wavefields are
potentially observable in a field experiment, despite the extreme thinness of a fracture compared to a
typical low-frequency electromagnetic wavelength. The First Born Approximation (FBA) representation
of layer scattering, significant for inversion studies, is shown to be accurate for a thin layer with mild
medium parameter (i.e., conductivity, permeability, and permittivity) contrasts with the surrounding
homogeneous wholespace. However, FBA scattering theory breaks down for thick layers and strong
parameter contrasts.
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1.0 INTRODUCTION

In seismic reflection exploration, a thin geologic layer in defined as one with thickness less than about
one-fourth wavelength of an incident plane wave (Widess, 1957-58; 1973). In this case, distinct
reflection arrivals from top and bottom bed boundaries are difficult to recognize. Information regarding
layer thickness and material properties is encoded in the amplitude of the composite (reflected and/or
transmitted) response. Due to the significantly larger wavelength of a diffusing electromagnetic (EM)
wave, virtually all geologic layers would be considered extremely thin via this definition. This is
particularly true for a single hydraulic fracture (~1 cm width) or even a fracture zone (~meters width).

Seismic and (low-frequency) EM wavelengths are given by

c c(f) | 4n
;l'(f)|SEIS:T’ i(f)|EM:—f ~ —Wf,

where c is phase speed, f is frequency, and ¢ and x« are current conductivity and magnetic permeability.
For example, the wavelength of a 30 Hz sinusoid propagating with a seismic velocity of 3000 m/s in an
elastic medium is 100 m, whereas the analogous EM signal diffusing through a conductive body of 0.1
S/m (clayey shale) has wavelength 1826 m. This larger wavelength has implications for the resolution
capabilities of the EM prospecting method.

In this investigation, we restrict consideration to a normally-incident plane EM wave, and calculate
reflection and transmission responses of a uniform-thickness layer embedded between two (possibly
dissimilar) homogeneous and isotropic halfspaces. Exact frequency-domain expressions for the electric
vector E and magnetic vector B are obtained via two mathematical methodologies: 1) summing primaries
and all intrabed multiples (the SEIS way), and 2) solving a boundary value problem by imposing
wavefield continuity at the interfaces (the EM way). The equivalence between the two approaches is
rigorously established in Appendix C. Time-domain responses are subsequently obtained by inverse
numerical Fourier transformation.

Our synthetic calculations predict observable E and B field responses, in both reflection and transmission,
from layers that are several orders of magnitude smaller than the incident dominant wavelength. Large
conductivity or permeability contrast of the layer, as with a hydraulic fracture injected with a suitable EM
detection agent, enhances response amplitude. Contrary to LaBrecque et al. (2016), we find that
permittivity contrast exerts negligible influence at the low frequencies typically used in EM geophysical
exploration. Interestingly, responses appear to be insensitive to the fixed (parameter x thickness) product,
a result that agrees with First Born Approximation scattering theory.

A significant portion of the present work involves developing the First Born Approximation (FBA)
scattering representation of a thin geologic layer. Scattering of seismic waves by small-spatial-scale
heterogeneities within Earth’s crust and mantle has long been examined via the Born approximation (see
Hudson and Heritage (1981) and the references cited therein for early work in this area). However,
application of the FBA to electromagnetic wavefield scattering appears to be less common in the
frequency band of interest in geophysics. The FBA involves replacing a perturbation in material
properties (i.e., current conductivity o, magnetic permeability p, and/or dielectric permittivity ¢) by an
equivalent body source of EM waves. A particular advantage of the present model (a geologic layer with
plane parallel interfaces, subject to a normally-incident plane EM wave) is that FBA scattered responses
(in backward/forward directions) generated by these effective body sources can be calculated exactly.
Comparison with the previously-developed reflection/transmission responses of the layer then establishes
conditions for accuracy of the Born approximation. In particular, if the layer is thin (with respect to a
wavelength of the incident EM wave) and has mild medium parameter contrasts with the surrounding
wholespace, then FBA and actual responses agree well. Very strong parameter contrasts, as with a



hydraulic fracture injected with highly conductive and/or magnetic proppant particles, lead to Born
scattering amplitudes that greatly exceed the actual scattering amplitudes.

In addition to providing a simple theoretical framework for understanding and analysing wavefield
scattering, the FBA has practical utility for numerical algorithms used in simulating wave propagation
through three-dimensional (3D) earth models. A small-scale heterogeneity (say, a steel borehole casing
with thickness ~1 cm) is difficult to accurately represent on a numerical grid. Replacing this material
parameter perturbation by an equivalent body source of waves (as in Aldridge, et al., 2015) may
constitute a more feasible simulation approach. Finally, the FBA underlies a recently patented process
(Aldridge and Bartel, 2016) for imaging a subsurface hydraulic fracture injected with electrically
conducting proppant. The method had been applied to field-acquired EM data with some limited success
(Palisch et al., 2016; 2017). The theoretical evaluation of FBA accuracy contained herein will assist in
understanding the limitations of this new imaging approach.

An obvious extension of the present investigation involves a non-normal incident plane wave, which
offers the intriguing possibility of Electromagnetic Amplitude vs. Offset (EMAVO) analysis, analogous
to the well-known seismic counterpart.

In the following report, certain more mathematical and foundational topics (like plane EM wave
propagation, reflection/transmission coefficients, First Born Approximation theory, and pulse-sequence
mathematics) are reserved for the Appendices. Interestingly, in the course of the development, we have
“discovered” (or perhaps “rediscovered”) that the normal incidence plane wave reflection coefficient can
be made to vanish (i.e., equal zero) by a suitable choice of the parameter contrast ratios for conductivity,
permeability, and permittivity (see the development in Appendix B). This result does not appear to be
well-known in electromagnetic geophysics. Perhaps the result may suggest an initial pathway toward
developing a “reflectionless” or “transparent” material for EM waves.



2.0 PROBLEM DEFINITION
2.1 Geologic Layer Earth Model

Consider a one-dimensional (1D) electromagnetic (EM) earth model composed of three homogeneous and
isotropic media. Figure 2.1 depicts overburden, layer, and substratum, each characterized by the triad of
isotropic EM parameters electric permittivity ¢, magnetic permeability 4, and current conductivity o.

Reflected Response (primaries plus bed multiples)

J
[ 1

Incident Plane Wave

Medium 1 (overburden rays displaced
(&1, M1 01() ! T slightly from vertical

for visual clarity
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Medium 2 (thin bed)
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Medium 3 (substratum)
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Transmitted Response (direct plus bed multiples)

h= Zhot— Ztop

Figure 2.1. Geometric setup of the geologic layer reflection / transmission problem.

The layer is bounded by upper and lower plane horizontal interfaces located at z = zip and z = Zpor,
respectively.

Next, consider a downward propagating plane EM wave normally incident on the geologic layer from
above. The wave will reflect from both the top and bottom interfaces, as well as reflect internally multiple
times within the layer. The totality of arrivals that return to a receiver z; < zyp constitute the layer
reflection response. Similarly, the layer transmission response is composed of the direct (i.e., through-
going) arrival and all trailing intrabed multiples sensed by a receiver at z; > zy. In Figure 2.1, the
raypaths associated with these many arrivals are displaced slightly from vertical for visual clarity. In
actuality, all rays are normal to the interfaces.



2.2 Incident Plane Wave

The basic mathematics describing plane electromagnetic wave propagation within a homogeneous and
isotropic body is developed in Appendix A. In the frequency-domain, the x-component of a downward-
propagating electric vector within the upper medium #1 of Figure 2.1 is given by

Einc(zf 6()) = Einc(zs ' 0)) exp [+ |K1(CO)(Z - Zs)] ' (21)
where E; .(z,, ®) is the value at the source level z = z;, and Ki(w) is the complex wavenumber associated

with medium #1 parameters. The positive sign within the exponent corresponds to +z-direction
propagation. Generally, an electromagnetic complex wavenumber is given by

K(w):iL( Y a’ts(“’/“’t)] 2.2)

c, | slo/m) 2

where the dimensionless function s(w) is defined as

s(w) = \/m [\/1+ w? —|W|]+l/2. (2.3)

s(w) is a positive and even function that approaches zero and unity as w — 0 and w — oo, respectively.
The infinite-frequency phase speed c.. and transition frequency . in equation (2.2) are defined by

1 o
C,=——, o, =—

Jau £
respectively. The transition frequency separates (roughly) the frequency ranges for electromagnetic wave
diffusion (Jw| << @) and electromagnetic wave propagation (|w| >> wy).

, (2.4a,b)

A low-frequency approximation to the complex wavenumber is

K@)~ ™ @{sgn(a))ﬂ(l—éo(w))}:\/m{sgn(a))ﬂ(l—&o(a)))]

c, Vo J2 J2
= WTMsgn(a))e+i4sgn(w), (2.5)

where sgn(w) is the sign function (= w/|w| for w # 0, zero otherwise) and do(w) is the null function (=0
for w # 0, one otherwise) (Bracewell, 1965). The low-frequency approximation is independent of the
electric permittivity . A high-frequency approximation to the complex wavenumber is

K(a))zﬂnaw:\@(miij, (2.6)
C, 2¢

where

a,=w/2c, =(c/2)\Juls (2.4c)
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is the infinite-frequency attenuation factor. Retaining a non-zero imaginary part enables attenuation of a
propagating high-frequency EM wave. Otherwise, vanishing conductivity ¢ = 0 implies the complex
wavenumber is K(w) = w/c, (i.e., pure real) appropriate for wave propagation without attenuation and
dispersion.

2.3 Reflection and Transmission Coefficients

Frequency-domain expressions for normal incidence plane wave reflection and transmission coefficients
are developed in Appendix B. The physical boundary conditions imposed on the EM wavefields are
continuity of the tangential components of both the electric vector E(x,w) and the magnetic vector H(X,w)
at an interface. At the top and the bottom interfaces bounding the embedded layer illustrated in Figure
2.1, plane wave reflection coefficients are given by

K1(w)/ﬂ1 -K, (60)//12
Kl(a))//ul + Kz(a’)/ﬂz ’

K, (@)/ 1, = Ky (@) / 44
K, (a))/,le + Ks(a’)/ﬂs ,

Rtop(a)) = Ryoi(@) = (2.7a,b)

respectively. These forms correspond to a wave incident on an interface from above; for a wave incident
on the upper interface from below, the corresponding reflection coefficient is —Riwp(w). Downward and
upward transmission coefficients at the top interface zp are

K@) 2K,
Tl = o)+ Ko (@), Tl = @)ty + K@) s (2820)

respectively. Straightforward algebra yields the well-known relation T,,(w)=1+R, (®) (and

correspondingly for the lower interface).

top

The (downward x upward) transmission coefficient productT,,(@)T,, () arises in the derivation of the
total reflection response of the embedded geologic layer below. From equations (2.8a and b), we have
T,,(®) = (1K, (@) 1,K, (@) T,,(@). Also, from expression (2.7a) we have the relation

(1K, ()] 1K, (@)= (1- Rtop(a)))/(1+ Rtop(a))). Combining these yields the interesting expression

1-Ryp (@)

T ()T, (@) = (1+ R, (@)

}(1+ Rop (@) = (=R (@)JL+ Ry (@) =1-Rp(@)*.  (29)

So, for a small reflection coefficient Rip(w), two-way transmission loss through the upper interface is
negligible.

11
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3.0 LAYER REFLECTION RESPONSE

3.1 Electric Field

The reflection response of the geologic layer is observed by a receiver placed on the same side of the
layer as the source level: zr < zwp. Working directly with Figure 2.1, the total reflection response may be
built up by summing the many arrivals indicated by the (deviated) raypaths. Recall that Rip(w) and
Ruot(w) are the normal incidence reflection coefficients (for a downward propagating plane wave) at the
top and bottom interfaces bounding the bed. The reflection coefficient for an upward propagating plane
wave encountering the upper interface is just —Rwp(w). Finally, Ti2(w) and Toi(w) are downward and
upward normal incidence transmission coefficients at the interface zwp. The reflection response sum is

gR’(Zs A a)) Einc(zs , C())eHKl(w)(Zmp’Zs) { Rtop (a))
+T,,(®) Rbot(a))T21(a))e+iKz(w)2h
+T12(0)Ryoy (@) ’ (_ Rtop (w) )rzl(w)e+iK2 (@)an

+T12 (a)) Rbot(a)) Rtop(a)))ZTZl(a))e“Kz(m)Gh

(-
+e- '+T12(a)) Rbot(w)n( Rtop( ) l-|-21(a))e+“(2(w)2nh
-

+o+ T, ()R, (@)™ Rtop(w) *1-|-21(a))e+iK2(m)2Nh }e+i|<1(w)(zm,zr),
(3.1)

where the sum is terminated at N terms for convenience. We will let N — oo shortly. The first term
within braces {} corresponds to the primary reflection from the upper interface. The next term is the
primary reflection from the lower interface, which includes two-way transmission loss through the upper
interface. Subsequent terms in the sum correspond to so-called “intrabed multiples”. [The term with
exponent n on Ryet(w) is actually the (n—1)™ intrabed multiple, with (n—1) downward reflections at zi,, and
2n crossings of the bed.] The two complex exponentials outside of the braces { } carry the
electromagnetic wavefield from the source level zs down to the top interface z., and from there back up to
the receiver level z.

In more compact notation, the reflection response sum is
g{’(zs ’ Zr ' a)) Einc(zs ’ a))eJr'Kl(w)(szprS,Zr) X

{pr (w)+ le(a))Tm(a))i Rbot(a))n (— Rtop (a)))“’le”Kz (@)2nh } ,

which is easily expressed as

ER(ZS 2o 60) Einc(zss a))e+iKl(w)(2z‘°P_Zs -zr)
)T, (o " n
{Rtop(a)) 12(R )(21)( )Zl( bOt(a))Rtop(a))e Ky ( )Zh) } (32)
top n
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N

The sum may be evaluated via the famous geometric progression formula Zx”’l = (1— x" )/ (1— x), to
n=1

obtain

Rz,,2,,0)=E, (2, w)e " N2 )

st &

+iK, ()2h ) 1- (_ Root (@) Ry, (@) 212" )N

Rtop(a)) - M (_ Ryt (@) Rtop (w)e 1_ (_ R, (o)R (a))e+iK2(a))2h)

Rtop (a))

Using T,,(@)T,,(®) =1- R, (w)* from equation (2.9) finally yields

top

ER'(Z z w)=Einc(251w)e+iKl(w)(2zmp_Zs_Zr) X

st &

1- (_ Rbot(a)) Rtop(a))e+iK2(w)2h )N
1+R, (@) Rtop((!))eHKZ(‘”)Zh

R (@) + (1= Ry () Ry (@) 2" (3.3)

Equation (3.3) is an expression for layer reflection response for the case of a finite number (N-1) of
intrabed multiples. If the modulus of the reflection coefficient product HRbot(a))pr(a))H <1, then as
integer N — oo this reduces to

Q{(Z ‘ w):Einc(zsaa))eHKl(w)(zzmpiZSin) X

st e

_ 2 +iK; (@)2h 1
{Rtop(a)) + (1 Rtop(a)) )Rbot(a))e |:1+ Rbot(a))R (a))e+iK2(w)2h :| } ’ (343.)

top

which is equivalent to

(3.4b)

s?1&ry

iK, (@)2h
Q{(Z z CO)— E (Z a))e+iK1(w)(22mp‘Zs—Zr) { Rtop(a)) + Rbot(a))e“Kz( )2 }
— Sinc\%s .

1+ Rtop(a)) Rbot(a))e+iK2(w)2h

Appendix B demonstrates that the inequality condition HRtop(a))Rbot(a))H<1is indeed true. Hence, the
passage from (3.3) (with finite N) to (3.4a and b) (with N — o) is valid.

Equation (3.4b) is the final expression for the reflection response of a geologic layer, where all intrabed
multiples are accounted for! If the modulus of the reflection coefficient product is very small (i.e.,

HRbot(a}) Rtop(a))H << 1) then the denominator may be approximated as unity, yielding the form

9{(2 7 a))z Einc(zs’a))eJriKl(w)(szpfzsfzr) {R (a)) + RbOt(a))e+iKz(w)2h } (3.5)

s14r top
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The interpretation of this expression is clear: it includes only the primary reflections from the top and
bottom interfaces bounding the bed. The bottom-bed reflection is delayed in time and attenuated (via the
medium parameters of the intervening layer) relative to the top-bed reflection. Moreover, the
approximation neglects two-way transmission through the top interface. Hence, the more complicated
denominator in equation (3.4b) compactly accounts for all intrabed multiples and interface transmission
effects.

An interesting and common special case occurs when medium #3 is identical to medium #1. This implies
Rbot(@) = —Riop(@). Assuming zs = z, = 0 we obtain

) l_e+iK2(a))2h
+iKy (0)22,
?(0,0,w) = E,.(0, w)e Riop (@) {1—& (e | (3.6)
op

The quantity in braces { } is a frequency-dependent filter that modifies the top-bed primary reflection
response. Note that if bed thickness h vanishes, then (0,0,@)=0 as expected.

In the limit of vanishing bed thickness h — 0 (and top interface coordinate z, remaining fixed), the
general reflection response expression (3.4b) reduces to

(3.7)

st &

91(2 V4 a)): E. .(z a))eHKl(w)(ZZm*ZS*Zr) { Rtop(w)+ Ryot(@) }

1+ Rtop (0)) Rbot (0))

However, from the reflection coefficient formulae (2.7a and b), it can be demonstrated that the quantity in
braces { } is just the reflection coefficient for medium #1 overlying medium #3:

Ky (@)/ 14 = K;(@)/

Ris(w) = : (3.8)
Ki(@)/ 14+ Ky (@) / 145
Thus, the reflection response of a geologic “layer” of infinitesimal thickness is
+iKy (@) 22pp 25 -2;)
g{(Zs’zr'a))h:o = Einc(zs’w)e P R13(a)) ) (3.9)

which is, of course, a reflection from a single plane horizontal interface located at z = zo, Separating
media #1 and #3. More generally, expanding the exact reflection response formula (3.4b) to first order in

the assumed small quantity ||iK2(a))2h|| yields the approximate electromagnetic reflection response of a
thin geologic bed as

+il(l(a))(zzmp*zs*zr)

‘CR(ZS ’ Zr ' ~ Einc(zs ' Cl))e X

a)]HK2 (@)2h|<<1
Ryor(@)L— R (@)’
|:1+ Rtop(a)) Rbot(a))]2

{Rl3(a))+ iKz(w)Zh} (3.10)

Clearly, (3.10) approaches (3.9) as bed thickness h — 0. Moreover, for medium #1 = medium #3, we
have R ;(w) =0 and R, (@) =—R,,(®), implying expression (3.10) reduces to

top
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i L, -R,.(®)
+iKy (@)(22p-25-2;) top -
s r’a)XHK (@)2h|<<1 Einc(Zs,a))e m |K2(a))2h . (311)

R(z,,2
This can also be obtained directly from equation (3.6) by expanding to first order in the small quantity
ik, (@)2h||. 1f in addition medium parameter contrasts are small, so that squared reflection coefficients
may be neglected, then equations (3.10) and (3.11) reduce to

Q{(ZS, r , a))HKz(w)ZhH«l ~ Einc(zs ! a))e+iK1(w)(22mp—Zs—Zr) [Rls(a)) + Rbot(a)) IKZ(a))Zh]’ (3128')
and
R(Ze1 20, @) yanjea = Eine(Zes w)e" "N TIR (o) [-iK, (@)2h], (3.12b)

respectively. The second expression has an interesting interpretation: insertion of a thin low-contrast
geologic bed into a homogeneous electromagnetic wholespace generates a “single-interface” top-bed

reflection response, but altered by the multiplicative frequency-domain filter [-iK, (w)2h].

Finally, it is worth noting that the total electromagnetic plane wave response observed within medium #1
is the sum of the downgoing incident wave plus the upgoing reflection response:

tot(zs! r!a)) EInC(ZS’ r!a))+q(zs’zr!a))

Using equation (2.1) for the incident wave and equation (3.4b) for the reflection response yields the
interesting form

+iK, (@)2h
(2.,2.,0) =E._ (2., )" @) ]1 | Riop (@) + Ry (w)e o K (@220, -20) (3.13)
tot s1ér inc\%s 1+ Rtop(w) RbOt(a))eHKz(w)Zh

The unit factor “1” within braces { } accounts for the downgoing incident wave.
3.2 Magnetic Field

The reflected magnetic response (i.e., H(X,) vector with SI unit (A/m)/Hz) is obtained from Faraday’s
law via

1 1 OE (z
H(z,w) = —curl E(z,w) =€, M (3.14)
lou Viou oz
Hence, the reflected y-component of the magnetic induction vector is
B, (z;,2 ,,w)‘ =mH, (2,2 r,a))‘ref = E, . (z,, )" NP7t
top(a)) + Rbot(a))eHKZ(w)Zh |:_ K, (a))} (3.15a)
1+ Rtop () Rbot(w)eHKZ(w)Zh @ ’ .

or
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B, (z,, zr,a))‘ref =E,(z,2,,0)| {%(w)} (3.15h)

Hence, the magnetic field reflection response is obtained merely by multiplying the electric reflection
response by the ratio —Ki(w)/w. This could present some numerical problems for DC frequency.
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4.0 LAYER TRANSMISSION RESPONSE
4.1 Electric Field

The electromagnetic wave transmitted through the geologic layer to a receiver at level z, > zpr may be
built up in exactly the same manner by summing N+1 distinct arrivals as depicted in Figure 2.1. We have

3(25,Zr,a))= Einc(zs’a))e+iK1(w)(Zmp_ZS) e+iKz(w)h e+iK3((0)(Zr—Zbol) le (a))Tzs(a))

x {1_'_ i(_ Rtop (@) Rbot(a))e+iK2(w)Zh )n } . (4.1)

n=1

The first major term is the direct arrival propagating from the source level z; to the receiver level z,
through the layer of thickness h. Tiz(w) and T23(w) are plane wave transmission coefficients at the top
and bottom interfaces, respectively. The second major term accounts for all of the trailing intrabed
multiples. The finite sum is easily evaluated via the geometric progression formula to obtain

8(25 2., C()) — Einc(zs ’ a))e+iK1(w)(Zmp_Zs) e+iKz (@)h e+iK3((o)(Zr—Zboz) le (a))Tzs(a))

1- (- Ry (@)Ryui(@)e ™" '
l+ Rtop ((0) Rbot(a))eJriK2 (@)2n

X l+(— Riop (@) Rbot(a))eHKZ(’”)Zh) , (4.2)

which is appropriate for a finite number N of intrabed multiples. Assuming the modulus of the reflection
coefficient product ||Rwp(®) Rust(®)|| < 1 (which is indeed always true, as demonstrated in Appendix B)
the limit as N — oo yields

8(2 7 a)): Einc(zs’a))eHKl(w)(zmpfzs) e+iK2(m)h e+iK3(w)(zr—zbm) -I-12 (a))Tzs(a))

st

{ Rtop(a)) Rbot(w)eHKZ(M)Zh }
x |1 )

- 1+ Rtop (o) Rbot(w)eﬂK2 (@)zh
which is equivalent to

g(z 7 a)): Einc(zs,a))e”Kl(w)(zmp*Zs) e+iK2(a))h e+iK3(w)(Zr_Zbot) le (a))TZs(a))

st

1
X o . (4.33)
|:1+ Rtop (a)) Rbot(w)e ()2 :|

Since T, (@)T,5(®) = (1+ Rip (a)))(1+ Rbot(a))) we have the equivalent form (next page):
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§(z,,2,,0)=E, . (z,,w)e " w77 griks()z—zu0)
Inc s?

s1&r

L+ Ry (@) L+ Ry (@) &7
1+ Ryp (@) R, (@)e (2"

(4.3b)

The denominator has the same form as in the reflection response equation (3.4a). Note that if Rip(w) =0
(say, because media #1 and #2 are identical), then this response reduces to

3(2 Y a)) — Einc(zs , a))e+iK1(w)(Zbot_Zs) e+iK3(w)(Zr_Zbot) (1+ Rbot(a)))l

s &
(because in this case Ka(w) = Ki(w) and zwp + h = zpet). This is just a plane wave transmitted through the

single interface (between media #2 and #3) at z = zpor. Similarly, if Ruot(w) = 0 (say, because media #2
and #3 are identical), we have

8(Z 7 C{)): Einc(zs’a))eJriKl(w)(Zmp*Zs) e+iK2((0)(Zr*Zmp) (1+ Rtop(a))),

s1&r
which corresponds to a plane wave transmitted through the single interface located at z = ziop.
If media #1 and #3 are identical, then Ruot(w)= —Riwp(w) yields the simplified form

(1_ Rmp(w)z )e+iK2(w)h :|

1_ R (w)2e+iK2(w)2h

(4.4)

s1&r

g(Z z a)): Einc(zs’a))e+iK1(w)(z,—zs—h)|:

top

In this particular case, if Riwp(w) = 0 (say, because all three media are identical) we have

(2. 2,, @)= E, (2, w)e "),

which is just the source plane wave propagating through a homogeneous (but still attenuating and
dispersing) medium from level z; to level z.

Expanding the exact transmission response formula (4.3b) to first order in the assumed small quantity
i, (@)2h] yields the approximate electromagnetic transmission response of a thin bed as

+iKy (0)(Zpp ’Zs)e“’iKs (0)(Z; =2Zpo1) X

g(zs’zr’ ~ Einc(zs1a))e

1/1- Rtop(a)) Rbot(w) .
[1+ R13(a))]{1+ EL+ R (@) Rbm(w)} le(a))Zh} , (4.53)

a)XHKZ(w)ZhH<<l

wherel+ R, ;(®) = T,;(w) s the transmission coefficient from medium #1 to medium #3. In the limit of

vanishing bed thickness h, the direct plane wave transmission from #1 to #3 is recovered. However, for
all three media identical, expression (4.5a) reduces to the curious form

§(z,,2,, ~E, (2, 0)e "= =g K@ {1 LK (w)h },

a)XH K (@)2h]<<1
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which does not appear to be a plane wave propagating within homogeneous medium #1! However, adopt
the approximation

—iK;(w)h =ik, (@)2h[K; (0)/2K, (@)] _ [e—iKz(a))Zh ][K3((0)/2K2(w)]

€ =€

~[1—iK, (@)2h] 2] < 1 _[iK, (w)2h][K, (@) /2K, (@)= 1=K, (o) .
Then, equation (4.5a) is re-written to first order in h as

8(Z E (Z )e+iKl(a))(zmp—zS)e+iK3(a))(zr—zmp)><
Inc\=s?

s’ r ! a))HK ((4))2hH<<l

L+ Rls(a))]{1+ 3{1_ Riop (@)Roo () _ KB(Q’)} iK., (w)2h } (4.5b)

2| 1+ Ry (@)Ry (@) - K, (@)

Clearly, if all three media are identical, this approximation approaches the proper limit corresponding to
uni-directional plane wave propagation in a homogeneous wholespace. Utilizing equation (2.7b) for the

bottom interface reflection coefficient, the ratio of complex wavenumbers K, (@)/K, (@) can be replaced
by

Ky(®) 43 1= Ry (@)
Ky(®)  t, 1+ R (@)

Rather than substitute this form into (4.5b), we immediately specialize to the low-contrast situation where
products of reflection coefficients may be ignored. Moreover, take 24, /41, =1, consistent with a low-
contrast assumption. Expression (4.5b) simplifies to

8(z,,z

JriKl(w)(Zmp_zs) JriKS(w)(Zr_Ztnp)
s? r’a)lHK (@)2h|<<1 ~ Bno(Z,, 0)e e T (a)){1+

iK (w)Zh} (4.5¢)

bot

Next, assume medium #1 is identical to medium #3 (implying transmission coefficient Tis(w) = 1) to
obtain

8(z,.2 l”a)]HKz(w)ZhH<<1

~E._ (z,,w)e" (N2 {1+
Inc s
bot

iK (a))Zh} (4.5d)
Hence, insertion of a thin low-contrast geologic bed into a homogeneous electromagnetic wholespace
generates a transmitted plane wave with an effective transmission coefficient given in (4.5d).

4.2 Magnetic Field

The transmitted magnetic response (i.e., H(X,w) vector with ST unit (A/m)/Hz) is obtained from Faraday’s
law via

H(z,w) = iCurl E(z,w)=¢, 1 E (2o a)) (3.11 again)
lou Viou oz
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Hence, the transmitted y-component of the magnetic induction vector is

By (Zs 12 CO)L = H H y (Zs 1 Zps (O)L - Einc(zs ) a))eHKl(w)(Zmp*Zs)e+iK2(a))he+iK3(a))(zr—zbm)
rn rn

% (1+ Rtop(a)))(1+ Rbc.\t(a))) l: K3 (a)):| , (46&)
1+ Rip (@) Ry (@)™ || @
or
K;(@)
B,(2,,2,0) = EX(zs,zr,a))Lm{T] (4.6b)

Similar to the magnetic reflection response, the transmission response is obtained by multiplying the
electric transmission response by a ratio +Ks(w)/w, again presenting some numerical problems for DC
frequency.

4.3 Reflection / Transmission Relationship
The mathematical expressions for the layer reflection (equation (3.4b)) and layer transmission (equation

(4.3b)) responses enable an investigation into their interrelation. Evaluating the total electric field (3.13)
with a receiver located at the top of the bed z, = zip yields

+iKy (0)(2p—25)

R (w)+R _(w)e Ke(@2h
EtOt(Zs’Ztop)a)) = EinC(Zs’a))e tOp( ) bOt( )

1 + Rtop (a)) Rbot(a))e+i|<2 (@)2n

=E (z a))e”Kl(w)(zmp—zs) _<1+ Rtop(a)))(l+ Rbot(a))eHKz(w)Zh )}

1+ Ryp (@) Ry () %"

£ (2. ] Re(@) 0+ R() [uRbm(a»e“Kz(@Z“}

1+ Rigp (@) Ry ()& ™" 1+ Ry ()
+iKy (0)(2pp—25) <1+ RtOp(w))(l+ qut(w)) e+iK2(ca)h %
1+ Rtop(a)) RbOt(a))eHKz((u)Zh

efiKz(w)h + RbOt(a))eHKz(w)h
1+ Ry (@)

=E, . (z,,m)e

—iK, (@)h iK, (w)h
e "N LR (w)er @ }

:g(zsyzbot’w){ 1+R (C())
bot

where equation (4.3b) is used to evaluate the transmission response for a receiver located at the bottom of
the thin geologic bed z; = zyr. Since the total field is the sum of the incident and reflected fields, this
becomes
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(4.7

e*iKz(a’)h +R ) e+iK2((u)h
Einc(ztop’ a))—l— Q{(ZS , Ztop’ a))z 5(25 1 Zpots a)){ I F\)bbo;((w)) :|

The reflection response at the top of the bed is linked to the transmission response at the bottom of the
bed. However, the relationship is not as simple as1+ R(w@) =T (w) for a single reflecting/transmitting

horizon. In the limit as bed thickness h — 0, expression (4.7) reduces tol+ R, ;(®) =T,;(®), where the
subscripts refer to media #1 and #3.
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5.0 SCATTERED WAVEFIELDS
The normal-incidence EM plane wave reflected response ?K(zs,zr,a)) and transmitted response
S(ZS,Zr,a)) generated by a geologic layer of thickness h embedded between two homogeneous and

isotropic halfspaces are derived in the previous sections. In this section, we consider the analogous
scattered EM wavefield responses. In the present context, a scattered response is loosely described as the
wavefield directly attributable to a layer “inserted” into a suitably chosen background or reference earth
model. If the layer were not present, there would be no scattered response. In a wordy style, a scattered
response is defined as

Scattered Response = Actual model response minus Reference model response.

Obviously, there is rather wide latitude in obtaining a scattered response, because it depends on an
arbitrarily specified “reference model” response. A judicious choice for the reference model is helpful for
calculating and interpreting scattered wavefields. An obvious choice appropriate for the particular
problem at hand is described below.

5.1 Reference Earth Model

Consider a reference model consisting of a single plane horizontal interface, located at the midpoint
coordinate z;,; =0.5(z,,, +2,,,) between top and bottom interfaces of the embedded layer. Upper and

lower halfspaces are assigned EM parameters associated with medium #1 (overburden) and medium #3
(substratum) of the actual earth model, respectively. Figure 5.1 depicts the reflected and transmitted
wavefields. Clearly, there is only a single plane reflected wave, and a single plane transmitted wave.

Incident Plane Wave Reflected Plane Wave

Medium 1 (overburden) rays displaced
(€1, M4, O) T slightly from vertical

/ for visual clarity

1 p
Zmid = E( top +Zb0t)

Medium 3 (substratum)
(€3, M3, O3)

Transmitted Plane Wave

Figure 5.1. Reference or background model consisting of a single plane horizontal interface separating
two (possibly dissimilar) upper and lower halfspaces.
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The exact reflected and transmitted responses of a finite-thickness layer embedded between upper and
lower halfspaces (with different EM parameters) are given by

+i Zion—Zo—Z R )+ R 1) e+iK2(a))2h
g{,(zsazrla)): EinC(Zsya))e Ky (@)(2 top s r) top( ) bot( ) e , (34b agaln)
1+ Rbot(a))Rtop(a))e 2
and
§(z,,2,,0) = E, (2, w)e " (Nter7%) grika(h griks(@)z~z0)
(1+ pr (a)))(1+ Rbot(a))) 4.3b agai
g 1+R R +K, (w)2h | (4.3b again)
+ top(w) bm(a))e

respectively. Reflected and transmitted wavefields generated by the single plane interface reference
model are

Einc (ZS , a))e"'iKl(w)(Zrmd _Zs) Rmid (a))e+iK1(w)(zmid _Zr) , (51a)
and
Einc(zs , a))e+iKl(w)(Zmid —Z )Tmid (a))eJriKS(w)(Zr*Zmid ) , (51b)

respectively. Here Rmis(w) and Tmia(®) are normal-incidence plane wave reflection and transmission
coefficients between media #1 and #3. Expressions (5.1a and b) are upward- and downward-propagating
plane EM waves, respectively. An important special case occurs when the EM parameters of media #1
and #3 are identical. In this case there is no material property contrast, implying reflection coefficient
Rmid(w) = 0 and transmission coefficient Tmia(w) = 1. Reference model reflected/transmitted responses
become

0, (5.2a)
and
Einc(zr’a)) ' (52b)

respectively. No reflection is generated, and the downward wave transmitted into medium #2 is identical
to the incident wave. This realistic and common situation will be considered in detail in the sequel.
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5.2 Thin Layer Criteria

Many geologic layers are considerably thinner than a wavelength of a typical propagating/diffusing
electromagnetic (EM) disturbance. The exact scattered responses (both reflected or back-scattered and
transmitted or fore-scattered) developed below will be expanded to first order in the layer thickness h.
These expansions yield mathematical expressions that are reasonably accurate, as well as clearly
exhibiting dependencies on the various parameters of the problem (i.e., layer thickness, EM material
property contrasts). In this section, the specific mathematical conditions for layer “thinness” are defined,
for both low-frequency and high-frequency ranges.

Equation (3.4b) for the reflection or back-scattering problem contains the complex exponential factor
exp [iKz(a))Zh], where Kz(w) is the complex wavenumber evaluated with the layer (i.e., medium #2)
parameters. Hence, we define a thin reflective layer as one that satisfies the inequality

iK, (@)2h] <<1. (5.3)

In turn, this implies

—/122(;0) >> 271+ 7, (),

where 4, (w) = 27c, (w) / w is the wavelength calculated with the phase speed cz(w) of the thin bed, and a

dimensionless frequency-dependent parameter is defined as 7, (@) = &, (@)c, (®)/@. Recall that az(w)
is the attenuation parameter of the layer. Hence, we have the thin layer reflection condition

h 1

4 (@) = 4r\1+y,(w)? .

For the transmission or forward-scattering, problem, equation (4.3b) contains the two factors
exp[iKZ(a))h] and exp[iKZ(a))Zh]. Hence, condition (5.3) ensures that the arguments of both complex

exponentials are small. Equation (5.4) is now safely interpreted as both a thin layer reflection and
transmission criterion.

(5.4)

yala,
At low-frequency (i.e., @w<<w, =o/¢c), phase speed c(w)~ M and attenuation parameter
\/ ou

a(w) = 1’%|w| , implying 1+ y,(®)* =vJ1+1= J2 . Hence, the low-frequency thin-bed condition

becomes

h 1 o0ss. (5.5)

A, (@) < 4r2

A thin layer is one with thickness less than ~6% of a wavelength, calculated with the low-frequency layer
phase speed.
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1
At high-frequency (i.e., @>>®,) phase speed c(w)~C, =-— and attenuation parameter

Jau

a(o)=a, :%\/z, implying \/1+ 7, (@)? = \/1+(0'2/252a))2 , Hence, a high-frequency thin-bed
&

condition is

h << ! :
) 47z\/1 +(o,/28,0)

(5.6a)

Dependence on layer conductivity o> and permittivity ¢ is evident. However, at infinite frequency (or o>
= 0) this criterion reduces to

h 1 0080, (5.6b)

A, (@) = 4r\1

The very-high-frequency criterion for a reflective thin bed is thickness h less than about ~8% of
wavelength (again calculated with the phase speed of the layer). However, the high-frequency wavelength

is A, (w)=2nC,(w)/w~ 27:/,/52#260, and this vanishes in the limit of infinite frequency. So, the

notion of a high-frequency thin-bed criterion is somewhat problematical. Nevertheless, we believe that
the low-frequency thin-bed condition (5.5) commonly holds in typical EM geophysical exploration
practice. Thus, low-frequency backward- and forward-scattering is emphasized and examined in the
sequel.

Utilizing the low-frequency approximation for phase speed c(w) ~ 1/2|co|/q1 , We obtain an analogous

approximation for wavelength (expressed in terms of temporal frequency f = w/27) as

/1(f,6,,u)zﬂz 4_7z

f ouf

where f is assumed to be positive. Introducing reference values for the various dimensioned quantities
into this expression yields the non-dimensional form

Af,o,u) _ 4r 1 57)

/Iref O ret Hret fref ﬂ“fef \/(O-/Gref ) (:u/:uref ) ( f / fref ) '

Taking the base-10 logarithm of each side gives

M, o,
g, 0| o | 8| ol ) ol 11 )

ref ref

(5.83)
Next, assigning numerical values to these reference quantities as

Ao =1M, . =1S/m, Uy =ty =47 %107 H/m |, f . =1Hz,

Iel
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yields the logarithmic relation

A

AMTf,o,u 1
Ioglo[g:l = E [7 - Ioglo(f/ fref )_ Ioglo(o-/o-ref )_ Ioglo(/u/luref ) ] (5.8b)
ref

There are three independent variables (the logarithms of the dimensionless ratios) on the right-hand-side.
We fix the frequency ratio, and calculate the logarithmic wavelength as a function of the logarithmic
conductivity and permeability ratios. The following three panels illustrate the results for values of
frequency of f = 1 Hz, 10 Hz, and 100 Hz.

EM Wavelength for f = 1 Hz

3 -2
B
_— 0 =
z o) ®
=3 1 <
El o £
= E
o 1 Sl
R 4 8
5
D T T T 6
-G -5 -4 -3 -2 -1 0 | 2
1015 (6/C e}
Wavelength for f = 10 Hz
Il 1 1 1 1 _2
-1
3 '3
. 1 &
el o &
“‘; o
& o]
= 4 =
5
T T T T 6
-1 0 1 2
090 (676 e}
Wavelength for f = 100 Hz
I I I L _2
-
i .
=. 1 &
=l 0 &
“‘; o
& S
is) 4 =
5
T T T 6

loQiD (O-fcref)

Figure 5.2. Logarithm of electromagnetic wavelength vs. logarithmic conductivity and logarithmic
permeability, for frequency f = 1 Hz (top), f=10 Hz (middle), and f= 100 Hz (bottom).
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Current conductivity on the horizontal axis ranges from 10° S/m (extremely resistive) to 10*¢ S/m
(extremely conductive). Magnetic permeability on the vertical axis ranges from o (vacuum) to 103 po
(highly magnetic). Thus, the lower left corner, with extremely long wavelengths, approaches vacuum
whereas the upper right corner, with short wavelengths, approaches pure metal. Contours of fixed
wavelength are straight lines with slope —1. As frequency increases, the color banding pattern shifts to
the left.

The plots in Figure 5.2 are calculated using the low-frequency approximation to the EM phase speed. This
approximation is valid provided frequency f is much less than the transition frequency f, =o/27z& . The
smallest transition frequency in Figure 5.2 is about 1800 Hz, corresponding to o = 10° S/m and ¢ = 10 &
with vacuum electric permittivity given by &, =8.854x10* F/m. So, the next frequency decade of f =

1000 Hz would not satisfy the low-frequency condition. This motivates developing an exact formula for
EM wavelength, without requiring a low-frequency approximation. The exact phase speed, appropriate
for the full frequency band, is given in Appendix A as

1/2
2
ﬂ: % 1+(1J _m 1 (A4.10a again)
C. VU,

where C,_ = ]/,/ &u is the infinite-frequency phase speed. The EM wavelength formula becomes

l(f,a,,u,g): Ar 1
/1ref O et Hret fref ﬂ“?ef \/(O-/O-ref ) (:u/:uref ) ( f / fref )

2 2

l+ 2ﬂ-fref‘c"ref (f/fref Xg/gref) _ 27Z-fref‘c"ref (f/fref Xg/gref) . (59)
o (G/ O-ref ) o (G/ O-ref )

The first factor on the right-hand-side, containing only medium parameters o and p, is identical to

equation (5.7); the second factor containing o and ¢ represents a multiplicative correction to account for
higher frequencies. Taking the logarithm yields

AT, o, u,
Ioglo[%f,ug)} = % IOQH{WJ - % [IOglo(O_/o-ref )+ Ioglo(ll’l/ll’lref )+ |Og10(f / frer ) ]

ref ref

| |
o 10 0010(0/0er ) o 10 0010(0/0er )

+ % I0910 1+ (Zﬂf"ﬁ Eret J2|:(f / fref Xg/gl’ef ):|2 _ (Zﬂfref Eret J|:(f / fref Xg/g"Ef )} . (5.10)

A logical choice for the reference value of electric permittivity is the vacuum value
&4 =&, =8.854x107 F/m. Once again, the first two terms on the right-hand-side are appropriate for
low-frequencies. The third term is an additive correction accounting for high-frequencies.
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Top and middle panels of the following Figure 5.3 depict logarithmic EM wavelength calculated via the
approximate (i.e., low-frequency) formula (5.8a) and the exact formula (5.10), for frequency f = 1000 Hz,
respectively. The exact calculation leads to a slight curvature in the contours at very small conductivity
values; at high conductivities there is no apparent difference between the panels. The linear contour
distortion is accentuated at even higher frequency f = 10,000 Hz, as indicated in the bottom panel.

EM Wavelength for f = 1000 Hz

-2
-1
5 0 <
= | 2
El 2 £
o 3 g
g ;8
5
1 1 T T T 6
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loQiD (G"{Gref)
EM Wavelength for f = 1000 Hz
3\ L L L L _2
1
3 3
= 1 =
E o £
g 8
5
1 1 T T T 6
3 2 1 0 1 2 3 4 5 6
0G0 (6/6 )
EM Wavelength for f = 10000 Hz
a3 I I I I ! I L -5
-1
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= =
22 1S
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> 1 3 9
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‘ ;
0 T T T 1 6
-6 -5 -4 -3 2 1 0

|091 0 (U'[ Gref)

Figure 5.3. Logarithm of electromagnetic wavelength vs. logarithmic conductivity and logarithmic
permeability. Top and middle panels are calculated with approximate (i.e., low-frequency) and exact
formulae for frequency f = 1000 Hz, respectively. Bottom panel is exact calculation for f = 10,000 Hz.
Electric permittivity e = 10 & is used for the calculations.
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However, it is unlikely that such a high frequency would be utilized in a deep-target geophysical
exploration context. On the other hand, ground penetrating radar (GPR) is used for shallow subsurface
EM investigations (say, on the order of tens of meters). Hence, in Figure 5.4 below we extend the
wavelength calculations to f = 100,000 Hz and f = 1,000,000 Hz in order to visualize the high-frequency
effect.

EM Wavelength for f = 100000 Hz
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Figure 5.4. Logarithm of electromagnetic wavelength vs. logarithmic conductivity and logarithmic
permeability, calculated with exact formula for frequency f = 100,000 Hz (top), and f = 1,000,000 Hz
(bottom). Electric permittivity & = 10 & is used for the calculations.

As frequency increases, EM wavelength becomes independent of current conductivity and depends only
on magnetic permeability (and the assumed electric permittivity). This evident on the left-hand-side of
the panels for small conductivity values. Consider the high-frequency approximation for wavelength

/”t(f,,u,g)z£ c, J 1 1
A f ﬂ“ref \/(8/8ref)(:u/ﬂref) (f/fref)1

ref ref

where infinite-frequency phase speed is C_, :1/,/;;71 . In logarithmic form

AT, C, 1
IOglolz(l—lug)} ~ IOg1o(ﬁJ - E [|Oglo(£/80 ) + IOglo(ﬂ/ﬂo)"' 2 IOglo(f / frer ) ]’
ref ref

ref
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where medium parameter reference values are taken as &, =&, and 144 = 44,. So, in the high-

frequency approximation, a better graphic approach is to contour logarithmic wavelength vs. logarithmic
permittivity and logarithmic permeability, holding logarithmic frequency fixed.

An alternative way of examining the material parameter dependence of the thin bed criterion
iK,(w)2h]| <<1 is to substitute in the expression for the low-frequency complex wavenumber

K, () = \o,m,w/2 (1+ i). After converting to temporal frequency f = w/2x, this yields the condition

\8ro, 1, h? <<1, (5.11a)

or after squaring

870,11, Th? <<<1. (5.11b)

In non-dimensional form:

(87T0ref Hret fref h? )(O-Z/Jref )(:uz//uref )(f/ fref ) <<<1. (5.11c)

Adopting the usual reference values

O et :1S/m’ Heet :%:47[X10_7 H/m ) f f =1Hz,

Iel

yields the numerical form

(327z2 x107' m'z)nz (az/aref )(,uz/,uo)(f/ fref) <<<1, (5.11d)

with bed thickness h measured in the SI unit m. Hence, the thin bed condition requires small relative
conductivity, small relative permeability, and small relative frequency, in addition to small thickness.
These appear to be rather severe restrictions, which must hold simultaneously! For example, consider a

hydraulic fracture injected with electrically conductive proppant with o, / O ~10% and g,/ p, ~107
(~steel) and interrogated with an EM plane wave signal with frequency f = 1 Hz. For thinness, the bed

thickness must then satisfy h <<1/87r\/§ ~0.018m=1.8cm. Hence, a fracture of width h = 1 mm
(about 20 times less than the limit) might be considered adequately thin.

This quantitative development of the multiple criteria constituting a thin geologic layer is important for
understanding the First Born Approximation (FBA) scattering theory developed in the subsequent Section
6.0. Briefly, Born scattering is a reasonably accurate approximation to exact scattering if the layer is i)
thin, ii) has low conductivity, iii) has low permeability, and iv) is illuminated with a low-frequency EM
signal.
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5.3 Backward Scattering

The back-scattered electric vector component, observed at a receiver position z, on the same side of the
geologic layer as the source position zs, is defined as the difference

Ebak(Z z a))E{Einc(Zs’Zr’w)_F‘CK(Z z C())}

s1 % s1 %
_{Einc(zs’zr,wﬂEinc(zs,a))enKl(w)(zmid—zs)Rmid (o) at@Nins ) } (5.12)

That is, the back-scattered response is the actual reflection response of the layer minus the reflection
response of the single plane interface located at the layer midpoint. [We include the incident wavefield in

equation (5.12) as a formality; clearly it cancels out by subtraction.] Substituting the reflection response
Q{(Z z a)) from equation (3.4b) and simplifying yields the form

st e

Ebak (Z z CO) — Einc(zs , a))eJriKl(w)(zzmid -25-1;)

e

{ Rtop(a)) + Rbot(w)e+iK2(w)2h
X

: e al@h _R (@)}, 5.13
1+ Rtop(w) Rbot(a’)eHKZ({Uﬂh me ( )} ( )

where Rip(w) and Ruot(w) are the top-interface and bottom-interface reflection coefficients.

In the important special case where medium #3 is identical to medium #1, we have K,(w) = K, (®),

Rpot(@) =—R,, (@), and R, (@) =0. Then, the exact back-scattered electric field (5.13) reduces to
the simpler form

1 — piKa(@)2h

1— Rtop(a))Z e+iK2(a))2h

st e

E,. (2,2, 0)=E (2., )™ @m-s"2) R (g e Kl (5.14a)
bak inc\“s top

Of course, this is identical to the actual reflected response of the layer (say, from equation (3.6) above),
because the homogeneous reference medium does not generate any reflected energy. Alternately, in
terms of the incident electric field at the midpoint of the layer

1— e+iK2(w)2h

—iK; (@)h

1-R (w)2e+iKz(lU)2h e '
top

Ebak (Zs ’ Zr ’ C{)) = Einc(zmid ’ a))e+iK1(w)(Zmid ) Rtop (60) { (5-14b)

The back-scattered response is directly proportional to the incident EM wavefield at the midpoint zmig.
However, a third version that we will subsequently utilize is

1— g*iKz(@)2n o
Ebak(251 Z, 60) = Einc(zzmid -7, 60) Rmp(a)) 1_ Rt (a))z e+iK2(a))2h e . (514C)
op

In this version, the back-scattered wavefield is proportional to the incident wavefield at the coordinate
2Zmid — Zr. Often, the midpoint coordinate zmiq is taken to be zero, implying that —z, is a positive number.
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This field is multiplied by a frequency-dependent filter (which depends on the layer thickness and EM
parameters).

We now expand the back-scattered response of (5.14c) to first order in the dimensionless
quantity iK, (@)2h:

- Rtop(w)

E,.lZ, 2, 0)=E, (22, — Z,, @
bak( S ) ( d )|:1_Rt0p(a))2

}(iKz(w)Zh). (5.15)

[Exponential e ™*(“)" approximates as unity.] From equation (B9a) of Appendix B, the top-interface

reflection coefficient may be expressed in terms of dimensionless ratios of wavenumbers and
permeabilities as

_1-(R(w)/ 22
Rtop (Cl)) - ﬁm;’ (516)
with

K, (@) | a=te (5.17a,b)

@)= @) yl

These dimensionless ratios are constructed as “layer parameters” divided by “incident medium
parameters”. The first-order approximate back-scattered response becomes

A

E..z.2,0)~E, (22, — z,,a))%[%— Kéla))} (K, (w)2h), (5.18a)

or expressed in terms of the complex wavenumber of the incident medium:

7 2
E,.(z.2,0)~E, (22, ., w)g{K(f") - 4 iK, (@) (5.18b)
y7,

We now examine the low-frequency regime for the above thin-bed back-scattered response. From
equation (A4.15) of Appendix A, the low-frequency approximation to the complex wavenumber is

K(@) = \Jau|a] sgn(w)e =) (A4.15)

The dimensionless wavenumber ratio becomes K (w) = K, (@)/K,(®) = /611, where a dimensionless
conductivity ratio is similarly defined as

%2

é (5.17¢)

0,

Then, the low-frequency backscattered field is:
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Ebak Zs’ r’a)x ~ Elnc(zzmid - Zr’ w)g(&_ﬂ) O-llu’l|(0| [I sgn(a))e+isgn(w)(7r/4)].

But isgn(w)e* @) = g+ 37/4) yielding the (perhaps simpler) form

i (& - :[l) Y, Ot [Einc(zzmid - Zr' a))\/meﬁ-isgn(w)@ﬂ/‘l):l. (519)

Ebak(zs’ r ! G)XIO 2

Note that this expression embodies the several approximations of previous inequality condition (5.11d):
thin layer, low-frequency, and “small” layer parameters o2 and u2. The low-frequency back-scattered EM
wavefield is directly proportional to:

1) The layer half thickness h/2,

2) The difference in parameter contrast ratios (& — £2).

Interestingly, if both parameter contrast ratios are identical, then the back-scattered wavefield vanishes!
This is a particular manifestation of the general conditions for vanishing normal incidence reflection
coefficient outlined in Appendix B; if all three parameters of medium #2 are obtained by scaling the
corresponding parameters of medium #1, then the reflection coefficient equals zero (at all frequencies).
Also, note that conductivity enhancement acts in an opposite manner than permeability enhancement.

That is, if 6 >1and gz =1then (6— &) >0 (positive), whereas if g>1and 6 =1then (6— /) <0
(negative). This realization might be exploited in a back-scattering data acquisition experiment to
distinguish the (unknown) scattering properties of a layer.

Finally, in the space-time domain, the low-frequency back-scattered field is expressed as

ebak z,, r’t)||0 / |nc(22 Zr,t) % F—l |a)|e+isgn(w)(3;z/4)}’ (5_20)

where the asterisk denotes convolution and F1{ } indicates inverse Fourier transformation. The inverse
transform in (5.20) does not exist in the conventional sense. However, analysis on the complex-valued
plane (draw a picture!) reveals the correspondence

\/He+isgn(a))(3ﬂ/4) PEN (— ico)“2 .

Fractional derivative calculus (i.e, Bracewell, 1965, page 119) then implies that the inverse Fourier
transform equals the half-integer differentiation operator: F’l{"/|a)|e”sg”(“)(3”/4)}:dl’ 2/dt? . Time-
domain equation (5.20) becomes

— 0%, (22, — 7,,t)
ebak Zs' r’txm Oty atl/zd ' (521)

The low-frequency back-scattered wavefield is proportional to the half-integer time-derivative of the
incident plane wave EM wavefield at location 2zmig — zr. So, in the common case where zmig = 0, the EM
wavefield is evaluated at the positive coordinate —z,, on the opposite (i.e., fore-scattered) side of the bed
from the back-scattered response. This properly accounts for plane wave dispersion/attenuation over the
complete back-scattered travel path from source zs to receiver z.
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5.4 Forward Scattering

The forward-scattered electromagnetic wavefield, observed at a receiver position z, on the opposite side
of the geologic layer as the source position z, is defined as the difference

E. (2..2,,0)=8(z,,2,,0) - E, (2., @)e™ (X ~2)T _(@)e (Nt 2ma) (5.22)

st st &

That is, the forward-scattered response is the actual transmission response of the layer minus the EM
wavefield transmitted through a single plane interface located at the layer midpoint. Substituting
expression (4.3b) for the transmitted response and simplifying yields

” ~ _ )
Efor(z z a))= Einc(Zs,CO)e+I (0N zop 2] g +iKa (N2 ~2h0)

st &y

x {(1+ Rtop(a)))(1+ Ry, ())e e

1+ R, (®)R,  (w)e ™ - (1+ Riig (a)))eHO'S(Kl(wHKB(w))h} , (5.23)
bot

top
where T ;(@) =1+ R, ;4 (@) is used.

In the particular case where medium #3 identical to medium #1, we again have K,(w)=K,(®),

Rpot(@) =—R,, (@), and R, (@) = 0. Then, the exact forward-scattered electric field (5.23) reduces to

_ 1-R (w)Z]en[Kz(w)—Kl(w)]h
E. (z.,2.,0)=E, (z.,)e @z [ P : ~1}, 5.24a
for( s1er ) |nc( S ) 1— Rtop(a))zeHKz(a))zh ( )
which is the same as
[1_ R, (w)Z]en[Kz(w)—Kl(w)]h
Efor(zs’zr’a)):Einc(Zr'a)) { 1:;2 (a))ze”Kz(‘”)Zh -1:. (524b)
top

Analogous to the back-scattering situation, the forward-scattered response depends on the incident
wavefield at the receiver location z.. This incident wavefield is multiplied by a frequency-dependent filter
(the braces { } in expression (5.24b)).

Expanding to first-order in iK, (w)2h (equivalent to first-order in the bed thickness h) gives

1+ Rp(®)°* K (@)
1-Rgp(@)®  Ky(@)

Utilizing R, (@) = 1- lf(w)//f with K (o) = Ky(@) and f1= e yields:
1+ K(a))/,u K, (@) H

Efor(zs’zr’a))z Einc(zriw) l: i|(|K2(Cl))h) (525)
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Efor(Z z a))z Einc(zﬂa)) % K(a)) + (6_2):|(|K2(w)h)

T A K
:Einc(zr,a))g K(;’) +ﬁ—2}iKl(a)). (5.26)

This has a remarkable similarity to the EM wavefield (5.18b) back-scattered from a thin layer, although
the incident plane wave is evaluated at positive coordinate z;,. The low-frequency approximation for
forward scattering is now developed.

Substituting in the low-frequency approximation (A4.15) for the complex wavenumber gives

Efor(zr,zs,a))(Io ~ g(é'Jrﬂ—Z),/al,u,l [Einc(zr,a))\/He”sg”("’)“”/“)]. (5.27)

Inverting this to the space-time domain yields

h - 7 [ - +i )37
efor(zr’zs’txlo N—(O’+[u—2) O 44 einc(zﬂt)*F 1{\/ME Isgn@)(3 /4)}

al/Zeinc(zr't)

e (5.28)

=—(5+ﬂ—2)v01ﬂ1

NI DN

This exhibits the same half-integer time-derivative dependence as the low-frequency back-scattered
response (5.21). However, in contrast to the back-scattering situation, conductivity enhancement and
permeability enhancement have the same algebraic sign effect here. Of course, 6 = {z =1implies the

forward-scattered wavefield vanishes. But & = 1 =(say)10implies that the fore-scattering multiplier is
18, whereas the back-scattering multiplier is 0.

In order to facilitate a visual comparison of the various time-domain approximations for the scattered
electric field responses, we construct the following table appropriate for a thin geologic bed within a
homogeneous background medium (i.e., medium #1 = medium #3). In addition to the low-frequency
responses derived above, we exhibit very-high-frequency (i.e., in the limit @ —> o) responses obtained
by using the a high-frequency approximation to the complex wavenumber. These particular responses are
not derived here.
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Thin Bed (h << A) Time Domain Scattered Responses

Low-Frequency Very-High-Frequency

BaCkward h, . . allzemc(zzmid — Zr,t) h, . . aeinc(zzmid — Zr!t)
Scattering NE(O-_’U) VOuth ot'2 NE(/U_‘(:)W/EL%

Forward h . - % (z,,1) h . oe. (z,,1)
. r—_(c+iu-2)\Jou, — 51—+ ~—(2-p-8)e inc\ 4y
Scattering 2! Wo a2 S INEYR

Table 5.1. Thin-bed time-domain scattering formulae.

All four responses are directly proportional to the bed half thickness h/2. Low- and high-frequency
responses are proportional to one-half and unity time derivatives of the incident plane electric field

€,.(2,t), respectively. Symbols subscripted by “1” (i.e., &, 14,0;) are the EM medium parameters
characterizing the reference (or background) wholespace. Symbols with a superposed “hat” (i.e.,
E=¢,/e,fl=1/ 1,6 =0,/0,) are dimensionless ratios of the layer parameters to the surrounding

wholespace parameters. Low- and high-frequency scattering are independent of permittivity contrast &
and conductivity contrast &, respectively. Once again, note that the condition &= =& =r (where
ratio r need not equal unity) implies zero backward scattering and enhanced forward scattering.

The analogous table of approximate thin bed frequency-domain response filters is:

Thin Bed (h << A) Frequency-Domain Scattering Filters

Low-Frequency Very-High-Frequency

Backward z_(&_'&)@(Memgn(w)(snm)) ~ (ﬁ—é)@(—la))

Scattering

N | o
N | o

Forward ~ E (& - Z)@ (\/He+isgn(w)(3z/4)) ~

Scattering 2

2-a—&) ey (~iw)

N |

Table 5.2. Thin-bed frequency-domain scattering formulae.

Back-scattering filters multiple the Fourier-transformed incident plane wave electric vector component
Ei..(22,,4 — Z,, ) , whereas fore-scattering filters multiply E, .(z,,®) . Interestingly, for zms = 0, this is
the same location in space.
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5.5 Scattering Ratio

The (complex-valued) ratio of the backward-scattered wavefield to the forward-scattered wavefield may
be a useful quantity for optimizing experiment design. In order to formulate this quantity, substitute
equation (5.16) for the top-interface normal-incidence reflection coefficient

1-(K(w)/ 2 .
Ryp (@) = I KEZ;?Z : (5.16 again)

into the previously-derived expressions for the scattered wavefields. Here K(w) = K,(®)/K,(®) and

L=,/ are dimensionless ratios of complex wavenumbers and magnetic permeabilities, respectively.

We specialize to the important case where medium #3 is identical to medium #1. From equation (5.14c),
the back-scattered electric vector x-component is

1 K(a))_i -
2{[! 2 )}tanh[le(a))h]

Ebak(z! a)) = Einc(zzmid - Zr’ C()) ~ @ e_iKl(m)h . (5298)
1| K(w) [ :
1- 2| 4 2 Jtanh[iK, (w)h]
2| 4 K(w)
From equation (5.24b), the analogous forward-scattered wavefield is
H —iKy (w)h
Efor(zr’a)) = Einc(zr’ 0)) Sf\eCh[IKZ(ai)h]e _1 ' (529b)
1- LK@ A anhfik, (@)h]
2| 4 K(w)
. 3 )
Here tanh(z) = sinh(z) ~Z _L and sech(z) = 1 zl—z— where z = x+iy is a complex number.
cosh(z) 3 cosh(z) 2

With K, (@) = K(w)K, (@) these expressions become

1K) 4 VN
2{ : K(w)}tanh[K(a)).Kl(a))h]

Eoac(2r, @) = B (22,4 — 2, ®) 5 g Malm (5.30a)
1| K(w) [ 5, e
1-=| 2@ A anh[R (w)iK, (o)h]
2| 4 K(w)
and
e ; ~iK, (@)h
Efor(zﬂw) = Einc(zr’ a)) SECh [K(a))lKl(w)h]e 1. (530b)

1 K(w) | A VN
1 2[ : +K(w)}tanh[K(w)|Kl(a))h]
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At low-frequencies, the complex wavenumber is K (@) = /ou|e| sgn(@)e” "7 implying
K(a)) _ /OA_[[ . Also, isgn(a))e+isgn(w)(7r/4) _ e+isgn(w)(37r/4) and /|a)|e+isgn(a))(3zz/4) _ (—ia))llz. Hence

iK, (0)h = [oyu|af €N =[5, 14 ~iwh = [~iwouh.

Substituting this into the above scattering expressions gives the forms
;{\F—\/ﬂ tanh|\/57\/— iwosh]
y7; o}
1—;{\/? + \/;A} tanh|,/ &1t/ — ia)al,uih]
1, o

g Voanmh (5.31a)

Ebak(zr'a)) = Einc(zzmid -, 0))

and

sech \/a_y,/—la)alylh]e Slwash
1—{\/7+\/7}tanh\/a,/—la)o],ulh]

Efor(zr1 a)) = Einc(zr’ a))

(5.31b)

Next, the low-frequency wavelength of an EM wave propagating in medium #1 (the incident medium) is

A(0) =27 | 2 which implies —ia)al,ulhzw.
o4 @ A()

Then, the above scattering formulae are recast as

{\f_(}anh[zn(l—n)\/&_ﬂ h/ﬂl(w)]
—27(1-i)

e (h/ﬂq(w))’
1-{[+\F} tanh[27z(l— )/31 (h/ 2 () ]

Epa(Z,, @) = B, (22,4 —

(5.32a)
and

sech [27r(1—|)\/5_[, (h/A(@))le ] —~22(1-1) (h/ 24 (@)

1—[(+\f} tanh[2z (L i)/t (h/ 24 (o) ]

These are our working expressions for the backward- and forward-scattered wavefields. The ratio of
these two wavefields is easily put into the form

Ew (z,,0)=E, (2, ®) (5.32b)
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SR(C()) _ Ebak(zr,a)) _ EinC(ZZmid — Zr(< Ztop)i a))} y

Efor(zr!a)) - L Einc(zr(> Zbot)! C())

[f - ﬂsinh V6 B (@)]e
y7; o

{\F * \/ﬂsmh J6i: (@)~ 2c0sh|\/57 (@) ]+ 264
u o)

. (5.33)

with dimensionless parameter [, (®) zZﬁ(l—i)(h/ﬂi(w)). Dependence on the two receiver position

coordinates z, is contained in the first major term (in square braces [ ] ) on the right-hand-side. It is
logical to choose the receiver coordinates so that this factor equals unity. In turn, this means that the
back-scattered and fore-scattered EM fields are measured at the same distance from the layer midpoint
Zmia. The scattering ratio reduces to

[f - ﬁ}sinh Joi: B(@)]e
7, o

N? + \/Z:}sinh Jéi 51(60)]— ZCOSh[\/é'_/? ,31(60)]+ 2e /@
a \é

SR(w) = (5.34)

The ratio depends on the two dimensionless parameter ratios & =o0,/0;and 4=y, /4 , as well as

P, (@), which in turn depends on the homogeneous background medium parameters, layer thickness, and
angular frequency. The wavelength of the incident EM wave is readily expressed as

A(w)~ 27 2 1 : (variant of (5.7))
Oret Hret Wret \/(Gl/o-ref )(:ul/:uref )(a)/a)ref )
where suitable reference values are selected. Hence we have
_ H O vt Hret Wret hrzef 2
ﬁl(a)) - (1_ I) f \/(O-l/o-ref )(zul//uref )(a)/a)ref )(h/href) ) (535)

where hyer is a reference value for layer thickness (typically 1 m).

Equations (5.34) and (5.35) constitute a pair of expressions for evaluating the backward-to-forward
scattering ratio, as follows:
1) Select background medium conductivity o1 and magnetic permeability pi, layer thickness h, and
frequency f = w/2x. This fixes quantity fi(w).
2) Evaluate and display the scattering ratio SR(w) as a function of the two independent
dimensionless ratios ¢ and /i .

The panels in the following Figure 5.5 depict the scattering ratio on a logarithmic scale for three decades

of frequency (f = 0.1, 1, and 10 Hz). Layer thickness is h = 1 cm. Homogeneous background medium
current conductivity and magnetic permeability are o; =0.1S/m and g4 = 14, respectively.
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Scattering Ratio forf=0.1 Hzand h=1 cm
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log,, [SR|

logyq (52/4)

Figure 5.5. Logarithmic amplitude ratio of back-scattered to fore-scattered electric field for a thin (h =1
cm) layer, at frequencies f = 0.1 Hz (top), f = 1 Hz (middle), and f = 10 Hz (bottom). Scattering ratio is

plotted vs. logarithmic conductivity contrast ratio o,/o; and logarithmic permeability contrast ratio
oty -

43



Very little difference is discernable in the three panels, with most of the zone colored light green
indicating nearly equal backward- and forward-scattering amplitudes (~10° = 1). The logarithmic ratio

along the slanting line /1= & is theoretically —o, because SR(w) vanishes by equation (5.34). [However,
the origin appears to be a singular point. By L’Hopital’s rule limSR(w)— £sinh(4,)//3,, with +
meaning 6 —1and — meaning x—1.] The lower left quadrant is a broader zone of diminished back-

scattering. Curiously, there is a ridge-like locus of enhanced back-scattering (~10?) indicated by the thin
curving blue line; this was unanticipated.

For thoroughness, we illustrate the same logarithmic scattering ratio for frequencies f = 100 Hz and f =

1000 Hz below. The only detectable difference appears to be a slightly shifting pattern in the green zone
of nearly equal back- and fore-scattering.

Scattering Ratioforf =100 Hzand h=1cm
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Figure 5.6. Logarithmic amplitude ratio of back-scattered to fore-scattered electric field for the layer in
Figure 5.5, at higher frequencies f = 100 Hz (top) and f = 1000 Hz (bottom).

In this case with background permeability 4 = £4,, the lower half of the plots where Ioglo(,uz/,ul)< 0

might be challenged on theoretical grounds (e.g., can a magnetic permeability be less than the vacuum
value?). However, we include this zone in the plots for symmetry purposes. Tests indicate that this zone
remains with larger values of background permeability.
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The backward-to-forward scattering logarithmic amplitude ratio is illustrated for a thicker layer (h = 10
m) in Figure 5.7 below. All other parameters remain the same.

Scattering Ratio forf=0.1 Hzand h=10m

0G40 (Hafly)
logyo ISR
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Scattering Ratioforf =1 Hzandh=10m
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log,, [SR|
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Scattering Ratio forf =10 Hzand h=10m
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logyq (52/54)

Figure 5.7. Same as Figure 5.5, except the scattering layer is relatively thicker (h =10 m). Top, middle,
and bottom panels correspond to frequency f = 0.1 Hz, f = 1 Hz, and f = 10 Hz, respectively.
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A curious artifact (blue color) develops around the upper reaches of the line fz= & . This artifact appears

to grow, and a zone of NANs (= not a number) develops in the upper right corner area, at higher
frequencies (Figure 5.8 below). This leads us to suspect that numerical precision is low in this zone.

Scattering Ratio forf =100 Hzand h=10m
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Scattering Ratio forf = 1000 Hzand h=10m
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Figure 5.8. Same as Figure 5.6, except the scattering layer is relatively thicker (h = 10 m). Logarithmic

amplitude ratio of back-scattered to fore-scattered electric field, at higher frequencies f = 100 Hz (top) and
f = 1000 Hz (bottom).
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The general conclusion from this study is that, for most of the dimensionless parameter ratio space (i.e.,
the green zones in the above figures), backward-scattered amplitudes are approximately the same as

forward-scattered amplitudes. For example, IoglO|SR(a))| ~—0.25implies SR(w) =0.56; back-
scattering is about half as large as fore-scattering.

Finally, it is emphasized that equation (5.34) and the above figures give the amplitude ratio, at a fixed
frequency, of the back-scattered to the fore-scattered signals measured at equal distances from the bed
center. The actual physical values of the two signals could be quite small. For example, consider a 1 cm

thick layer situated in a uniform background medium with o; =0.1S/m and g4 = 14, and interrogated
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by a f = 1 Hz (period P = 1 s) sinusoidal waveform. The middle panel of Figure 5.5 above depicts the
relevant logarithmic scattering amplitude ratio. Next, the layer is assigned parameters o, =0.001S/m

and g, =1.99544,, which roughly corresponds to a point on the thin blue ridge (i.e.,

log,,(0,/0,)=-2and log,,(1,/14)=+0.3). So this is a relatively resistive and diamagnetic layer

compared to the background. We place a source (of amplitude 1 V/m) and receivers only 5 m from the
midpoint of the thin bed. Figure 5.9 below displays four periods of the back-scattered (red trace) and
fore-scattered (green trace) electric fields, after gaining each by the factor 114,167 (this plots the red trace
at about full scale on the panel). The sinusoidal variation in the forward-scattered trace is just barely
perceptible at this plot scale. The ratio of the red-to-green maximum amplitudes is about 2212, which is
roughly consistent with the selected point in Figure 5.5, middle panel (i.e., , or dark blue)

log,,(2212) =3.34)

Ac+Au Bak- and For-Scattered Exatf =1 Hz

AwANA
L \FE) O\

4000 4500 5000 5500 6000 6500 7000 7500 8000
t (ms)
Figure 5.9. Back-scattered (red trace) and fore-scattered (green trace) sinusoidal waveforms (period P =

1 s) generated by a thin layer (h = 1 cm) possessing both conductivity and permeability contrasts with a
uniform background medium. Amplitude ratio of the two signals is ~2212.

Receiver Ex (V/m)
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6.0 NUMERICAL EXAMPLES OF SCATTERING

Algorithm THEMBED has been developed to calculate normal incidence reflected and transmitted plane
wave electric field responses by evaluating the frequency-domain formulae (3.4b) and (4.3b),

respectively. [Intrabed responses, where a receiver is located within the geologic layer z,,, <z, <z, are
also available via equation (C9b) of Appendix C.] The associated magnetic field responses are calculated

via equation (3.15b) (for reflection) and equation (4.6b) (for transmission). Time-domain responses are
subsequently obtained by inverse numerical Fourier transformation.

THEMBED is a standalone program written in the Fortran programming language. Source code structure
is similar to that of the Green function forward modeling program EMHOLE (Aldridge, 2013). A short
list of source wavelets (e.g., Gaussian, Ricker, rectangular, sinusoidal, triangular, etc.) is available for
selection by the program user. Alternately, a preferred source wavelet may be imported into THEMBED.

6.1 Backward / Forward Scattering

We present below several examples of normal-incidence plane EM wave scattering by geological layers
with various thicknesses and material parameters. The layer is situated between two homogeneous and
isotropic halfspaces with identical properties. In the context of Figure 2.1, the three parameters
(&5, 14, 05) characterizing medium #3 (substratum) are taken to be the same as (g, 14,0, ) representing

medium #1 (overburden). Parameter numerical values are
(¢, 14, 0,) = (&5, 13, 53) = (108, 14,,0.025/m),

where &, =8.854x10""* F/m and x4, =47 %10~ H/m are vacuum (or free space) values of dielectric

permittivity and magnetic permeability, respectively. This specialization to two identical halfspaces is
particularly relevant to the problem of a hydraulic fracture generated within a uniform geologic
formation.

For this situation, the natural reference model used to define backward- and forward-scattered responses
is a homogeneous wholespace with parameters (gl,,ul,al). Hence, in the context of Figure 5.1, the

reflected plane wave from a material contrast interface at z =z, does not exist (as in equation (5.2a)).

The transmitted plane wave is identical to the incident (or direct) wave propagating downward in
homogeneous medium #1 (= medium #3) (as in equation (5.2b)). Thus, back-scattered responses depicted
in the following figures are identical to the reflected responses from the layer; fore-scattered responses are
identical to the transmitted responses minus the direct wave. These scattered responses are generated by
program THEMBED via user-selectable option.

The center coordinate of the geologic layer in the following examples is z,, =( op T zbot)/Z =0.0m,

with the electric vector plane wave source located at zz = —100 m. Source current waveform is an
alternating polarity square pulse sequence with period P = 4 s and duty cycle d = 50% (implying 1 s on +,
1soff, 1 son—, and 1 s off), and run for 25 full periods (or 100 s). The frequency spectrum of this type
of source waveform is developed and analyzed in Appendix E. Square pulse amplitude is 1 VV/m. The
receivers recording back/for-scattered responses are located at z, =+100m, respectively (implying the
back-scattering receiver is coincident with the source). Hence, total travel path length of the plane wave
through the conductive background medium is about 200 m, for both reflection and transmission
responses. Electric field Ex (V/m) and magnetic field B, (T) responses are recorded; only the first 4 s (or
one period) is plotted. In order to facilitate comparison of the various responses, amplitude scales for all
Ex and By panels are held fixed.
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We first illustrate how scattered responses are constructed via differencing of the actual model and
reference model responses. Figure 6.1 below displays electric vector component (Ey) responses generated
by reflection from (top panel) and transmission through (bottom panel) a geologic layer possessing strong
conductivity contrast relative to the homogeneous background medium. Bed conductivity is

Opeq =100S/m, or 5000 times larger than the background medium conductivity oy, =0.02S5/m. Bed

permeability 14,4 = 14, and permittivity &, =10, are identical to the background values. Bed thickness
is fixed at hpeg = 10 m.

The green trace in each panel is the reference model response, consisting of a plane wave (referred to
here as the “direct wave”) advancing in the +z direction through the homogeneous attenuating
background medium. In the context of a hydraulic fracturing experiment, this is the “pre-frak” measured
response. Since the back-scattering receiver z; is co-incident with the source at z; = —100 m, the green
trace is the upper panel is identical to the source square pulse waveform. The green trace in the lower
panel, recorded at z, = +100 m, exhibits the familiar dispersed and attenuated character (i.e., slightly
rounded square pulse onsets) due to propagation/diffusion through 200 m of conductive background
medium.

The black trace in each panel is the actual model response, generated after emplacing the 10 m thick
geologic layer in the homogeneous background. These are equivalent to “post-frak” measured responses.
In the upper panel, this consists of the summed direct and reflected responses, and is not easily
interpretable. [The low-amplitude high-frequency oscillations on the black trace are THEMBED
numerical artifacts of present unknown origin; ignore these.] In the lower panel, the actual response is
identical to the transmitted response. This is readily interpreted to be a severely attenuated version of the
direct (green) response.

Finally, the red trace in each panel is the scattered response, obtained by subtracting the green trace from
the black trace. Interestingly, the for-scattered response appear identical to the back-scattered response.
The reason for this is found by numerically evaluating the low-frequency thin bed criterion of equation
(5.11d) with the particular parameters at hand. We have:

1) 0,/0,4 =100S/m/1S/m =107,

2) /=1,

3) f/fy=1Pf, =1/(4sx1Hz)=25x10",
4) h?=10*m?’.

Then, thin bed condition (5.11d) evaluates to 7.896 x107? <<1, which is only mildly true. Note that we
use the dominant frequency f = 1/P = ¥ Hz of the periodic response signal in this calculation.

Since the thin bed criterion is satisfied, examine the approximate formulae for low-frequency scattering
from Table 1. Dimensionless conductivity ratio & = o,/o; =5000 and dimensionless permeability ratio

£=15/1 =1. Then, the low-frequency backward-scattering and forward-scattering filters in Table 1

evaluate to the same number, since 6 —4=4999and &+ —2=4999. Moreover, since the bed
midpoint coordinate zmig = 0, the incident plane electric wave in each case is evaluated at the same
location z- = +100 m. We conclude that back-scattered and for-scattered E-field responses should be
identical (in the thin bed approximation), as indeed appears to be the case in the top and bottom panels of
Figure 6.1.
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Figure 6.1. Electric vector component responses generated by a geologic bed with conductivity
O,eq =100S/m (5000 times larger than the background medium conductivity o,,, =0.02S/m). Top
and bottom panels correspond to reflection and transmission measurement geometries, respectively.
Green traces are homogeneous reference model responses and black traces are actual model (i.e.,

containing the geologic bed) responses. Red traces are scattered responses, equal to black minus green
traces. Back-scattered and fore-scattered responses are nearly identical for this thin geologic bed.

The associated magnetic vector component (By) back- and for-scattered responses are illustrated in the top
and bottom panels of Figure 6.2 below.

51



Ac Direct, Reflected+Direct, and Bak-Scattered By

1.0
=
= 0.5 -
<
S
=y 00 - n
§ Gbed = 100 Sf'm
L -6.59 Hped = lp i

'1 -0 T T T T 1 T T

0 500 1000 1500 2000 2500 3000 3500 4000
t (ms)
Ac Direct, Transmitted, and For-Scattered By

1-0 | 1 | 1 | 1 |
=
= 05- -
=r
S
2 (.01 B
% hbed =10m
-§ Opeq = 100 S/m
£ 6359 Hpea = Ho i

'1 -0 T T T T T T T

o 500 1000 1500 2000 2500 3000 3500 4000
t (ms)

Figure 6.2. Magnetic vector component responses generated by the same geologic bed with medium
parameters used for Figure 6.1. Top and bottom panels correspond to reflection and transmission
measurement geometries, respectively. Except for a sign change, back-scattered and fore-scattered
responses are nearly identical for this thin geologic bed.

Once again, scattered responses (red traces) are formed by subtracting the reference responses (green
traces) from the actual (i.e., measured) responses (black traces). Except for a sign change, the scattered
responses are nearly identical, consistent with equations (3.15b) and (4.6b).

Many of the numerical examples depicted below are taken from recent presentations delivered at the

annual American Geophysical Union meeting (Aldridge, et al., 2014; Aldridge and Weiss, 2016).
Backward and forward electric and magnetic scattering are illustrated.
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6.1.1 Variable Bed Thickness
The first set of responses, illustrated in the following two figures, are back-scattered and for-scattered

electric and magnetic vector components generated by geologic layers of varying thickness, and
possessing a (fixed) strong conductivity contrast relative to the homogeneous background medium.

Ac Bak-Scattered Ex

1.0 : L !
variable bed thickness
Opeq = 100 S/m
g 0.51 Upea = Ho -
2
~ 0.0}~ e —
A 'Ff
b
O
Q
T 05- -
h,.q = 10" to 102 m: top to bot
'1 .0 I T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
t (ms)
Ac Bak-Scattered By
1-0 L | 1 | 1

hyeq = 10" to 102 m: top to bot

0.5 B

Receiver By (0.14 mT)
L]
(]
r
[
1

0.5 variable bed thickness B
Gbed - 100 Sf'm
Mped = Hp
'1 -0 T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000

t (ms)

Figure 6.3. Back-scattered Ex electric vector components (top panel) and By magnetic vector
components (bottom panel) generated by a geologic bed with conductivity o,., =100S/m (5000 times

larger than the background medium conductivity o,,, =0.02S/m). Bed permeability 4.4 = 14, and

permittivity .., =10, are identical to background values. Bed thickness varies from h = 10 m (red
curves) to h =1 cm (brown curves).
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Clearly, a thicker bed gives rise to a larger amplitude response. Recall that the source electric field
magnitude is 1 VV/m (equal to full scale of the Ex panel); the vertical scale of the By panel is chosen so that
the largest amplitude response plots at nearly full scale. The thinnest layer appears to give negligible Ex
and By response at these receiver positions, 100 m from the bed mid-point.

Forward-scattered responses, for the same set of layer parameters, are given in the following Figure 6.4.
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Figure 6.4. For-scattered E electric vector components (top panel) and B, magnetic vector components
(bottom panel) generated by the same conductivity contrast geologic bed as in Figure 6.3.
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6.1.2 Variable Bed Conductivity
The next set of responses, illustrated in the following two figures, depict back-scattered and for-scattered

EM fields generated by a relatively thin geologic bed of fixed thickness (1 cm), and current conductivity
varying from 10° S/m to 102 S/m.
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Figure 6.5. Back-scattered EM field components generated by a geologic bed with fixed thickness
h,.s =1Cm, and current conductivity o, varying between 105 S/m (red curves) and 10? S/m (brown

curves). Bed permeability 4., = £, and permittivity &, =10¢, are identical to background.
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Figure 6.6. Fore-scattered EM field components generated by the same conductivity contrast geologic
bed as in Figure 6.5.

Responses have the same general character as with variable bed thickness.

In fact, the red traces,

corresponding to oy, =10° S/m are identical to the red traces in Figures 6.3 and 6.4. The reason for this

will soon become apparent.

This very thin bed (h,, =1cm) with large electrical conductivity

(0.4 =10° S/m ) might be an analogue of a hydraulic fracture injected with highly conducting proppant.
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6.1.3 Variable Bed Permeability

The scattering effect of variable magnetic permeability, for fixed layer thickness h,,, =10mand
conductivity o,., =0.02S/m, is illustrated in the following two figures.
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Figure 6.7. Back-scattered EM field components generated by a geologic bed with fixed thickness

h,es =10 M, and magnetic permeability 44, varying between 10%z, (red curves) and 10"z, (brown

curves). Bed conductivity o,y =0.02S/m and permittivity &,,, =10, are identical to background.

57



Au For-Scattered Ex

1.0 . L I
variable bed permeability [
— 0.5- Ohed = 0.02 S/m |
E
2
)
5 .04~ %—q
=
O
O
{
T .05- .
Upeq = 104 to 107 12 top to bot
'1 -0 T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
t (ms)
Au For-Scattered By
1-0 1 | 1 | 1
variable bed permeability
E 0.5 Gbed = 0-02 Sfl'l"l |
< ;
5 7
n;j., 0.0 . — 7 N
= ]
-
8
§ 0.51 -
Hpeq = 104 to 101 1, top to bot
'1 .0 T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000

t (ms)
Figure 6.8. For-scattered EM field components generated by the same permeability contrast geologic
bed as in Figure 6.7.

Back-scattered responses generated by a permeability contrast have opposite polarity (i.e., sign) compared
to the analogous responses generated by a conductivity contrast (compare Figure 6.7 with Figure 6.5).
However, for-scattered responses have the same sign (compare Figure 6.8 with Figure 6.6). Bed thickness
and permeability are intentionally chosen to be rather large in order to generate an equivalent response
magnitude as in the previous examples. [Note that plot scales are identical.] However, a relative

magnetic permeability of 10° to10°is probably unrealistic. Carbon steel has a relative permeability of
~10°.
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6.1.4 Joint Conductivity and Permeability Contrast; Variable Bed Thickness

The effect of joint current conductivity and magnetic permeability contrast, for variable bed thickness, is
illustrated in the following two figures.
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Figure 6.9. Back-scattered EM field components generated by a geologic bed with fixed current

conductivity o, =100S/m and magnetic permeability 24,4 =100z4, and with thickness varying

between
identical

Noee =10m (red curves) to h,, =1cm (brown curves). Bed permittivity &, =10s, is
to background. These layers have strong conductivity contrast (x5000) and permeability

contrast (x100) with the background medium.
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Figure 6.10. For-scattered EM field components generated by the same joint conductivity/permeability

contrast geologic bed as in Figure 6.9.

Current conductivity assigned to these beds ( o,,, =100S/m ) is the same as in the variable bed thickness

study of Figures 6.3 and 6.4. A careful comparison of these response amplitudes with those depicted in
the previous figures indicates that joint permeability and conductivity contrast diminishes back-scattering

and enhances fore-scattering. However, the effect does not appear to be particular large.
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6.1.5 Fixed Bed Conductance; Backward-Scattering

Figure 6.11 below depicts back-scattered electric and magnetic responses generated by a suite of geologic
layers with fixed conductivity x thickness product, or fixed conductance (oh),., =100S.
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Figure 6.11. Back-scattered EM field components generated by a geologic bed with fixed conductance
(i.e., conductivity x thickness product) equal to 100 S. Bed magnetic permeability 4., = £ and electric

permittivity &,., =10, are identical to background values. All curves overplot at this plot scale.

All traces overplot, indicating that back-scattered responses are insensitive to varying bed thickness and
conductivity, as long as the product conductance remains fixed. For-scattered responses (not plotted here)
exhibit the same effect. This is consistent with First Born Approximation scattering, developed in the
subsequent Section 7.0.
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6.1.6 Fixed Bed Inductance; Forward-Scattering

Forward-scattered electric and magnetic responses generated by a suite of geologic layers with fixed

permeability x thickness product, or fixed inductance (zh), ., =10" H, are displayed below:
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Figure 6.12. For-scattered EM field components generated by a geologic bed with fixed inductance (i.e.,
permeability x thickness product) equal to 10* H. Bed current conductivity o, =0.02S/m and electric

permittivity &,., =10¢&, are identical to background values. All curves overplot at this plot scale.

Similar to the fixed-conductance situation, all curves overplot. This is also consistent with First Born

Approximation scattering theory.
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6.1.7 Permittivity Contrast Scattering; Low-Frequency

The possibility of electromagnetic scattering induced solely via dielectric permittivity contrast has been
raisaed by Aldridge and Bartel (2016) and LaBrecque et al. (2016). However, numerical simulations with
program THEMBED indicate that the amplitude of the scattered electric field is negligible at the low-
frequencies and dielectric permittivities typically encountered in EM exploration.

We use program THEMBED to replicate, as nearly as feasible, the forward-scattering numerical
modeling results reported by LaBrecque et al. (2016) in their Figure 4(a). The homogeneous background
medium is assigned EM parameters:

(&0, 14, 01) = (&3, 15, 05) = (18,411, 14,,0.0039 S/m).

Although the huge relative permittivity appears unrealistic, it is actually stated by LaBrecque et al. (2016)
on their page 4. The thin bed has thickness h,., =5 mm and is given EM parameters:

(&, 11, 0,) = (4x10°&,, 145,0.0039 S/m).

Hence, this layer only possesses a contrast in permittivity. LaBreque et al. (2016) attribute the
gargantuan relative permittivity e./eo to “the interaction of mobile ions in (an) electrolyte with the charged
surface of the immersed contrast agent”, and indicate that this is an experimentally measured value
(appropriate for a 30% / 70% volume mixture of Lorenzo Coke Breeze / sand, wetted with 10 Qm NaCl
solution). LaBreque et al. (2016) cite Chew and Sen (1982) for theoretical justification of this very large
relative permittivity.

For THEMBED modeling, we use a 100 Hz sinusoidal source waveform (period P = 10 ms) run for 0.5
seconds (or 50 full periods). This source frequency is chosen to agree with the LaBrecque et al. (2016)
numerical modeling conducted “at a frequency of 100 Hz”. Our source electric field amplitude is 1 V/m.
Plane wave source and receiver are located at zz = -2 m and z; = +2 m, which are estimated from the
poorly labeled Figure 1 in LaBrecque et al. (2016). We plot 10 periods of forward-scattered Ex response,
ranging from 100 ms to 200 ms to avoid any starting transients near t = 0 ms.

As the following Figure 6.13 (top panel) indicates, the forward-scattered response is vanishingly small at
this plot scale! This result is in marked contrast to the ~1.25% (max) scattered Ex field amplitude
depicted in the analogous Figure 4(a) of LaBrecque et al. (2016). If the thin bed relative permittivity is
increased about four orders of magnitude to 10%, then a ~6.5% scattered response is observed (bottom
panel).

At present, we do not have an explanation for the differing results of THEMBED modeling compared to
those reported in LaBrecque et al. (2016). Perhaps the different geometric configuration (their proppant-
filled thin layer is actually a finite-radius disk with a hole in the middle — like a washer — with outer/inner
diameters 5.83 m/0.16 m) plays a significant role in enhancing the LaBrecque et al. forward-scattered
amplitudes. Also, their EM source is rather localized as a “vertical electric line source of 0.375 m” co-
axial with the fracture disk, and is not an extensive plane as with THEMBED modeling. This difference
may play a role as well.

Finally, we anticipate that permittivity contrast scattering will be non-negligible at higher frequencies, as
suggested by the formulae in Tables 1 and 2.
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Figure 6.13. For-scattered Ex field components generated by a thin geologic bed (hseds = 5 mm) with
strong permittivity contrasts with the background medium. Top / bottom panels correspond to layer
relative permittivities of 4 x 10° and 10'°, respectively. Bed conductivity and permeability are the same
as the homogenous background medium.
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6.2 Scattered Signal Amplitude Analysis

In this section, algorithm THEMBED is used to investigate range-dependent amplitudes of back-scattered
and forward-scattered plane wave electric and magnetic fields. The study was presented at a recent
American Geophysical Union meeting (Aldridge and Weiss, 2016). Figure 6.14 immediately below
illustrates the modeling geometry.

IncidentEfied  -1/2__ +h/2

wave train (x < -h/2)

Transmitted
LS wave train (x > +h/2)

&
Reflected
wave train (x < -h/2)
h
Background Geologic Layer Background
(e1. 1y .07) (. 1p.67) (e1. 1y.0y)

Figure 6.14. Reflection/Transmission modeling geometry. E;-component electric field plane wave is
incident from the left (x <-h/2) on a geologic layer of thickness h = 10 m. Both reflected (x <-h/2) and
transmitted (x > +h/2) electromagnetic plane waves are generated.

The layer is h = 10 m thick, and is assigned EM parameters (52, 1, 02): (1050, Mo and 10,4, 10 S/m).

Note that two different magnetic permeabilities are used. In this geometric configuration, the layer might
represent a vertically-oriented hydraulic fracture stage (i.e., multiple individual fractures) infused with
enhanced conductivity proppant. The x-axis is interpreted as aligned with the horizontal well track.

As in the previous examples, the background medium is taken to be a non-magnetic homogeneous
wholespace (implying medium #3 = medium #1) with permittivity & =10g, and permeability z4 = 4.
Various conductivities o, = (0.001, 0.01, 0.1,1.0) S/m , ranging over four decades, are assigned to the

background medium. These values strongly influence the signal amplitude level vs. distance from the
layer.

The electric field source waveform is an alternating polarity square pulse sequence with period P =1 s
and d = 50% duty cycle. A detailed analysis of the frequency spectrum of this type of signal is presented
in Appendix E. Source amplitude is 1 V/m. Two source positions are considered: a proximal source,
immediately adjacent to the fracture zone, is located at z; = —5.1 m, whereas a distal source is placed at z;
=-2000 m.

Finally, although the above Figure 6.14 refers to reflected and transmitted wave trains, the subsequent

trace plots and amplitude curves pertain to the associated backward-scattered and forward-scattered
signals. These are the signals directly attributed to the presence of the geologic layer.
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Figure 6.15 below illustrates example scattered electric field responses generated by the near and far
plane wave sources. Two seconds (equal to two full periods) of data are plotted at 40 receiver stations
ranging 2 km from the center of the fracture zone; receiver interval is 100 m. The scattering layer has

both a conductivity contrast o, =10S/m and a permeability contrast z,, =10z, with respect to the
background medium (o, =0.15/m, 24 = 14,).
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Figure 6.15. Back-scattered and for-scattered E,-component traces generated by proximal (top panel) and
distal (bottom panel) plane wave sources positioned at the vertical red arrows. Maximum absolute
amplitude within each panel is plotted at one trace spacing; positive lobes of the traces are shaded grey.

Near-source and far-source traces clearly have different shapes, induced by different propagation path
lengths through the conductive background medium. Far-source pulses have longer duration rise- and
decay-times. In this case of joint conductivity and permeability contrast of the layer, the forward-
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scattered traces have larger amplitudes than the backward-scattered traces. This is consistent with the
previous Figure 6.9.

Relative amplitude vs. distance curves extracted from the calculated E-traces are illustrated in Figure
6.16. The maximum absolute value of a trace, divided by the maximum absolute value of the source
signal (= 1 V/m), is plotted on a logarithmic scale. The four values of background medium conductivity
are indicated via color-coding; the dashed green amplitude profiles are obtained from the example traces
plotted in the previous Figure 6.15.
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Figure 6.16. Logarithmic maximum relative E, amplitude vs. receiver location for proximal (top) and
distal (bottom) plane wave sources. Source amplitude level is indicated by the horizontal black dashed

line at 0.0. Background medium conductivities are o, = 0.001 S/m (red curves), 0.01 S/m (blue curves),

0.1 S/m (green curves), and 1.0 S/m (brown curves). Solid and dashed amplitude profiles correspond to
conductivity-only scattering, and joint conductivity and permeability scattering, respectively. The
scattering zone is represented by the thin vertical brown strip.
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As expected, all amplitude profiles decay with increasing distance from the scattering layer. Additionally,
an individual amplitude profile for the near-source (top panel) is larger than the corresponding profile for
the far-source (bottom panel). Increasing the background conductivity reduces the scattered amplitude at
any fixed receiver location, as the progression from red to blue to green to brown curves illustrates.

Indeed, for large background conductivity o; =1.0 S/m (~water), the far-source amplitude plots off-scale
(brown curves in bottom panel). Interestingly, the scattering amplitude observed at the nearest receiver
locations z, =+100 m to the thin bed exceeds the source level when background conductivity is very

low (red curves in top panel). The reason for this is unclear, although it may be a constructive
interference phenomenon where intrabed multiple reflections reinforce. For a thin bed possessing only
conductivity contrast, the backward- and forward-scattered amplitude profiles appear symmetric (at least
at this plot scale). However, joint conductivity and permeability contrast enhances for-scattering and
suppresses back-scattering (compare the dashed and solid amplitude profiles, of all colors). The amount
of forward-scattering boost depends on the background conductivity, with low conductivity yielding the
most (compare brown dashed and solid curves).

Finally, note the slight flexure in the amplitude decay profiles for the large conductivity background
medium with the near-source (brown curves in top panel). The reason for this is that the time at which
maximum amplitude is achieved on a calculated E,-trace changes with receiver distance from the
scattering layer. The effect is most pronounced for large conductivity media.

An initial conclusion from this signal amplitude study is that observable backward- and forward-scattered
electric field amplitudes are predicted, out to 2 km from the scattering layer, provided the background
conductivity is not too large. Note that the smallest logarithmic plot amplitude of —2.5 corresponds to a
decay of ~316 relative to the source level. A proximal source is clearly superior to a distal source.

The final two figures display the same scattering amplitude information, but pertaining to the associated
magnetic field component By observed at the receiver locations. Note that the magnetic field traces in
Figure 6.17 appear (nearly) anti-symmetric about the thin bed position: forward-scattered traces are
reversed in polarity compared to the backward-scattered traces. This is the same scattering layer as with

the prior Figure 6.15, with both a conductivity contrast o, =10S/mand a permeability contrast
14, =10, with respect to the background medium (o, =0.1S/m, 24 = 11,).

Relative amplitude profiles obtained from the calculated By traces are illustrated in Figure 6.18. The
reference level is arbitrarily taken to be Byt = 1 T, because these are magnetic field responses sourced by
an incident electric field (different Sl units!). Amplitudes observed at the far offset locations of +2 km

range down to 10°° T ~3.2uT . Although some features of these magnetic field amplitude profiles are

similar to the analogous electric profiles (like decay with offset distance), there is at least one notable
difference: increasing the background conductivity does not necessarily reduce amplitude at a fixed
receiver location. This is most evident in the progression from red to blue curves; amplitude increases in
this situation. Then, progressing from blue to green curves yields a mixed situation for the near source
(top panel) and a uniform reduction in amplitude for the far source (bottom panel).

Finally, similar to the electric field situation, joint conductivity plus permeability contrasts enhances
forward-scattering and diminishes backward-scattering. Somewhat different from the E-field responses,
the B-field responses may be observable in a field experiment context, particularly with a near-source and
with a near-offset receiver.
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Figure 6.17. Back-scattered and for-scattered B,-component traces generated by proximal (top panel)
and distal (bottom panel) plane wave electric field sources positioned at the vertical red arrows.
Maximum absolute amplitude within each panel is plotted at one trace spacing; positive lobes of the

traces are shaded grey.
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Figure 6.18. Logarithmic maximum relative By amplitude vs. receiver location for proximal (top) and
distal (bottom) plane wave sources. Reference amplitude level is Bt = 1 T. Background medium
conductivities are o, =0.001S/m (red curves), 0.01 S/m (blue curves), 0.1 S/m (green curves), and 1.0

S/m (brown curves). Solid and dashed amplitude profiles correspond to conductivity-only scattering, and

joint conductivity and permeability scattering, respectively. The scattering zone is represented by the thin
vertical brown strip.
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7.0 FIRST BORN APPROXIMATION SCATTERING

The physical essence of the First Born Approximation is a replacement of a material property perturbation
with an equivalent (or “effective”) body source of wavefields, at the same location(s) in space. The
perturbation (in the EM context, in current conductivity o, magnetic permeability [, or electric
permittivity &) is considered small in magnitude, although it may be spatially extensive. Replacement of a
material parameter perturbation by an effective body source offers an advantage for numerical modeling
algorithms where gridding or meshing of a small scale perturbation is difficult to achieve.

The mathematical basis of the First Born Approximation (FBA) is developed in general three-dimensional
(3D) form in Appendix D. In this section, we apply FBA theory to the 1D plane interface layer geometry.
A geologic layer with enhanced electrical conductivity is replaced by a finite thickness “slab” of electric
current; the magnitude of the current depends on the incident plane wave electric field. In turn, the EM
fields generated by this current slab may be calculated in closed form. The 1D EM field solution
methodology is outlined first, followed by the two illustrative examples of a thin “sheet” and thick “slab”
of horizontal body source current flow. For the FBA scattered field calculations, we again adopt the
simplifying assumption that medium #3 (the substratum) is identical to medium #1 (the overburden, from

which the incident plane wave arrives): (&, 1, 0,)= (&, 14,0, ). This enables a direct comparison with
the exact scattered field responses of the previous Section 5.0.

7.1 Solution Methodology

Consider a homogeneous and isotropic wholespace characterized by electric permittivity &, magnetic
permeability «, and current conductivity o. In one space dimension, the two coupled first-order partial

differential equations (PDEs) governing the components of the electric vector e, (z,t) and magnetic vector
h, (z,t) are

gaex—(z’t)+oex(z,t)+w:—jsx(z,t)—M, (7.1a)
0z ot
and
ahy(z,t)+6ex(z,t) :_absy(z,t)_ (7.1b)

ot oz ot

Inhomogeneous (i.e., right-hand-side) terms represent three body sources of electromagnetic waves.
These are:

Conduction current density:  j,, (z,t) (SI unit: A/m?),
Displacement current density: Kk, (z,t) = ad, (z,t)/ot (A/m?),
Magnetic current density: l,, (z,t) = db, (z,t) /ot (VIm?).

Note that the source magnetic current flows in the y-direction. Eliminating the magnetic vector
component yields a single second-order inhomogeneous PDE for the electric vector component:

(7.2)

o%e (z,t) o%e (z,t) oe, (z,1) di, (z,t) ok, (z,t)] dl(z,1)
e g = + — :
a2 T ar P a YT a ot oz
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Mathematically, source conduction current and displacement current appear indistinguishable in both
equations (7.1a) and (7.2). Fourier transforming from time t to angular frequency w Yyields the
inhomogeneous Helmholtz equation (an ordinary differential equation):

dZEX(Z,a))

dL, (z, ®)
dz? '

+K(0)*E,(2,0) = p(-i0)[3 (2, @) + K (2, )]~ pm

(7.3)

where the squared complex wavenumber is K(w)* = &;ua)2 +louw . Next, Fourier transforming from
space coordinate z to angular wavenumber k yields

(K(@)? —K?)E, (k, ) = t(=i0)|J o, (K, @) + Ko, (K, ) |- kL, (k, ),

where the superposed “hat” symbol denotes a doubly-transformed quantity. The solution for the electric
vector component is obviously

w0, (k@) + K, (ko) |- kL, (k,)

E, (k,w) = 7.4
X ( ) K(CO)Z _ kZ ( )
The inverse Fourier transform, from wavenumber k back to coordinate z, is defined by the integral
1 T a +ikz
E(z,w)z—IE(k,w)e dk | (7.5)
2r 7,

where, for notational simplicity, we omit subscript “X” indicating X-component. Finally, substituting for
the doubly-transformed electric vector gives

2 u(-im)|J , (k@) + R, (k, @) |- kL, (K, )
)__I K(w)? —k?

et dk . (7.6)

With known body sources, the above inverse Fourier transform may be performed with the aid of the
definite integral

(2.0) = i +"‘de B i*“’(coskuisinkz B ,[ coskzdk
? K(w)? - 27 7 K(w)? - K(a))
g t® +iK (w)|7]
:_1J- _coskzglk _ e_ . (7.72)
7 o (-iK(@)f +k?  2iK(w)

The last step is via item 3.723(2) on page 445 in Gradshteyn and Ryzhik (1994). [The choice for complex
parameter 5 = —iK(w) = —i[(a)/ c(a)))+ ia(a))] =a(w) - I(a)/ C(a))) has the required positive real part,
whereas the alternative 5 = +iK (w) does not.] With magnetic current sourcing, we require the space
derivative
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d (dzz ) _ 59”2(2) e K@ — K (w)sgn(2) 1 (z, @) (7.7b)

where sgn(z) is the signum (or sign) function. Then, the frequency-domain electric vector E(z,w) may be
formally written as spatial convolution over coordinate z:

_ oL, (z,m)
E(Z, CO) = {ﬂ(_la})[‘] sx(Z! 60) + st(z’w)]_syT}* I (Z!a)) : (78)

However, depending on the particular mathematical form of the body source terms, it may actually be
easier to evaluate the Fourier transform integral (7.6) to obtain the frequency-domain field E(z,w).

7.2 Two Simple Sourcing Scenarios

The 1D solution methodology outlined above is illustrated with two simple body source distributions: an
infinitely thin “sheet” and a finite-thickness “slab” of conduction current.

7.2.1 Current Sheet

A particularly simple 1D body source consists of an infinitely-extended sheet of (lateral) current flow,
localized at the coordinate z = zmg. Hence, assume a source conduction current

density j, (z,t) = w(t)o(z—z,,), where magnitude scalar J has the SI unit A/m and w(t) is a
dimensionless waveform (often normalized to unit maximum absolute amplitude). The doubly-
transformed source current density is jsx(k,a)) =JW (w)e ™™ . Then, from equation (6.6), the x-
component electric vector is obtained as

+o0 +ik(Z-Zpi)
E(z,0),_ = J,u(—ia))W(a))% [ Ke(a))sz dk = Ju(—iW (@)1 (22, @)
_ - e @l | Juf —ie K (@22

As expected, the electric field generated by a current sheet is symmetric about coordinate zmig. Moreover,
equation (7.9) satisfies the plane wave propagation relation

E(z, o), =E(z, )| "= (7.10)

sheet sheet € !

where the + sign is used if z,,z, > z;, and the —sign is used if z,,7, <Z_.,.

mid

The space-frequency expression (7.9) suggests the equivalent space-time expression

J , . e+iK(“))|Z_Zmid|
e(z.b), . = 7“w (t)*F 1{W , (7.11)
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where F3{ } is the inverse Fourier transform of { }, an asterisk denotes convolution with respect to time t,
and a prime denotes differentiation with respect to the argument of a function. In general, this inverse
Fourier transform is difficult (perhaps impossible?) to perform. Hence, adopt a high-frequency
approximation for the complex wavenumber as

K(w)zcﬁﬂaw,

o0

with infinite-frequency phase speed szl/,/gu and infinite-frequency attenuation factor

a, = (a/Z),/,u/g . Then, with the aid of items 3.722(2 and 4) on page 448 of Gradshteyn and Ryzhik
(1994), it can be shown that

+iK(@)|z-2nig —a _w N
F_l{u} — _Cwe*ax|zfzmid| e wcw(t Coo ]H [t _ |Z Zmid |] ’ (712)

iIK(w) C.
where H(t) is the Heaviside unit step function. The inverse Fourier transform is a one-sided decaying
exponential with onset time |z —Zid | / C,, ; the amplitude is also exponentially attenuated with distance

|2— 24| from the current sheet. The time-domain electric field (7.11) becomes

o ¢ L=l L,
e(z,t)|sheetz—%\/ge‘“w'z‘zm“'w’(t)* e C [t b ]H[t—pcﬂ] : (7.13a)

0

where the approximate equality indicates this is a high-frequency expression. For vanishing conductivity
o — 0 (corresponding to vacuum), then a.. = 0 and the above reduces to

e(z,t),., = —%\/g w'(t) * H [t —Pz:i“'j = —%\/g W[t —szi"'j . (7.13b)

o0 o0

The source waveform w(t) propagates vertically away (i.e., up and down) from the current sheet at z = Zniq
with speed ¢, without amplitude diminution or shape distortion. Note the negative sign out front! If
waveform w(t) is positive, then the electric vector x-component e(z,t) is negative. This is a manifestation
of Lenz’s Law of electromagnetism: an induced electric current acts in a manner that opposes the action
that generates it. Thus, a positive source current flow at z = zmig induces a negative conduction current
flow for z # zmig (and vice versa) in order to satisfy conservation of electric charge.
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7.2.2 Current Slab

Next, suppose the body source of current is confined to a slab of finite thickness h, centered at coordinate
Zmid. The conduction current density vector is

-7

mid
- j , (7.14)

jo(2,0) = Mw(t)n(

where amplitude scalar M has Sl unit A/m? and T1(x) is the rectangle function of unit height and area. The
doubly-transformed source current is

J, (k, @) = MhW (e)e " sinc(%), (7.15)

where the well-known “sinc function” is defined as sinc(x) =sin(zx)/zx. Persisting through some

algebra, the inverse transform to the space-frequency domain for the electric vector x-component can be
put into the form:

_ Mu(-ioW (o) [F sink(z-z,,)] 7 sink(z-24)]
E(2.0)n - 7 {!k[(—iK(co))erkZJdk J;k[(—iK(a)))ZJrkZJdk ’ (719

where z,,, =2, —h/2 and z,,, =2z, +h/2 are the “top” and “bottom” z-coordinates of the source
current slab. Next, utilize item 3.725(1) on page 446 in Gradshteyn and Ryzhik (1994):

FET S R
0

Then, for z < Zyp:

M (o)W (@) +HK(0)(Zop=2) o +IK(0)(Zpo—2)
E(Z’a)}slab :?W[e —€ ] ) (7173.)

and for z > zpot;

M ,u(—ia))W (0)) +HiK (@)(2-2poy) +iK(@)(2-2gp)
E(Z,a))Llab :?W[e —e ] . (717b)

Alternately, the field external to the source current slab for |z - zmid| >h/2 may be expressed in a single
formula as

E(z a)l _ uMh sinh[iK(a))h/Z] —iw W(a))e+iK(OJ)|Z’Zmid| (7.18)
1 s1ab 2 iK(w)h/2 IK(w) | |

which exhibits the same dependence on coordinate z as the sheet source electric field of the previous
equation (7.9).
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Internal to the current slab, for z,, <z <z, the electric vector component is

top

E(z,0), =M % {1- 7K@ coshliK () (2 - 2,4)] } - (7.19)

Expressions (7.18 and 7.19) are clearly symmetric about the slab midpoint znis. Moreover, the formulae
agree on E(z,;, £h/2)at the slab boundaries. Finally, in the limit as the slab thickness h vanishes and
the source current magnitude M simultaneously grows without bound, such that the product Mh = J

remains fixed, the slab external electric field (7.18) approaches the form (7.9) appropriate for sheet source
current flow.

7.3 Conductivity Contrast

The FBA scattering situation for a contrast in electric current conductivity is pursued first, as it forms a
template for the slightly more complicated cases of dielectric permittivity and magnetic permeability
contrasts. In the First Born Approximation, an “effective body source” of conduction current, defined
within the depth interval of the geologic layer zwp < Z < zuot, is given by the product of the conductivity
difference and the incident electric field:

ji(Z,t) = (0-2 _Gl)einc(z’t) H(%) ) (7.20)

where TI(x) is the rectangle function of unit height and area. See equation (D1.4a) of Appendix D.
Superscript “B” indicates a First Born Approximation effective source. This form differs from the slab
current body source (7.14) in that the incident electric field varies with coordinate z across the layer.
Fourier transforming to the frequency-domain gives

Jo(z,0) :(O-z _Gl)Einc(Z’w) H(%) (7.21a)

A trivial re-write is

Jo(z,0) = [(‘72 _O-l)h] Einc(2,0) %H[Z _;mid j : (7.21b)

This form indicates that, in the limits of vanishing thickness h — 0 and infinite conductivity contrast Ac =
02 — o1 — oo, such that the product Ac h = S remains fixed, then the Born source current reduces to the
sheet source current form SE, (2,4, ®)0(Z2—Z,,4) -

The incident electric field (x-component) is a plane wave propagating in the +z direction. In the
frequency-domain, we have

Einc(zi a)) = Einc(zs ’ a))e+iKl(w)(Z_ZS) . (722)

Substitute this into equation (7.21a) and Fourier transform to the wavenumber domain to obtain the
doubly-transformed Born current source as (next page):
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Zmig +h/2
33 (k@) = (0, =0, )E o (25, )6 "0 ikt

Zmia —h/2

+i[Ky (@)K Jzmig

_ (0_2 —O'l)E- (z a))e—iKl(a))zs e [e+i[K1(w)—k](h/2) _e—i[Kl((u)—k](h/Z)]
inc .
I[Kl(w) - k]
_ [ tiKu(@)n12) g ik(zng +12) _ oiK; (@)(112) k(2 ~h12)
— (O-2 _ O—l )Einc(zs , a))e+|K1(w)(Zmid Zs)|: -
I[Kl(a)) - k]
oK ()(1/2) g Tk(zmg +112) _ =iy (@)(1/2) g -ik(2ng —h/2)
=lo,—o,)E._(Z. ., @ -
( 2 l) mc( mid ){ I[Kl(a))—k] }

(7.23)

= [(62 - O-l)h] Eine (Znia » @) {e

+iKy (@)(N/2) g =ikzpor _ e—iKl(w)(h/Z)e—ikZmp
i[K,(0)—k]n
In the last equality, the ratio in square brackets approaches the expected form e i a5 h approaches zero.

Next, substitute this into equation (7.6) for the doubly-transformed electric field (assuming no
displacement current and magnetic current sources) to obtain

Es (k@) = (-io) (G

) ] E|nc(zm|d » e+iK1(a))(h/2)e—ikzbm _ o Ku(@)(n/2) g -ikzoy 7.2
K,(0)* -

i[K,(0)—k]h

Subscript “B” on the left-hand-side indicates this is an x-component electric vector generated by a First
Born Approximation effective current source.

We have not located a tabulated integral form for the inverse Fourier transform (from wavenumber k to
coordinate z) of expression (7.24). Hence, we pursue an alternative solution strategy. By inspection, the
inverse Fourier transform of (7.24) may be written as

E (Z a)) ( Ia)):ui[( O-l)h] Emc(zmld ’a)) [e+lKl(w)(h/2)6(Z Zbot) e_i|<1(w)(h/2)((5(z_Ztop)] *

lF‘l{—lz 2}*71?1{—1 } (7.25)
h K o)’ =K* [ i |K(w)-k

where the asterisks now denote convolution with respect to the spatial coordinate z. From equation (7.7a)
above, we already have the result

lF_l 1 _ e+iK1((u)|Z\
h K (@)?—k2|  2iK (@)h’

Next, using the Residue Theorem, it is readily demonstrated that
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]T- F—l 1 — _e+iK1(a))Z H (Z) ’
i | K (o) -k

where H(z) is the Heaviside unit step function. The spatial convolution of these two factors is

gFl{ 1 }*;Fl{ 1 } 1 {[ZiKl(co)z—l]e”Kl(‘”)Z, for >0,
h

K(@)? -k [ i |K(o)—k|[ 4hK (0)? |-e @2, for 2 <0,

1

_ i _1|atiKi(@)lz|
= WK (o) [2iK, (w)zH (2) - 1] :

Inserting this result into equation (7.25) and performing the final convolutions yields the frequency-
domain Born scattered electric vector x-component as

1

EB (Z,a)) = (—ia)),ul[(dz _O_l)h] Einc(Zmid ’w)m x

{2IK, (0)(2 ~ 230 H (2~ 2,) ~ 1] (0l (0012

—[2K ()(2 — 20, H (2~ 2,,,) ~ 1] ™2 20l g ikatext2) | (7.26)

top top

As with the slab current source electric field (7.17a and b), the top and bottom boundaries of the geologic
layer play an important role. For z < zyyp, the above expression simplifies to

—o'l)h] {Slnh[lKl(CO)h]:H: —lw i|E- (Z . a))enKl(w)(zmﬁfz) (7 278.)
2 |Kl(a))h |Kl(a)) inc \ “mid 1 ) .

EB(Z7a))|AU — lul[(GZ

whereas for z > 7,0t We have

E:(z,0),, = M[(GZZ_ o] [.K_ '(Z)} S A L (7.27b)

The left-hand-side notation indicates that these are Born scattered fields generated by a conductivity
contrast Ao =0, —o;. Unlike the electric field generated by a finite-thickness slab of source current,

the Born scattered electric field is not symmetric about the midpoint zmig; the reflected response (7.27a)
contains a “modulating factor” in the bed thickness h. This asymmetry is expected, because the
illuminating electromagnetic field Ein(z,) is incident onto the geologic bed from above (i.e., from
smaller z-coordinate). In fact, the Born reflected response is quite similar to the (total) slab response:

_ #Mh sinh[iK(co)h/Z] —iw K (@) 2—2,] i
E(z,a))Llab— > { K ()h /2 HiK(w)}W(a))e , (7.18 again)

but note the interesting slight difference in the bed thickness modulating factors.
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Expressions (7.27a and b) for the Born back-scattered and fore-scattered wavefields can be simplified
further, by recognizing the incident EM wavefield at level z is E, (z,®)=E,.(z,, w)e™ (%),
Then, for z < zyp, We have

E (Z a))| _ /ul[(GZ _Gl)h] Smh[IKl(a))h] —iw e+iK1(w)2(Zmid’Z)E‘ (Z a)) (7 270)
B lae 2 iK,(w)h iK, () mek '
whereas for z > zpet We have
_ lul[(O-Z _O-l)h] —iw
Es(z,0)|, = 5 LKl(w)} E..(2,0). (7.27d)

Note the asymmetry. The back-scattered response contains a “layer thickness modulation factor”
involving the hyperbolic sine function. Additionally, it contains a complex-exponential that accounts for
extra dispersion/attenuation as the incident EM wave propagates from the source level z; down to the
layer midpoint zmig, and then back to a receiver at level z < zyy.

In the limit of small layer thickness h, the responses reduce to the common form

Es(z,0)|,, = “l[(azz_ ouh] L}; '(‘;’))} Epe(Zyig o)™ (7.28)

In the limits of vanishing bed thickness h — 0 and infinite conductivity contrast o> — g1 — +o0, such that
the product (o2 — o1)h = S remains fixed, the Born scattered response reduces to

. _ ,u,lS —iw +iKy (@) 2~ Zpig |
m Eg(z,0)|, =—]- Ei.(Znigr @)€ ,
!Lo 3 )|A" 2 { IKl(a))} (Zria )

Oy —>®0
which is identical in form to the body source current sheet electric field of equation (7.9), as expected.

Internal to the geologic bed, forz,, <z <z, the Born scattered electric vector component is

top

£ (2o, - P R AEDERO)

%{ [1— 2iKl(a)){z -7+ gﬂe”“@x“’” -1 } : (7.29)

We intentionally write the electric field in this manner in order to compare with the analogous field inside
the finite-thickness source current slab:

E(z,0),,=M W {17 K@) coshiK ()(2 - 2,)] |- (7.19 again)

Clearly, there are similarities and differences. Both vanish as bed thickness h — 0.
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7.4 Permittivity Contrast

First Born Approximation scattered wavefields generated by an electric permittivity contrast Ae = & — &1
assigned to the geologic layer are easily obtained from the previously-derived equations for a current
conductivity contrast Ac. As per equation (D1.4b) in Appendix D, an “effective electric displacement
vector body source”, defined within the depth interval of the layer zip < Z < zyo, IS given by the product of
the permittivity difference and the incident electric field:

do(z.t)=(&,—&)en(z.1) H(Z_hz mid j (7.30)

Once again, I1(z) is the rectangle function of unit height and area. Comparing this with equation (7.20)
for an “effective current density vector body source” indicates

dsx(z t) - Jsx(z t) (731)

0,0,

The “effective electric displacement current” is the time-derivative

B B
ksBx(Z!t) = adsx(zit) — ‘92 ‘91 ajsx(zit) , (7328)
ot o,—-o, ot
or, in the doubly-Fourier transformed domain
(k W) = L4 — (- Ia))J (K, w) . (7.32b)
0,—0;

In general, the frequency-domain electric vector generated by the three different body source types is
given by inverse Fourier transform equation (7.6) above as

e dk . (7.6 again)

i3, (, a))+KSX(k a))] ikL,, (K, )
)__I K(w)® -

In the present situation, the only active body source is the effective displacement current. Hence

E (Z a))| lul( Iw)J‘ As?((k!a)) e+ikz dk _ — & ( Ia)) J‘ﬂl( |C())j§((k,a)) e+ikz dk
o ' K(w)? —k? o, -0, J K(w)? -k? '

By equation (7.6), this is clearly

Es(z,0)|,, = L4 iw)Eg(z,0)| . (7.33)
0,—0;

The Born scattered EM wavefield generated by a permittivity contrast Ae is proportional to the analogous

wavefield generated by a conductivity contrast Ac. However, the proportionality coefficient is frequency-
dependent. In the time-domain, this becomes
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g —& 0
eg(z,1),, = ﬁgeB(z,t)hg. (7.34)

2 Y1

Now, for z < zip, We have the conductivity contrast Born scattered field

— Ul)h] {Slnh[lKl(CO)h]:H: —iw :| Einc(zmid , a))e+i|<1(a))(zmid -1) , (7.27a again)

E.(z w)| =/“1[(‘72
B\& D)\, 2 iK, (@)h iK,(w)

whereas for z > 7,0t We have

o,—o, )h|| —iw K ()220 .
EB(z,a))|AJ=“1[( 22 ) ]LK (@}Einc(zmid,w)e K@ Zna) (7.27b again)
1

Hence, from equation (6733), the permittivity contrast First Born Approximation scattered fields become:
For z < Ziop:

E (Z a)) — /ul[(gZ —81)h] Smh[IKl(a))h] (_ia))2 E. (Z ) a))e+iK1(w)(Zmid_Z) (7.35a)
BAT e 2 K (o)h || iK (o) | "™ ’
whereas for z > zpot We have
_ M[(Ez —51)h] (—iw)2 +K; ()22 )
Ee(z,0)|, = 5 [iKl(w) Eie(Znig» @)€ : (7.35b)

Once again, there is a slight asymmetry in the back-scattered and fore-scattered responses. In the limit of
small layer thickness h, the responses reduce to the common form

E:(z,0),, ”l[(gzz_ ah] L(;'?Z)} Eppe(Zyg» 0)e ™00 (7.36)

Internal to the geologic bed, for z,,, <z < z,,, the Born scattered electric vector component is

R
&y —¢& —lo Einc Zinig » @
EB(Zla))|Ag = ( : 2 1) lLll( })< (a))g ‘ ) X
1
1 . +iKy (@) 2-Zpig +iKy (@ =Ky (@)(2-2pot
E{[l—Z'Kl(a’)(Z—Ztop)]e Ky(@)(2-2m) _ g +iKs(0)(1/2) g =iKy (@)(2-250) } (7.37)
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7.5 Permeability Contrast

The final First Born Approximation scattering situation to consider is a contrast in magnetic permeability
Ap = g, — 1, . From equation (D1.4c) of Appendix D, the effective magnetic induction body source is
given by

D (2,8) = (1, — 1) e (2.) H[Z‘hzm"’ j oty (1) H(Z

H

~ Znig
. ) , (7.38)

where again the rectangle function T1(X) localizes the body source to the depth interval zip < Z < Zpo. The
y-component of the incident magnetic induction (or magnetic flux) vector is b, (z,t). Fourier
transforming to the frequency-domain gives

BS(z,w) =218 (2, )II[Z_;“dj. (7.39)

H

Now, from Faraday’s Law:
( ) K (CO) +iKy (0)(z-2¢
|nc( ) - Emc( ) 1(() Einc(zsla))e o @)(z=z,) . (from B3a)
Then, we have

%@@‘ﬁMKfﬁﬁzﬂffﬂ) (7.40)

H

where the obvious E,(z,,w)e™ %) =

current density body source

(z,®) is used. But we already have the effective FBA

mc

J2(z,0) = (0, - 0,)E, (2,0) H[%} : (7.21a again)

So this implies

(2, 0) = te =t K@) 5o (7.41a)
0,-0, Ol

and after Fourier transforming to the wavenumber domain

BE (k) = 2 K@) 584 0. (7.41b)

0,-0, Ol

Next, recall the general solution for the x-component electric field due to the three body source types as

82



2 u(-im)|J , (k@) + R, (k, @) |- kL, (K, )

:_J' (o) I e ™ dk . (7.6 again)
a) J—

Retaining only the magnetic current density source I:Sy(k,co) =(—lw) ésy(k,a))gives the Born scattered
electric field as

+°°(|k)L (k, ) o
2,0),, =- j W dk
+w(|k)( |0))B (k a)) +ikz dk

27z I K(w)* -
o =t Ky(o) 1 T(|k)( i0)J; (k ®) ik gy
o,—0, o 2r:* K(w)* -

Hy — Kl(a)) 1 T(Ik)ﬂl(—iw)ji(k,a)) ek gk
K(w)* —k> .

c,—0, o 2r:

But by the general solution expression (7.6) again, this reduces to the space derivative

EB(Z,CO)| — :u lul K (C()) 0 —~E ( (0)|
Mo o,—0, ol oz

) K@ e
) Lﬁ 1}{(62 O'l)a)ujazE (z,0),. (7.42)

The FBA scattered field generated by a permeability contrast is proportional to the derivative (with
respect to depth coordinate z) of the field generated by a conductivity contrast. Now, for z < zi,p, We have
the previous expression for a conductivity contrast field as

_ (o, —o ] | sinh[iK, (@)h] || —ie Ky (@) 2 2) :
Es(z,0)|, = 5 { K (o) K (@) E, (2.4, 0)e , (7.27aagain)

whereas for z > 7,0t We have

H [((72 _Gl)h] —lw +iKy (@)(2=2,) .
Es(z, ), = - Einc(Znig @) e’ 7.27b again
s )|M 5 iK, () (Zyig» @) ( gain)
Hence, it is easy to show
0 .
po EB(Z’C‘))|M =+iK, (w) E5(z, a))|Aa, (7.43)

where the + sign is used for z > zy, and the — sign is used for z < zp. Thus, putting it all together yields
the First Born Approximation scattered fields generated by a magnetic permeability contrast as:
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For z < Ziop:
1 - .
E.(z, a))|AH - 5[1_ &] sinh[iK,(@)h]E, (2, , )€™ Xm0 (7.443)
H
whereas for z > zyo

1 . +iKy (w)(z2-2
EB (Z! a))|A,u - E(& - J [IKl(a))h] Einc(zmid 'a))e (X2 2m0) ' (744b)

H

Again note the interesting asymmetry between these two expressions. First-order expansions in layer
thickness h are obviously:

For z < zip:
hr. +iKy (0)(Zpig —2
EB(Z!CO)|A,4 z[ _%JE[IKl(w)] Einc(zmid’a))e " (X =) J (7453-)

and for z > zpot;

h

E.(z,0) =~ [% _1j5 [IK(@)]E, (2,4, w)e"™ Xzt (7.45b)

which exhibit a remarkable similarity, although the back-scattered field (7.45a) has the opposite sign as
the fore-scattered field (7.45b).

Finally, internal to the geologic layer, the Born scattered electric vector component is for z,,, <z < z,,:
E. (z. , (0
Es(z,0)|, = g Binc(Zuia @)
o\ 2
1 ) . _ B )
E{[“ 20K, ()(2 — 2,0p) N ) — g NN DIk (@220 | (7.46)
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7.6 FBA Scattering Response Summary

The various frequency-domain expressions for FBA scattered responses, in both the backward (z < zip)
and forward (z > zye) Scattering zones, are summarized in this section. Responses recorded within the
geologic layer (zwop < Z < zZnot) are also given, although these may be of lesser practical interest. General
(i.e., exact) expressions for these responses are then specialized to the low-frequency electromagnetic
induction regime and a thin geologic layer.

7.6.1 Exact Born Approximations
Admittedly, the phraseology “exact...approximation” sounds somewhat odd. The intent is to re-state the

FBA-derived scattering responses prior to adopting an additional thin bed and/or low-frequency
approximation.

1) Current conductivity contrast: Ac =0, — 0o, .

For z < Zip:
E,(z, w)| _ M[(O_z _0_1)h] Sln-h[IKl(w)h] - o E, (2., ®) ek (@)zms 1) (7.47a)
g 2 iIK,(@)h iK, (@)
and for z > zpet We have
M[(sz _O_l)h] —lw +Ky (@)(2-Zpig )
Ex(z,0), = - Einc(Znig @) € " mas 7.47b
5 (2,0)|,, 5 K (o) (Zyig» @) (7.47b)

Responses are proportional to the conductivity contrast A, and the incident plane wave electric field at
the layer midpoint Einc(zmig,). Note again the asymmetry between the back-scattered and fore-scattered
formulae. Although the fore-scattered response (7.47b) is directly proportional to the layer half-thickness
h/2, the back-scattered response (7.47a) is not.

Internal to the geologic bed, forz,, <z < z,,, the Born scattered electric vector component is

top

EB (Z, Ct))|A‘7 = M(O-ZZ_ 0-1) |: Iil_(laa))))g j| Einc(zmid J 60) X

% {[1_ 2iK ,(@)(z - Ztop)]enKl(wxzfzmm) _ ptiKa(@)hg-iKy ()2~ 2 } (7.47¢)
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2) Dielectric permittivity contrast: Ae=¢, — &, .

For z < zip:
_ - - _- 2 .
Es(z.00)|, = t[(e, — & )h] Sm_hDKl(w)h] ( ) E. (2., @)e @) (7.48a)
A 2 iK,(@)h iK (o)
and for z > 7yt We have
J— _- 2 -
EB(Z, 60)| — ,Ltl[(é‘z gl)h] ( Ia)) Einc(zmid ’ w)eHKl(w)(Z*Zmid) . (7.48b)
A 2 iK, (@)

Interestingly (and perhaps obviously), these Ae responses may be obtained from the corresponding Ao
responses by multiplying by (—iw) and making the replacement Ac — Ae. Thus, permittivity contrast
scattering has higher frequency content compared to conductivity contrast scattering.

Internal to the geologic bed, forz,, <z <z, the Born scattered electric vector component is

top

EB (Z’ a))|A5

_ (5 -8) {(—iw)z

2 Kl(a))z :| Einc(zmid ’ w) X

1 ] . . .
> { [1_ 2iK, (w)(z - Ztop)]ewq(w)(z—zmu) _ e tiKi(@)hgiKy (@)(2-Zng) } . (7.48¢)

3) Magnetic permeability contrast: Az = g, — 14, .

For z < ziop:
1 i . .
Es(2,0)|,, = 5(1_ %j Sin[iK (@)h] E, (2., @)™ (X Pme=2) (7.49a)

and for z > zygt;

EB (Z’ a))|A,u - %(% _1J [IKl(a))h] Einc(zmid ' a))e+iK1(W)(z_zmid) ' (749b)
1

In all cases, the forward-scattered responses are directly proportional to the layer half thickness h/2,
whereas the backward-scattered responses are not. Moreover, back-scattered and fore-scattered Ap
responses have opposite sign.

Internal to the geologic layer, the Born scattered electric vector componentis forz, <z <z, ,:

top
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1w
EB(ZV CO)|A# B E[Z _l] Ein(:(zmid , a)) X
%{[H 2iK, (@)(z - Ztop)]enKl(w)(zfzmm) _ o tiKu(@)h g Ky (0)(2-2r) } (7.49¢)

Note a sign difference compared to equations (7.47c) and (7.48c)!

All of the above FBA scattered responses are considered “exact” in the sense that the full-frequency
complex wavenumber Ki(w) (constructed with medium #1 parameters) is used in the expressions:

K, (o) = Q%L(WC;@) +i a)ls(;)/a)l)} , (2.2 again)

where the dimensionless function s(x) is defined as
+1/2
s(x) =4/2¥| [\/1+ x? —|x|] . (2.3 again)

The infinite-frequency phase speed c1.. for medium #1 is defined as C,, =:I/1/gl,ul . (2.4a again)

7.6.2 Multi-Parameter Scattering

It should be obvious from the previous derivations that FBA scattered electric fields generated by
contrasts in multiple layer parameters are given by the sum of formulae appropriate for single parameter
scattering. Thus, combining the FBA back-scattering formulae (7.47a), (7.48a), and (7.49a) yields:

For z < Ziop:
EB(Z’a))|A6+A£+Aﬂ - EB(Z’a))|Ag + EB(Z’a))|Ag + EB(Z’a))|A/4
_h|sinh[iK,(o)h] || (i) | (e “
= 2{ K. ()h] }{ K. () [(0‘2 o,)+( Ia))g{gl 1}} IKl(w)(,ul 1)}
E,o(Zg, @)™ a2 (7 503)

whereas the FBA fore-scattering formulae (7.47b), (7.48b), and (7.49b) give

For z > zpt:

ICLD N %{%[(% —al)+(—iw)s{‘;—j—1}}”&(@)(%— ]} x

E, o (2, )™ @) (7 50p)

mid ?
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The forward-scattering expression lacks the bed thickness modulation factor involving the hyperbolic sine
function (and has opposite algebraic sign in the permeability scattering term).

For zwp < Z < Znat, the three intrabed FBA scattering formulae (7.47c), (7.48c), and (7.49c) are combined
and re-written in a different form as

+iK (@) (22 1
EB(Z’ a))|Ao-+Ag+Ay - Einc(zmid ' C!))e K@=z, )Z X
lul(_la)z) (02 - 01)‘*‘ (—ia))gl & -1 [l— ZiKl(a))(z — Ztop) _ e*ZiKl(w)(Z*me)]
K (@) &

+ [& —1] [L+2iK, (@)(z2 - 2,,,) — e 2 (X200 | } . (7.50¢)
t

The above forms, utilizing the dimensionless parameter ratios &,/&, and s,/ ,are preferred for
numerical calculation purposes. However, recalling the notation &=g¢,/g, f=u,/14, and
6 = o,/ 0o, yields the alternative forms:

For z < zip:

EB (Z’ a))|Aa+Ag+Ay - Einc(zmid J a))ei—lKl(a))(Zmid ) x

h {sinh[iKl(w)h]} {cm(—iw) {( &_1)_i(é_l)ﬂ_ml(w)(ﬂ_l)}, (751a)

2| [iK,(w)h] iK, (@)
and for z > zpot:

EB(Z,a))| = Einc(z a))eJriKl(w)(Z—zmid) %

Ao+As+Au mid 1

h |oyw(iw)| . . | . -
E{m{(a—l)—I(g—l)a}HKl(a))(,u—l)}. (7.51b)

Note the sign difference (i.e., within the braces { }). For zwp < Z < zuo the exact FBA intrabed scattering
response becomes

+i N Z-2mi 1
EB(Z10))|AO.+A£+A# = Einc(zmid’a))e e mld)z x
GO (5 1) (2 1) 2 |[1- 20K, ()(2  2) — & 2N
K,(®) Q]
+(=1)[1+ 2K, (@)(2 - 7,) e 2 @0] | (7.51¢)
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An important observation is that the FBA scattering formulae (7.51a,b,c) are linear in the three
dimensionless parameter contrast quantifiers 6 —1, £—1, and f—1. In other words, if any two of them

are zero, then the FBA scattered response scales directly with the third. An obvious implication is that
ever increasing parameter contrast leads to ever increasing scattered wavefield magnitudes. The limits of
this approximation are examined in a subsequent section.

7.6.3 Low-Frequency Approximations
Next, we impose a low-frequency approximation on the above-derived First Born Approximations. From

equation (A4.15) of Appendix A, the complex wavenumber (evaluated with the reference model
parameters) at low frequency is given by

K, (@) ~\ou|a) sgn(a))e”?gn(m : (A4.15 again)

where sgn(x) is the sign function. This approximation is appropriate for w<<w;=0,/¢,, where w is

the transition frequency for medium #1. So, in the low-frequency (or electromagnetic induction) regime,
the phase speed and attenuation factor are both proportional to the square root of frequency, and dielectric
permittivity ¢ does not play a role. As per the development in section 5.5 (entitled Scattering Ratio), we
have the low-frequency form

IK, (@) =-loou, .

Substituting this into the above expressions (7.51a,b,c) for the FBA scattered responses gives:

For z < Zip:
Eo(2.0),,.., = &;’asinh Joutt (i) h|Eype (2 c0)e Vs (7.52a)
For z > zpor:
Eo(z2.0),, .., :% Jous (-iw) h]Emc(zmid,a))e+m(z‘zm“). (7.52b)

FOr Ziop < Z < Zpot:

6__ 1. . +y oy (i) (2pe—2
Eg(z,0),, .., ={ Z’LlSInh,/O'l,ul(—la)) (zbot—z)]e Vo t1e) Zoe?)

6-+ 7 _2 - +y o (i) (22
+ % Y O-lzul(_lw)(z - Ztop)]} Einc(zmid ’a))e o)) . (752C)

In this low-frequency approximation, where w <<, scattering by dielectric permittivity contrast

Ag =g, —¢g, is considered negligible (at least for “normal” values of relative permittivity), and hence is
omitted from both sides of the above expressions. Only conductivity and permeability contrasts are
relevant. Clearly, if &= =1(implying no parameter contrast), then all three scattered responses
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vanish, as expected. The forward-scattered response is directly proportional to the bed thickness h,
whereas the back-scattered response is not. Moreover, responses are continuous at top and bottom bed
boundaries (i.e., as Z — Zwp and z — Zpo).

7.6.4 Low-Frequency and Thin-Bed Approximations

Finally, we impose an additional thin-bed approximation on the above low-frequency response equations.
Expanding the above expressions to third-order in the small quantity

iK, (0)h = o (—iw) h,

yields the back-scattered FBA response

For z < Zip:

_. 2 A
Eq (2, a))|A0'+A,u (&_ﬂ)n\/allul(_ia)) {14‘%} Ein(Znia» @)€” i)™ (7.53q)

2

[Recall thatsinh(z) = z + 23/6.] The fore-scattered response (7.52b) is already (and truncates) at first-
order in h, and is repeated as

For z > zpot:

A A h - +y oy (i) (2-2g
Eg(z,0),,,,, =6+ ﬂ—z)E,/alM(—uw) E,o (2, @) Va0 (7.53b)

Hence, to first-order in h, the back- and fore-scattered low-frequency FBA responses are proportional to i)
the half-bed thickness h/2, ii) complex wavenumber /o, 14 (—i®@) with SI unit 1/m, and iii) the incident
electric field at the bed mid-point E;.(Z,,4,®) . The thin intrabed response is

For zip < Z < Zpot:

~ (20— 2) - o (10) 2y = 2) |+ immcior (2
Ea(2.0),,.,, =1 (62— Jou (o) |1+ : g

Z—-17 :
+ (6_+ /[l — 2)% /O-l’ul(_ia)) e+,/c71#1(|m)(zzmid)} Einc(zmid ’a)) , (7.53c)

which is also proportional to the mid-bed electric field value.

How do these thin-bed, low-frequency FBA scattering formulae compare to the exact scattering
expressions of Section 5.0? Equation (5.19) gives the exact back-scattered response, expanded to first-
order in bed thickness h, as

E,.(2.2 r’a’Xm f)\Jo [Emc(Zz Zr,a))\/Me”sg”(“”(a”/"’)]. (5.19 again)
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(ZZmid — Zr s a)) = Einc(z a))e+iK1(m)(Zmid -7,) and

inc mid ?

But we know\/He”sg“(”)(?’”/“):(—ico)l/2 and E,

IK,(w) = /o, (—lw) . Substituting in gives

E,.(z.2 r’a))||o (6 - f1)Jou(-i®) E, (2,4, @) Joun(io) (g =22 (7.54a)

This is identical to the first-order term in the FBA back-scattered response (7.53a)! Similarly, the exact
fore-scattered response, expanded to first-order in bed thickness h is

E (2125, 0) <N &+ f—2)Jouu |E. (2, @) |afe=en@C | (5.27 again)
2

or alternately

E o (2,.2,,0) zg(cﬂ p1—-2)Jou(-iw) E, (z,,0). (7.54b)

This is identical to the first-order (in h) FBA fore-scattered response (7.53b), when the substitution

E,.(2,0) =E, (2,54, 0)e V) is madel  These deductions lead to an important theoretical
statement linking exact and FBA scattering expressions as:

The exact formulae for the electric field scattered by a geologic layer, when expanded in both the low-
frequency and thin-bed approximations, are identical to the First Born Approximation scattering
expressions in these same limits.

7.6.5 Primaries Only Comparison

The mathematical development of the First Born Approximation in Appendix D indicates that the
scattered (or perturbed) wavefield propagates within the original (or reference, or background, or incident
medium) earth model. This has led to numerous statements in the geophysical literature to the effect that
the FBA is a “single scattering” theory that does not accommodate “multiple scattering” between
physically separated scattering loci. We concur with this understanding. In the FBA approach, a distinct
scatterer (i.e., a perturbation in material properties) is removed from the earth model, and is subsequently
replaced with a body source distribution within the background medium.

The single scattering aspect of FBA theory motivates an examination of the “primaries only” reflection
and transmission responses of a geologic layer, wherein all intrabed multiples are neglected. Admittedly,
ignoring the intrabed multiples is nonphysical (and this will be elaborated upon later). However, the
resulting scattering responses are useful for comparison with the analogous FBA responses, and also
enable as assessment of the importance of the multiples. Interestingly, the original treatment of the thin
bed reflection response issue in seismic reflection exploration (Widess, 1957-58 and 1973) considered
only top-bed and bottom-bed primary reflections, and ignored all the intrabed multiples.

Following the summation approach of section 3, the primaries only reflection response, consisting of just

the top-bed and bottom-bed reflections recorded at a receiver z, <z,,, , is given by (next page):
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gjL(Zs’ Zr ! a)]primaries = Einc (szid - Zr ’ a))e_iKl(m)thop (C()) {1_le(a))T21(a))e+iK2(w)2h }1 (7558.)

where R, (@)is the normal-incidence reflection coefficient at the upper bounding interface, and

top
T,,(w)and T,,(w)are the downward and upward transmission coefficients through this interface. We

have T,(@)T,,(w)= (1+ Rmp(a)))(l+ Roo(@))=1- Rop(®)? because the usual assumption that
medium #1 = medium #3 is adopted. The primaries only reflection response becomes

g{(Zs 12y a)]primaries = Einc(zzmid -7, a))eiiKl(w)thop (CO) {1— [1— pr(a))z]e”Kz(“’)Zh }

= Epno(2Zg — 20, )Ry, (@) | Ry (@) €77 — 25inh[iK, (w)h]fe Ikt

Inc

Next, the top-bed reflection coefficient is

1-(R(@)/ 2 _
R = , .
top (@) 1+ (R(@)/ (5.16 again)

where two dimensionless ratios are K () = K,(w)/K,(w) and (@)=, /14 . In the low-frequency

approximation, iK(w)h=.—iwauh. Hence K(w)=./6it where &(w)=o0,/c,is a third
dimensionless parameter ratio. Moreover, in the low-frequency approximation

iK, ()h = J—iwomh = 27(1—1)—— = B.(a),
(o)

where the low-frequency wavelength in the incident medium is given by A, (®) =27 , and we
lo 10

recall from section 5.5 the definition of dimensionless parameter £, (®) . Substituting these forms yields
the primaries only reflection response as

A

91(25 ! Zr’a))primaries = Einc(zzmid - Zr,a)) {ﬁ;ﬁ} e+[‘/&7}_1]ﬂ1(w) X
G+l

2
Zsinh\/&_ﬁ 1(60)]{%} RNCZACR Ebak(z’a))|primaries' (7.55b)

Recognize that, in this case where medium #1 = medium #3, the reflection response is identical to the
back-scattered response. As a simple check, note that &= Zz=1 (i.e., no material parameter contrast)

implies that the reflection response vanishes, as expected. In fact, 6 = 2 = r = 1yields the same result.

A similar development yields the primaries only transmission response, for a receiver at z, >z, as
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3(25, r’a)) = Emc(zr,a’)le(a))T21(a))e+' [Ke(@)-Ki(@)]n

primaries
— Einc(zr’w)[l_ Rmp(w)z]e+i[Kz(w)fK1((o)]h , (7.568.)

or, at low frequencies:

Cc;j(zs’ r’a)lpnmanes = EInC (\/—\/i—)z +L/7 1]ﬁ (W) (756b)
+

Subtracting off the direct arrival gives the forward-scattered primaries only response as

4. /61 —
—E, (2, @) | VO |glatla@ 41 (7.56¢)

S (%

In the no-contrast situation 6 = 2 =1, the transmitted response is just the incident field, and the for-
scattered response vanishes. However, 6 = &z =r >1leads to enhanced forward scattering.

Efor(zria))

The product T,,(@)T,,(®) :1—Rtop(a))2used in the development of both the back- and for-scattered
responses accounts for plane wave transmission through the top and bottom interfaces of the geologic
layer. For small parameter contrast, the top bed reflection coefficient HR (a))H <<1, and the

transmission coefficient product is well-approximated as unity. This leads to the two additional scattering
approximations, without transmission loss, as

top

Ebak(z’ )|pr|mar|es notrans lnc(22 r’w) |:§ f} 2sinh \/O'_,Llﬂ (a))]e+[\/;ﬂ - (w) (7.572)

Efor(zr ! CO) = Einc(zr ) a)) [e+[\/&7371 () _1] : (757b)

primaries-notrans

The following table summarizes four back-scattering responses in the common parameterization
(&, A, ﬂl(a))). [The exact back-scattering expression (top line of table) is obtained in this form in a
subsequent section.] All four expressions indicate that the back-scattered field is proportional to the
incident electric field at position 2z, —z,. However, the four formulae possess a rather different

mathematical “look”; dependence on the two dimensionless parameter ratios & and & clearly differs.

Moreover, dependence on layer thickness h (via the argument p,(w)=2xz(1-i)h/4 (w)) varies.

Despite the apparent “multiple free” assumption embedded in the FBA response (bottom line of table), it
does not compare well with the two “primaries only” responses (second and third lines). Finally, let the
bed thickness h vanish, holding the other two parameters fixed. Surprisingly, the primaries-only back-
scattered response (second line) does not vanish, but approaches a nonzero value! This feature arises
because two-way transmission through the top interface is included in the derivation. Ignoring two-way
transmission (by setting the transmission coefficient product to unity) leads to the correct result.
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Backward Scattering Formulae (zr < Ztop)

Exact Back-Scattering (including all intrabed multiples):

(F-Fanel |
ot - [Eelcancl]

Ebak(zr ) CO) = Einc(zzmid —Z, Cl))

Primaries-Only Back-Scattering:

Ebak(zf’a))|primaries - '”0(22

| Yo Aa |l
J_ +Ji

2
2sinh|,/81 1(0))]{%\/\%} oG (0)

Primaries-Only and No-Transmission Loss Back-Scattering:

Eine (2Z1g {? \/‘/:}Zsmh\/c}_ﬂ 1(@)](3*\/&7‘*1]&(&))_

Ebak (Zr ! a))|primaries—notrans

First Born Approximation Back-Scattering:

EB(zr,a))|M+A E,..(2Z,4 co)(

jsmh[ﬂl(w)]

Table 7.1. Backward scattering formulae (zr < Zip).

The analogous forward-scattering expressions are summarized in the following table. All responses are
proportional to the incident electric field at position z.. Once again, there is no obvious similarity between
the FBA response and the two “primaries only” responses. All four responses vanish for & = i1=1 (i.e.,

no parameter contrast), but the “primaries-only” formula (second line of table) predicts a nonzero
forward-scattered field in the limit of vanishing bed thickness. This is clearly non-physical.
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Forward Scattering Formulae (zr > Zpot)

Exact For-Scattering (including all intrabed multiples):

e A —[cosh Jéi 1((0)]_;[\/?“/?}““] Jéil 1(60)]}
o \é

Efor(zr ’ a)) = Einc(zr ’ a))

cosh[ /52 l(a))]—;( \E +\/E]sinh\/&_,& ()]

Primaries-Only For-Scattering:

= Einc(zr’a)) u &l& e+[\/&77—1]ﬂ1(a)) -1,
primaries (\/E-F\/Z)Z

Primaries-Only and No-Transmission Loss For-Scattering:

Efor(zr’a))

Efor(zr’a)) = Einc(zr ) a)) [e+[\/674—1]ﬂ1(w) —l] .

primaries-notrans

First Born Approximation For-Scattering:

G+

EB(Zr’a))|AG+A/, = Einc(zr’w) ( _1j ﬁl(a)) :

Table 7.2. Forward-scattering formulae (zr > Zpot).
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7.7 Born Scattering Examples

As indicated previously, the physical essence of the First Born Approximation is a replacement of a
material parameter perturbation by an effective (i.e., roughly equivalent in effects) body source of
electromagnetic waves. This body source distribution coincides with the material perturbation in 3D
space. The mathematical development in Appendix D indicates that perturbations in current conductivity
o(x), electric permittivity &(x), and magnetic permeability p(x) generate effective conduction current,
displacement current, and magnetic current body sources, respectively:

Jor (X, 1) = 60 (X)€c (X, 1) , (D1.4a again)
Ker (X,1) = &(X)aei”CT(x’t) : (modification of D1.4b)
I (X,1) = 5y(x)w. (modification of D1.4c)

[The “0” pre-symbol denotes a perturbation in a material parameter.] Conduction and displacement
current body sources have Sl unit A/m? (areal current density), whereas the magnetic current body source
has SI unit VV/m? (areal potential density). Sources are also proportional to the primary (or “incident” or
“reference”) electromagnetic field vectors €inc(X,t) and hinc(X,t).

Figure 7.1 below illustrates a First Born Approximation (FBA) scattering situation for the case of a thin
geologic layer possessing a conductivity contrast with a surrounding homogeneous wholepace (i.e.,
medium #1 = medium #3 in prior notation). The contrasting geologic layer (depicted as light brown
color in the earlier Figure 2.1) is now replaced by body source distribution of electric current,
intentionally shown by a different green color. The original top and bottom bed-bounding interfaces are
now drawn as dashed, indicating that the layer as a physical medium parameter contrast no longer exists;

rather, it has EM parameters (31'#1’0'1) identical to the overburden and substratum. The effective

current density body source is illustrated by the set of horizontally-directed green arrows. These decrease
in magnitude from top to bottom because the incident electric field (downward-propagating red plane
wavefronts in upper left) decays as it traverses the original layer with contrasting conductivity o2 # o1.
The current density body source gives rise to back-scattered (upward-propagating) and for-scattered
(downward-propagating) plane electric field wavefronts, also illustrated in red.

Our first examples of FBA scattered responses are displayed in the following Figure 7.2. Back-scattered
(i.e., zr < Zwop) Ex-component signals generated by four thin beds (hwes = 1 cm) having strong conductivity
contrasts with the background are plotted. The source waveform consists of 100 periods of a 1 Hz
sinusoid, with unit amplitude 1 V/m; source is coincident with the back-scattering receiver at zs = z, = —
100 m. Four full periods of the recorded scattered signals are plotted (from 4 s to 8 s in order to avoid

turn-on effects at t=0 s). The background medium is characterized by (g,, 14,0, )= (10s,, £4,,0.02S/m).

Top and bottom panels of Figure 7.2 compare exact and First Born Approximation back-scattered
responses, respectively, as the conductivity assigned to the thin layer ranges from opeq = o2 = 103 S/m (red
curves), to 10* S/m (green curves), to 10° S/m (blue curves), to 10% S/m (brown curves). Hence, the

dimensionless conductivity contrast ratio 6 = o, /o, ranges from 10° to 108, implying that these are very
strong conductivity contrast beds.
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Figure 7.1. Schematic depiction of First Born Approximation scattered wavefields (upward and
downward propagating red plane wavefronts) for the case of a thin geologic layer possessing a contrast in
current conductivity with respect to a homogeneous background. The material parameter contrast of the
layer is replaced by a horizontally-directed electric current body source (green arrows) with the same

Incident Plane Ex Wave

1 1 1 Born Backward-Scattered Plane Ex Wave

P 1t 1111

Medium 1 (overburden)

(€1, M1, O9) First Born Approximation
Effective Jx Current Source
____________ e _______T_______'Ztop
“Medium” 2 (original - 2 he
: Tl = Zpot— Ziop
(g4, B4, 049) thinbed) ey
———————————— e — —— — — ——— —— — ——— ———————Zbot

Medium 3 (substratum) = Medium 1

(g1, B4, 09)
AR

Born Forward-Scattered Plane Ex Wave

vertical extent.

Exact and FBA back-scattered responses are calculated via formulae (5.30a) and (7.51a) respectively,

specialized to this case of no permeability and no permittivity contrast (i.e., 2= & =1):

;{K(l“’)— = }tanh[K(w)iKl(a))h]
Epac (2, @) = B (22,4 — 2,, ) 1 K( ) K(a:)l-) g "l (7.58a)
w Y .
1—2[1+M}anh[|<(w)n<l(w)h]
and
B B (6—1)h | sinh[iK,(@)h] || o, (-iw)
EB(Zr’w)|Ag - Einc(zzmid Zr’w) { 2 [|K1(C())h] |K1(C£)) . (758b)

The low-frequency complex-wavenumber ratio, highly accurate for the source frequency of 1 Hz, is given
by K(w)= K, (®)/K,(w) = V& . However, algorithm THEMBED utilizes the exact (i.e., full spectral

band) expression for the complex wavenumber ratio for its internal calculations.
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Figure 7.2. Exact (upper panel) and First Born Approximation (lower panel) back-scattered responses
induced by a strong current conductivity contrast in a thin geologic layer with thickness hpes = 1 cm. Red,
green, blue, and brown curves correspond to cres = 103, 104, 10°, and 10% S/m, respectively. Blue and
brown sinusoidal curves plot well off scale in bottom panel.

Exact back-scattered wavefields plotted in the top panel of Figure 7.2 approach a limiting value (equal to
the source level 1 V/m) as conductivity contrast & increases. This is consistent with equation (7.58a)
above (which approaches -1 as & — +). Note the interesting phase lag of the sinusoidal signals.
However, the FBA back-scattered wavefields in the bottom panel grow without bound as & increases,
consistent with equation (7.58b). There does not appear to be a progressive phase lag with increasing bed
conductivity.

The two red curves in Figure 7.2, appropriate for the smaller bed conductivity cpes = 10° S/m, are nearly
identical. The next Figure 7.3 plots both exact (solid curves) and FBA (dashed curves) back-scattered
responses on the same set of axes, for more moderate contrasts in bed conductivity. The red curves are
the same as in Figure 7.2, but note the expanded (x10) vertical plot scale.
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Figure 7.3. Exact (solid curves) and First Born Approximation (dashed curves) back-scattered responses
induced by moderate current conductivity contrast in a thin geologic layer with thickness hpes = 1 cm.
Brown, blue, green, and red curves correspond to opeg = 10°, 10%, 102, and 10° S/m, respectively. Solid

red curve is identical to previous Figure 7.2. Note expanded vertical scale of 10x compared with prior
figures.

For low values of bed conductivity contrast, dashed and solid curves overplot in Figure 7.3, indicating
that the FBA is a reasonable approximation in this regime. However, ones = 10° S/m (corresponding to

6 =10) leads to a discernable amplitude difference between exact and FBA back-scattered response at
this plot scale. The obvious conclusion is that the FBA becomes progressively more inaccurate (in the
sense of over-estimating the scattered field magnitude) as bed conductivity contrast increases.
Interestingly, Figure 7.3 appears to indicate that the FBA response lags the exact response in time.

7.8 Born Scattering Accuracy

The numerical examples displayed in the previous section motivate an examination of the accuracy of the
First Born Approximation for scattered EM wavefields. We seek to determine the ranges of the

controlling parameters (i.e., bed thickness h, conductivity contrast ratios, and permeability contrast
ratio /2 ) where the FBA constitutes a reasonably accurate estimate of the exact scattered wavefields. The
philosophy is identical to that in Hudson and Heritage (1981), although their work is in the context of

elastic scattering by a small spherical inclusion. By slightly modifying the previous equations (5.32a and
b), we obtain the following expressions for the exact back-scattered and for-scattered electric fields as

1[ﬁ_ﬁ]5inh \/6_ftﬂ1(w)]
2\ & c

cosh|\/57 1(w)]—;[\/§+\/§jsinh\/6—_ﬂ ()]

Ebak(zr ' a)) = Einc(zzmid - Zr y a)) e_ﬁl(w)

(7.59a)

and
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g A —[cosh Jéii 1(@)]—1[ﬁ+ﬁJSiﬂh Jéi 1(60)]}

cosh\/&_,& l(cu)] (\/7+\/;:]smh\/a_,u l(co)]

Efor(zr ’ a)) = Einc(zr ’ a))

(7.59b)

respectively. Recall that the dimensionless frequency-dependent parameter S1(w) is given by

Pi(@)=27(1-1) h/ﬂi(a)) = /—lwoy, h=iK (w)h,

where we adopt the usual low-frequency approximation for the complex-wavenumber. In this frequency
range w <<, = o;/&, , the wavelength of the EM wave is given by A, (@) =27/2/o, 0 .

Expanding the above formulae to first-order in the assumed small parameter /&7t (@) gives the
interesting approximations

Ebak(zr!a)) ~ Einc(zzmid _Zr’w)(é_;/})ﬂl(w) ' (760a)
and
E 0 (2,,0) = E.nc<zr,co>( jﬂl(w) . (7.600)

In each expression we also take e () ~1. The layer midpoint position zm is held fixed. Each
expression is directly proportional to S, (®). A small magnitude for both \/6_[1 (@) and S (w) is
readily achieved by taking the thickness-to-wavelength ratio h/A,(w) <<1, independent of the two
parameter contrast ratios & and 4. [However, it is clear that if \/&_,[1 is a large number, then
L. (@) ~ h/ 4 (@) must be made very small in order for (7.60a and b) to hold.]

Expressions (7.60a and b) also provide a (partial) mathematical explanation for the numerical results
illustrated in subsection 6.1.5 (Fixed Bed Conductance; Backward-Scattering) and 6.1.6 (Fixed Bed

Inductance; Forward-Scattering). The product of & and p,(w) is directly proportional to the bed
conductance S, =o,h (Sl unit: S); similarly, the product of Zand f,(®) is proportional to the bed

inductance L, = z,h (Sl unit: H). Working with equation (7.60a) as an example, the thin-bed back-
scattered response re-written as

Ebak(zr!a)) ~ Einc(zzmid - Zr!a)) ﬂ-jil(a))) |: _%} '
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Next, suppose the background medium parameters o, 1 (and hence A, (w) ) are held fixed, and the bed
parameters o,and h are varied such that the conductance S remains invariant. Then, the above
expression indicates that the back-scattered field E, ., is also (nearly) invariant, provided that the term

L,/ A (@) 4 = o0/ 4 A, (w) is small.  This is indeed the case for Figure 6.11. A similar argument

applies to the fixed-inductance forward-scattered responses of Figure 6.12, for which expression (7.60b)
is recast as

. zZA-D|S, L
Efor(zr’w)~Einc(Zr’a)) 221(60)|:(71+,LL1 2j|

Fixed inductance L. leads to a fixed for-scattered field E ,, provided the term involving conductance S,

remains small. An important proviso is that the bed is considered thin with respect to the incident
medium wavelength, so that any term with h/4 (@) <<lcan be neglected. The exact scattering
formulae (7.59a and b), appropriate for arbitrary bed thickness, do not exhibit this invariance.

Next, working with the previous equations (7.52a and b) for the FBA back-scattering and for-scattering
formulae yield the variants:

FOF Zr < Ztop:

B2, = B 2000 T2 sinnlp o)) 7610

For z; > zpot:

G+

Ea(z 0, = Eim(zr,w)( —1] fi@). (7610

The second expression (7.61b) is identical to the thin-bed for-scattering expression (7.60b). Moreover,
for | 3,() <<1| we have sinh[f3,(w)]~ f,(®), and the first expression (7.61a) reduces to the thin-bed
back-scattering expression (7.60a). So, the important conclusion is that a thin bed, defined by the
condition h/4, (@) <<1, has an FBA scattering response the same as the exact scattering response. This
is consistent with the deduction of the previous sub-section 7.6.4, although via a slightly different route.

In order to quantify the accuracy of FBA scattering, consider two complex-valued ratios formed from the
FBA and exact scattered EM fields as

EB(ZI”a))|for
BE (a))| for = m . (7623,b)

Eg (2, a))|bak

BE(a))|bakE Eb k(z a)) !

Substituting in the above expressions and simplifying yields (next page):
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BE (0),,, = /67t {COSh ‘/U_”Slrffl)]\/;—j S'?:Ha (@) }sinh[ﬂl(w)]e+ﬂl<”> , (7.632)

and

(6+a-2 cosh|\/578,(a) |- gsinn[aa g ()|
BE (@) _( 2 j{ e @ _|cosh|/62,8,(w) |- § sinh|\/671.8,() | Aile). e

G+

where § = is a real-valued parameter formed from the parameter contrast ratios. [Interestingly,

A A

2.\/61
parameter § is the ratio of the arithmetic mean to the geometric mean of 6 and 4. Does this mean
anything profound? Probably not.] As a check, we immediately find that as h/ 4, (@) — 0, then

BE()|,,, 1, BE(w)|,,, —>1,

which is consistent with the above analysis. In the thin bed limit, the FBA and exact scattered responses
become identical. Additionally, consider a layer where the conductivity and permeability contrast ratios
have the same value: & = 2=, implying § =1. Then we have

_ | cosh[rp,(@)]-sinh[rp,(w)] | . o _ o[ €771
BE (@ = r{ sinh[rg,(®)] sinh /i ()] =r e?h _1 )

and

(2r-2 cosh[rg,()]-sinh[rp,(®)] _(r-1p
BE(CO)'W‘( 2 H e A _[cosh[rB,(w)]—sinh[rB,(w)] ] p l(a))_e(r‘l’ﬂl—l'

Hence, as r —1 (implying no material property contrast for the layer), the Born-to-Exact scattering ratios
again approach

BE()|,,, 1, BE(w)|,,, —>1.

The latter limiting case is easily obtained via L’Hopital’s Rule. Both the FBA and the exact scattered
fields vanish (obviously) for this “no contrast layer” case. However, their ratios approaches unity.

The Born-to-Exact scattering response ratios (7.63a and b) (as well as the underlying exact responses
(7.56a and b) and FBA responses (7.59a and b)) are exceedingly important, in that they clearly exhibit

dependency on only three dimensionless parameters & =o,/0,, =/, and h(w)= h/ﬂl(a))
[Since we have already specialized to low-frequency, or the geophysical induction regime, the remaining
dimensionless parameter ratio £ =¢,/&, does not enter the formulae.] The following figures illustrate

ratios (7.63a and b), plotted as a logarithmic amplitude ratio above the 2D plane of log,,& and log,, 4.
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Figure 7.4. Backward-scattering (top panel) and forward-scattering (bottom panel) logarithmic
amplitude ratios of FBA to Exact scattered responses, calculated for a thin layer (h = 1 ¢cm) and an
incident EM sinusoidal signal with frequency f = 1 Hz. Background conductivity o1 = 0.1 S/m and

permeability Y1 = Wo, implying thickness-to-wavelength ratio is h/ﬂ1 =10"°. Paramagnetic/diamagnetic
regions reside above/below the horizontal dashed lines.

Figure 7.4 above depicts the Born-to-Exact amplitude ratios, for both backward- and forward scattering.
The choice of incident medium #1 parameters implies h/4 =10?m/10"m=10"°, so that the

calculation is well within the thin bed regime. Consistent with the above analysis, the FBA and exact
responses are nearly the same, and hence their ratio is unity; both plots are nearly completely green

(logarithm 0). Only at very large conductivity contrast & ~10° does the FBA amplitude exceed the exact
amplitude. The horizontal dashed lines at log,, 2z =0 separate zones of paramagnetic ( £, > 14,) and
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diamagnetic (1, < 1,) material for the layer. If diamagnetism in geologic materials is considered rare

or impossible, then the zone below the dashed lines should be ignored. However, some common
materials possess relative magnetic permeabilities slightly less than unity (i.e., copper: 0.999994, water:
0.999992, bismuth: 0.999834; see https:/en.wikipedia.org/wiki/Permeability_(electromagnetism) ).

Born/Exact Bak-Scattering Ratio fori=10Hzand h=10m
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Figure 7.5. Same as Figure 7.4, except for a thicker layer (h = 10 m) and a higher frequency incident
signal (f = 10 Hz).

FBA-to-Exact logarithmic amplitude ratios for a thicker layer (h = 10 m) and a higher frequency (f = 10
Hz) are illustrated in Figure 7.5. The thickness-to-wavelength ratio is h/ﬂ41 ~3.162x10°* , which is still

small. However, FBA scattering response amplitudes are now significantly greater than exact amplitudes
for large conductivity contrasts. Moreover, back- and for-scattered ratios have different appearances,

particularly near the line defined by & = /1, where a “valley” develops in the backward response.
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Figure 7.6. Same as Figure 7.5, except a larger magnetic permeability 4 =104 is assigned to the
background medium.

Finally, Figure 7.6 depicts the two logarithmic amplitude ratios (again for h = 10 m and f = 10 Hz) where
the background medium magnetic permeability is increased to z4 =104,. The dividing line between

zones of paramagnetism and diamagnetism is depressed to log,, z=—1. Layer thickness-to-incident

wavelength ratio is now h/ A ~107%. FBA response significantly exceeds the exact response over a

broader range of conductivity contrast, and the valley of dimished FBA responses pulls in closer to the
origin. In the upper right corner, a zone of NANs (grey color) develops, suggesting that the numerical
evaluation is not well-posed in this area.

A conclusion evident in all three figures is that the FBA scattered response amplitude exceeds the exact
scattered response if the layer possesses strong conductivity contrast with the surrounding medium.

Moreover, this effect is enhanced by thicker layers and higher frequencies, as this increases ratio h/ 4, .
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8.0 SUMMARY AND CONCLUSIONS

Plane wave reflection and transmission responses, for the electric E and magnetic B wavefields, have
been developed for a simple geologic model consisting of a homogeneous and isotropic layer situated
between two (potentially dissimilar) halfspaces. A plane electric wave is normally incident upon the top
interface of the layer. The reflected response includes the two primary reflections from top and bottom
interfaces, as well as all intrabed multiples. The transmitted response is formed from the direct (i.e.,
propagating straight through) wave, together with all trailing intrabed multiples. Each multiple is delayed
by the two-way traveltime within the layer, and is also attenuated by the electrically conductive material.
In general, layer thickness h need not be small compared to an incident wavelength. A novel aspect of the
present development is inclusion of intrabed E and B responses, which might be observed via borehole
emplacement of a receiver within the layer.

Scattered wavefields (in the backward and forward directions) are obtained by subtracting a suitable
reference (or background) medium response. Hence, a scattered response may be thought of as directly
attributable to perturbations in medium properties induced by the presence of the layer. A common
reference medium is a homogeneous and isotropic wholespace, for which the reference response is a
plane progressing EM wave. Then, the back-scattered response is the same as the reflected response, and
the for-scattered response equals the transmitted response minus the direct wave. This situation applies to
a hydraulic fracture created entirely within a spatially-extensive homogeneous geologic formation.
However, a fracture might follow a pre-existing path of weakness, like an interface between two different
rock formations. Our mathematical formalism applies to either case, although our numerical simulations,
performed with algorithm THEMBED, apply to the simpler situation of a fracture emplaced within a
homogeneous wholespace.

Extensive numerical simulations with algorithm THEMBED reveal the basic characteristics of reflected
and transmitted responses, as well as back- and for-scattered responses, as layer characteristics (i.e., bed
thickness, bed conductivity, permeability, and permittivity) are varied. In the low frequency regime
commonly used in EM exploration geophysics, permittivity contrast appears to have negligible influence.

The First Born Approximation (FBA) scattering response is, as the name obviously implies, an
approximation to the actual scattered response of a geologic layer, and is developed by replacing the layer
with an “equivalent” or “effective” body source distribution of EM waves. Perturbations in
conductivity/permeability/permittivity imply body sources of conduction/magnetic/displacement current,
respectively. In the limit of a thin layer (with respect to a wavelength of the incident wave within the
background medium) and mild medium parameter contrasts, the FBA scattering response agrees with the
actual scattering response, both mathematically and numerically. However, as parameter contrast
increases, the FBA scattering response grows without bound, whereas the actual scattering response
asymptotes to a fixed value. This interesting effect has been recently observed in DC potential field
calculations by Weiss et al. (2015). Clearly, FBA scattering over-estimates the amplitudes of actual
scattering as medium parameter contrasts increase. FBA theory also indicates invariant back- and for-
scattering responses, for layers with fixed conductance (thickness x conductivity), inductance (thickness
x permeability), and capacitance (thickness x permittivity) product. This invariance is not predicted by
the actual, or exact, scattering formulae. Thus, the ability to resolve layer thickness and a corresponding
layer parameter in an EM scattering experiment is probably severely limited.

The importance of the First Born Approximation formalism resides in its simple description of wavefield
scattering phenomena, as well as its practical utility in numerical representation of small-spatial-scale
perturbations on a 3D grid via an equivalent body source. However, it should always be remembered that
the FBA is an approximation to reality.

Finally, we remind the reader that an obvious extension of the present analysis involves a non-normal
incident plane EM wave onto the geologic layer. Figure 8.1 below depicts raypaths of reflected and
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transmitted responses. Unlike the previous Figure 2.1, these are actual raypaths, inclined from the
vertical.

Reflected Response (primaries plus bed multiples)

Incident Plane Wave I : 1

Medium 1 (overburden)
(g1, M1, 1)

Zigp
Medium 2 (thin bed)
(g2, M2, O9)

T
E = Zpot— Ztop

Zhot

Medium 3 (substratum)

(€3, W3, 03) By,

| J
1

Transmitted Response (direct plus bed multiples)
Figure 8.1. Non-normal incidence plane wave reflected and transmitted responses of a geologic layer.

Note that in general, the raypaths, and hence the wavefronts, have different (non-vertical and non-
horizontal) angular orientations in the overburden and substratum. Angles within the layer and

substratum are governed by Snells” Law of Refraction: siné,., =(c,(f)/c,(f))siné,. and
sind,, =(c,(f)/c,(f))sing,.,. In the simpler (and perhaps more realistic) case where medium #3 =

trn
medium #1, then 6,, = 6,.and raypaths/wavefronts are oriented similarly in both media. In the low-
frequency range commonly employed in geophysical electromagnetics, the phase speed ratios in Snells’

Law are independent of frequency: C,(f)/c,(f)=1/(c,/0, /1) =1/Gx. Careful analysis of
this situation awaits a future generation of geophysicists!

108



9.0 REFERENCES

Aldridge, D.F., 2013, Electromagnetic radiation from point sources in a homogeneous wholespace:
Technical report SAND2013-4857, Sandia National Laboratories.

Aldridge, D.F., 2014, A data volume estimation formula for use in geophysical electromagnetic
recording: Unpublished technical notes, Sandia National Laboratories.

Aldridge, D.F., Bartel, L.C., Knox, H.A., Schramm, K.A., and Weiss, C.J., 2014, Numerical studies of
electromagnetic resolution: American Geophysical Union Annual Fall Meeting, 15-19 December
2014, San Francisco, CA, USA.

Aldridge, D.F., Weiss, C.J., Knox, H.A., Schramm, K.A., and Bartel, L.C., 2015, Is a steel-cased borehole
an electrical transmission line?, Expanded Abstract and Oral Presentation, Society of Exploration
Geophysicists Annual International Meeting, 18-23 October 2015, New Orleans, LA.

Aldridge, D.F., and Bartel, L.C., 2016, Systems and methods for locating and imaging proppant in an
induced fracture: US patent #9,250,351 B2, issued 2 February 2016, assigned to Carbo Ceramics
Inc., Houston, TX.

Aldridge, D.F., and Weiss, C.J., 2016, Plane wave electromagnetic reflection and transmission from a thin
geologic layer: American Geophysical Union Annual Fall Meeting, 12-16 December 2016, San
Francisco, CA, USA.

Aki, K., and Richards, P.G., 1980, Quantitative seismology, theory and methods, volume 1: W.H.
Freeman and Company.

Bracewell, R., 1965, The Fourier transform and its applications: McGraw-Hill Book Company.

Chew, W.C., and Sen, P.N., 1982, Dielectric enhancement due to electrochemical double layer: Thin
double layer approximation: Journal of Chemical Physics, volume 77, number 9, pages 4683-4693.

Gradshteyn, I.S., and Ryzhik, .M., 1994, Table of integrals, series, and products, fifth edition: Academic
Press.

de Hoop, A.T., 1992, Reciprocity, causality, and Huygens’ principle in electromagnetic wave theory,
pages 171-192 in Huygens’ Principle 1690-1990: Theory and Applications, edited by H. Blok, H.A.
Ferwerda, and H.K. Kuiken: Elsevier Science Publishers.

Hudson, J.A., and Heritage, J.R., 1981, The use of the Born approximation in seismic scattering
problems: Geophysical Journal of the Royal Astronomical Society, volume 66, pages 221-240.

LeBrecque, D., Brigham, R., Denison, J., Murdoch, L., Slack, W., Liu, Q.H., Fang, Y., Dai, J., Hu, Y.,
Yu, Z., Kleinhammes, A., Doyle, P., Wu, Y., and Ahmadian, M., 2016, Remote imaging of proppants
in hydraulic fracture networks using electromagnetic methods: results of small-scale field
experiments: paper SPE-179170-MS, Society of Petroleum Engineers Hydraulic Fracturing
Technology Conference, 9-11 February 2016, The Woodlands, Texas, USA.

Levin, F.K., 1986, When reflection coefficients are zero: Geophysics, volume 5, pages 736-741.
Lgseth, L.O., Pedersen, H.M., Ursin, B., Amundsen, L., and Ellingsrud, S., 2006, Low-frequency

electromagnetic fields in applied geophysics: Waves or diffusion?: Geophysics, volume 71, pages
w29-w40.

109



Marsala, A.F., Hibbs, A.D., Petrov, T.R., and Pendelton, J.M., 2013, Six-component tensor of the surface
electromagnetic field produced by a borehole source recorded by innovative capacitive sensors:
Expanded Abstract, Society of Exploration Geophysicists Annual International Meeting,
doi:10.1190/segam/2013-0946.1.

O’Connell, R.J., and Budiansky, B., 1978, Measures of dissipation in viscoelastic media: Geophysical
Research Letters, volume 5, pages 5-8.

Palisch, T., Al-Tailji, W., Bartel, L., Cannan, C., Czapski, M., and Lynch, K., 2016, Recent advancements
in far-field proppant detection: Paper number SPE-179161-MS, Society of Petroleum Engineers
Hydraulic Fracturing Technology Conference, 9-11 February 2016, The Woodlands, TX.

Palisch, T., Al-Tailji, W., Bartel, L., Cannan, C., Zhang, J., Czapski, M., and Lynch, K., 2017, Far-field
proppant detection using electromagnetic methods — latest field results: Paper number SPE-184880-
MS, Society of Petroleum Engineers Hydraulic Fracturing Technology Conference and Exhibition,
24-26 January 2017, The Woodlands, TX.

Reitz, J.R., and Milford, F.J., 1967, Foundations of electromagnetic theory: Addison-Wesley Publishing
Company.

Snieder, R., and Aldridge, D.F., 1995, Perturbation theory for travel times: Journal of the Acoustical
Society of America, volume 98, pages 1565-15609.

Ward, S.H., and Hohmann, G.W., 1987, Electromagnetic theory for geophysical applications, pages 131-
311 in Electromagnetic methods in applied geophysics, edited by M.N. Nabighian: Society of
Exploration Geophysicists.

Weiss, C.J., Aldridge, D.F., Knox, H.A., Schramm, K.A., and Bartel, L.C., 2016, The direct-current
response of electrically conducting fractures excited by a grounded current source: Geophysics,
volume 81, pages E201-E210.

Widess, M.B., 1957-58, How thin is a thin bed?: Proceedings of the Geophysical Society of Tulsa.

Widess, M.B., 1973, How thin is a thin bed?: Geophysics, volume 38, 1176-1180; reprinted from the
Proceedings of the Geophysical Society of Tulsa, 1957-1958.

110



10.0 APPENDIX A: PLANE ELECTROMAGNETIC WAVES

In this Appendix, we develop the mathematics of plane electromagnetic wave propagation within a
homogeneous and isotropic medium from fundamental principles of electromagnetism.

Al1.0 EH Partial Differential System

We start with two of the fundamental Maxwell equations that govern electromagnetic phenomena:

XY +curle(x,t) =0, (Faraday law) (Al.la)

adgt(' H_ curl h(x,t) + j(x,t) =0, (Ampere — Maxwell law) (Al.1b)

where the four dependent variables are

. . . V-s
b(x,t) : magnetic induction vector, Sl unit: T =———,
m
- .. C A-s
d(x,t) : electric displacement vector, Slunit: — = ———,
m m
e . N V
e(x,t): electric field vector, Slunit: —=—,
C m
- : A
h(x,t) : magnetic intensity vector, Sl unit: —.
m

The particular variable names used here are taken from Reitz and Milford (1967). Within the geophysical
discipline, e(x,t) and h(x,t) are commonly referred to as the “electric” and “magnetic” field vectors,
respectively. Ward and Hohmann (1987, p. 132) refer to d(x,t) as the “dielectric displacement” vector
and e(x,t) as the “electric field intensity” vector. Alternately, e(x,t) and h(xt) are called the electric and
magnetic “field strength” vectors, and d(x,t) and b(x,t) are the associated electric and magnetic “flux
density” vectors, respectively (de Hoop, 1992).

Next, introduce three electromagnetic constitutive relations appropriate for linear, time-independent, and
isotropic media as:

b(x,t) = x(x) h(x,t) + b, (x,t), (Al.2a)
d(x,t) = e(x) e(x,t) +d (x,t), (Al.2b)
JjXt) =o(X) e(x,t) + j, (xt). (Al.2c)

The medium is characterized by the three scalar parameters
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M(X): magnetic permeability, SI unit: L = ﬂ
Als m
e(x): electric permittivity, Sl unit: ﬂ = E
VIs m
o(x): current conductivity, Sl unit: ﬂ = L = E .
m Q-m m

We take the magnetic permeability and electric permittivity to be intrinsically positive (and bounded from
below by the corresponding free space values & and o). However, the current conductivity may equal
zero, as in an absolute vacuum containing no electric charges.

Symbols with subscript “s” on the right hand sides in the above constitutive relations represent body
sources (i.e., impressed or imposed or artificially generated values) of the various quantities. An electric
current source, represented by the current density vector js(x,t), is probably the commonly-used type of
source in electromagnetic geophysics. However, the magnetic induction source bs(X,t) is not unusual,

although it often shows up in the time-differentiated form K, (X,t) = db,(x,t)/dtand is referred to as a

magnetic current body source. The displacement current body source I (X,t) = ad,(X,t)/dt appears to

be novel, and is included here mainly for completeness and consistency. However, it will be
demonstrated in Appendix D that all three body source types are required for a proper description of EM
scattering in the First Born Approximation.

Substituting the three constitutive equations into the two Maxwell equations yields the coupled first-order
system of inhomogeneous partial differential equations:

g(x)M + o(x)e(x,t) —curl h(x,t) =—j.(x,t) - od, (1) , (Al.3a)
ot ot
y(x)m+curl e(x,t) = —%. (A1.3b)

These are six coupled PDEs governing six dependent variables (three components of e(x,t) and three
components of h(x,t)). There are three medium parameters and three distinct body source types. We
refer to the PDE system (Al.3a and b) as the “EH equations” or the “EH system”, after the two dependent
variables contained therein. Interestingly, the derivation of the EH PDE system does not explicitly utilize
the two Gauss laws of Maxwell’s equations. Rather, only the Faraday law and the Ampere-Maxwell law
are used.

A2.0 Separated Partial Differential Equations
Next, specialize to a homogeneous body where the medium parameters do not depend on position X: &(X)

= ¢, u(X) = u, and o(x) = 0. Then the two first-order PDEs of the EH system may be combined to yield
two separated second-order PDEs governing the electric vector and the magnetic vector. These are (hext

page):
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de(x,t)  o%(xt)

VZe(x,t) —grad div e(x,t) — ou R
:ﬂajsa(tx,t) . acurlalzs(x,t) +”82d5t(2)(1t)’ (A2.12)
V2h(x,t) — grad div h(x,t) - g 2 h;"t) o azgg(,t)
_ourl j(xt) + o200 | OB (t)  dcurl dy(x.t). 210

ot ot? ot

where the vector differential operator identity curl curl = grad div — V?is used. Interestingly, the left-

hand-sides of both expressions possess the same mathematical form. However, the second-order spatial
derivative terms grad div e(x,t) and grad div h(x,t) may be simplified by exploiting the two Gauss laws
of Maxwell’s equations and the charge continuity equation. The Gauss laws are

div b(x,t) =0, (magnetic Gauss law) (A2.2a)
div d(x,t) —0(x,t) =0, (electric Gauss law) (A2.2b)

where 6(X,t) is an additional (scalar-valued) dependent variable called the free charge density or the
mobile charge density (SI unit: C/m?). The charge continuity equation is

69((3>t(,t) +div j(x,t) =0, (charge continuity equation) (A2.2c)

which links the charge density to the current density vector j(x,t).

Combining the magnetic Gauss law div b(x,t) = 0 with the constitutive relation (Al.2a) gives (for
homogeneous media) div h(x,t) = (—1/x) div bs(x,t). Thus

grad div h(x,t) = —igrad divb (x,t). (A2.3a)
H

This expression will be used to eliminate the grad div h(x,t) term in (A2.1b). The analogous situation for
the grad div e(x,t) term in (A2.1a) is more complicated. Combining the electric Gauss law div d(x,t) =
6(x,t) with the constitutive relation (Al1.2b) gives (again for homogeneous media)

dive(x.t) = 2o, t) — Sdivd, (x.t).
& &

Now, differentiate with respect to time, and substitute from the charge continuity equation (A2.2c) to
obtain

0 . 1. . 10 .
—dive(x,t) =——div j(x,t) - ——divd,(x,t).
S aved ) =——divjixt-—= (x,t)
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Next, substitute from the constitutive relation (A1.2c) for the current density vector j to obtain
gdiv e(x,t)+ 9 div e(x,t) = —ldiv J.(xt) - 12div d,(x,t).
ot £ £ e ot

This is a first-order, inhomogeneous ordinary differential equation for the divergence of the electric field
vector div e(x,t). The solution is

dive(x,t) = 1 H (t)exp(— zt} * {div J(xt) + %div d, (x,t)} :
& &

where H(t) is the Heaviside unit step function, and the asterisk denotes convolution with respect to the
independent variable t. Taking the gradient gives the required expression

grad dive(x,t) = 1 H (t)exp (— gtj * {grad div j,(x,t) + %grad divd, (x,t)} : (A2.3b)
& &

since the gradient operation distributes over temporal convolution and differentiation.

Expressions (A2.3a and b) indicate that the grad div terms on the left sides of equations (A2.1a and b)
may be exchanged for body source terms, yielding

de(x,t)  d%(xt)

VZe(x,t) —
(x,t)—ou p e
H 2
_ ajs(x,t)+8curl bs(x,t)+ﬂa ds(zx,t)
ot ot ot
Y (t)exp(—gtj *{grad div j, (x. 1) +§grad div ds(x,t)} | (A2.49)
& &
and

oh(xt)  8°h(xt)
V2h(x,t) — —
(X,t) —au o H—
2
——curl j,(x 1) + o 220 OB Ty iy, oty - ZUT DY 05 )
ot o u ot

These are uncoupled three-dimensional (3D) inhomogeneous partial differential equations for the electric
and magnetic field vectors. Ward and Hohmann (1987, page 136) give homogeneous (i.e., vanishing
right side) versions of these expressions.

Compared to the first-order EH system (Al.3a and b), the second-order PDEs (A2.4a and b) exhibit
greater complexity in the inhomogeneous terms representing body sources of EM waves. In particular, all
three medium parameters appear, and various terms contain higher-order space and time (and even
mixed) partial derivatives. There is also a temporal convolution.

The PDEs may be re-written in terms of a wavespeed C. and a “transition” angular frequency w: defined
as
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c, =1 Jar, w, =0ole, (A2.5a,b)

respectively. Thus

@ ae(x ) 1 d%(x.t)

Ve(x,t
(1) = 2o 2 ot
_0j(xt) ocurlb(x,t)  0%d (1)
T TTa M
— 1 H (t)exp (- ot ) * {grad div j, (x,t) + ggrad div ds(x,t)} . (A2.6a)
and
2
Vohpe - @AM 1 o

ot c:  ot?

o0

(A2.6h)

2
=—curl j (X, t)——{grad div b (x, t)—gab (. _ 12 0 bs(j,t)}_c’?curl d, (1) .
Y7, c2 ot c ot ot

o0 o0

It will become apparent that c. is the phase speed of the infinite frequency plane wave Fourier
component. Moreover, w: is an angular frequency that (roughly) corresponds to the transition from EM
diffusion (for w < w) to EM wave propagation (for o > ). The remaining parameter in (A2.6a,b) is the
magnetic permeability 4, which occurs only in conjunction with body source terms.

A3.0 One-Dimensional Plane Waves
Assume that all medium parameters, body sources, and wavefield variables depend only on the single

space coordinate z. Partial derivatives with respect to x and y vanish. Then, in Cartesian coordinates, the
six PDEs of the first-order EH system (Al.3a and b) are written as

g(z)(%x—(z,'[)+a ahya(ZZ,t) :_jsx(z,t)_%, (A3.1a)
oh,(z,1) aex(z,t)__ﬁbsy(z,t)

1(2) o o (A3.1b)

and
ae( t) oh (z,t . adg, (z,t)

o= o(2)e, (2)- T o -T2t (A3.22)
oh(zt) oe,(zt)  ob,(z1)

1(2) p P P (A3.2b)

and

g(z)aezT(z,t) +o(z)e,(z,t) =—],(z,t) —% , (A3.3a)
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oh,(z,t) _ ob,(z.1)

(2) p p

(A3.3)

The particular grouping of the equations facilitates subsequent analysis. The mathematical structure of
system (A3.1) (containing ex and hy) and is identical to that of system (A3.2) containing (ey and hy).
Hence, in the present study, we choose to work with the first system (A3.1). The third system (A3.3)
indicates that the e, and h, components of the field vectors are activated independently in this one-
dimensional (1D) situation. It is straightforward to demonstrate that the solutions are

e,(zt)= —%exp(— @, (Z)H (1) *[JSZ(ZI) N 5dsza(tZ,t)} |
and

1
h,(z,t) = _mbsz(z,t) ,

respectively. The asterisk denotes temporal convolution and H(t) is the Heaviside unit step function.
wi(2) = o(2)/e(2) is the depth-dependent transition angular frequency. Thus, the e; and h, components are
coincident in depth z with the 1D body source terms. For vanishing z-component body sources, which we
assume in this study, both components must also vanish. Hence, we are left with the first-order system
(A3.1a and b).

Next, assume a homogeneous electromagnetic medium with &(z) = &, u(z) = u, and o(z) = o. Then,
equations (A3.1a and b) may be combined to yield the two separated second-order PDES

e (zt) de(zt) ezt din(zt) d%dy(zt) by (z1)
_ _ — + _ ,
at P a F o TH T a M Gzt

(A3.4a)

and

0% h,(z,1) oh,(z,t)  o*h(zt)  §j,(zt) @%d,(zt) 90°b,(zt) b (1)
> —OU —&u — =— - +& —to
oz ot ot oz ozét ot ot

(A3.4b)

governing the x-component of the electric vector and the y-component of the magnetic vector,
respectively. The left hand sides are identical, whereas body source terms on the right hand sides differ.
As expected, the exact same equations are obtained by specializing the second-order PDEs (A2.4a and b)
to the one spatial dimension z. Although each equation may be solved independently, it is often simpler
to solve (A3.4a) for the electric vector component, and then use the 1D form of Faraday’s law (A3.1b) to

obtain the derivative 6hy/8t .

In terms of the transition frequency w: and infinite frequency phase speed ¢..,, PDEs (A3.4a and b) become

) 2 i 2 o%b,, (z,t
0 ex(zz,t) _2; an(Z,t) _iza ex(zzlt) :luaJSX(Z’t) +,Lla dsxgzit) _ sy( ) , (A3.53)
0z c ot c ot ot ot ozot

00 o0

116



and

o°h,(zY) @ oh(zt) 1 °h(zt) G (zt) &%, (zt) ob,(zt) b, (zt)
-— - =— -~ +e +o :
oz’ c2 ot c2 ot oz ozot ot? ot

o0

(A3.5b)
Perhaps a wave propagation geophysicist would be more inclined to write the two PDEs in this particular
form.  For w: = 0 (corresponding to vanishing conductivity ¢ = 0), the expressions reduce to
(inhomogeneous) scalar wave equations.  Expression (A3.4) or (A3.5) correspond to plane
electromagnetic wave propagation in the +z-directions.
A4.0 Frequency-Domain Equations
Mathematical theory in electromagnetism is often facilitated by transforming to the frequency-domain.
The definition of the forward Fourier transform, from time t to angular frequency w, used in this study is

E,(z,0) = +jioex(z,t) et (A4.1)

An upper case letter denotes the Fourier transform of the lower case counterpart. Definition (A4.1)
implies the differentiation theorem

e (z,t .
%zt < (-lw)E, (z,w),
ot
where the double-headed arrow signifies Fourier transform pairing.
A4.1 Helmholtz Equation

Fourier transforming PDE (A3.5a) yields the inhomogeneous Helmholtz equation (an ordinary
differential equation or ODE):

—2 dB. (z,w
d EOT (22,60) +K(@)?E, (2,0) = p(—i0)d (2, 0) + u(-iw)’ D, (2, ®) —(—iw)% . (A42)
g Z
where the squared complex wavenumber is given by
2 -
K(w)? =L2'wrw=gua,2 tiouw. Ad3)
C

o0

Recall that the infinite-frequency phase speed c., and transition frequency « are defined by

: (A2.5a,b again)

o)
W, =—
&
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respectively. The transition frequency separates (roughly) the frequency ranges for electromagnetic wave
diffusion (Jw| << wy) and electromagnetic wave propagation (Jw| >> w:). Equation (A4.3) is often referred
to as the dispersion relation for EM wave propagation.

The general solution of Helmholtz equation (A4.2) consists of i) the general solution of the homogeneous

version (i.e., with vanishing right-hand-side), plus ii) any particular solution of the inhomogeneous
version. The homogeneous Helmholtz equation is

d’E, (z,)

i +K(w)’E (z,0) =0, (A4.4)

with general solution on a finite interval z, <z <z, given by
E, (z,®) = A(w)e™ ) + B(w)e ™7, (A4.5)

A(w) and B(w) are complex-valued constants (depending only on frequency ) that are determined by
prescribing boundary conditions on the electric vector.

Suppose values of the electric vector at the two endpoints are prescribed. Then

EX(ZZ ' a))efiK(w)zl _ EX (Zl’ a))efiK(w)Zz
2sinh[iK (0)(z, — 2,)]

E (Zl a))eHK(w)Zz _E (22 a))eJriK(a))Zl
X ! X ]

Alw) = 2sinh[iK (w)(z, - z,)]

, B(w) =

Where the hyperbolic sine of a complex number Z = X+iY is sinh(Z) =(e+Z —e? )/2 The general
solution becomes

—-iK(o)(z,-2) _ e+iK(w)(zz—z) e—iK(w)(z—zl) _ e+iK(w)(z—zl)

E.(z.0)= Ex(zl'a’)L—iK(w)(zz—zn o K@X5 ) }L Ex(ZZ’a’)L—iK«uxzz—zn oKXz ) } . (A4.62)

We re-write this in the seemingly more complicated form

K(@)2(z - iK ()2(z-
E (Z )_ £ (Z )e+iK(w)(z—zl) 1—g" (0)2(z,-2) E (Z )e+iK(a))(22—Z) 1—gt (0)2(z-2,)
AR 1—e+iK(‘”)2(22*21) x\£2, @ 1_e+iK(w)2(Zz—zl) :

(A4.6b)
The value of this re-formulation will become evident by considering the following two cases:

Case 1: 2z, — +oo. Then, since the complex wavenumber K(w) has a positive imaginary part,
e (% _5 0 (this will be demonstrated in the next sub-section). We have

E,(z,0) =E,(z,,w)e™ %) (A4.7a)

This corresponds to plane wave propagation in the +z direction. The boundary condition prescribed at
endpoint z; is “infinitely far away” and has no influence on the solution.
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Case 2: 71 — —o0. Then e @4 _5 0 and we have
E,(z,0) =E (z,, w)e" Xz (A4.7b)
X X 2

This corresponds to plane wave propagation in the —z direction. The boundary condition prescribed at
endpoint z; is also “infinitely far away” and has no influence on the solution.

The mathematical “tag” identifying plane wave propagation in the + or — z-directions is the sign of
coordinate z in the exponents of equations (A4.7a and b). A physical requirement of plane
electromagnetic wave propagation is that attenuation (associated with the imaginary part of the complex
wavenumber K(w)) must always “accumulate” (implying amplitude diminishes) for either propagation
direction. This is achieved by z increasing in (A4.6a) (implying (z—z1) gets larger) and z decreasing in
(A4.6b) (implying (z—z) gets larger). We repeatedly use this rule in the main text in developing the
reflection and transmission responses of a geologic layer, even when plane wave propagation intervals are
not semi-infinite.

A4.2 Phase Speed and Attenuation Factor

Following Aki and Richards (1980, equation (5.71) on page 172), the phase speed c(w) and attenuation
factor a(w) are defined in terms of the real and imaginary parts of the complex wavenumber as

K(w) = T“;}) via(w). (A4.8)

The complex wavenumber must be anti-Hermitian (i.e., K(—@) = —K(w)") in order that the Fourier-
transformed electric vector component E,(z,w)=E, (0, a;)exp[iiK(w)z] is Hermitian. (i.e.,

E,(z,—w) =E, (z,w)"). This is a requirement for the time-domain electric vector ex(z1) to be real-

valued (see Bracewell, 1965, page 178). Hence, the phase speed and attenuation factors are even
functions of angular frequency. The frequency-domain solution form can be written as

E (z,0) = E, (0,0) exp{i ia)i}exp [Fa(w)z]. (A4.9)
c(w)

The plane wave electric field vector advances with speed c(w) in the xz-directions, and its amplitude
diminishes exponentially with distance according to the factor a(w). Upper and lower signs are used for
+z-direction propagation (where coordinate z increases) and —z-direction propagation (where z decreases),
respectively. The phase speed and attenuation factor are positive (or non-negative at non-zero frequency)
and even functions of angular frequency. Clearly, the amplitude of the Fourier component will decay by
the amount 1/e = 0.37 in a distance d(w) = 1/a(w). Distance d(w) is referred to as the skin depth.

Explicit expressions for the phase speed and attenuation factor in terms of angular frequency are readily
derived. Squaring expression (A4.8) for the complex wavenumber gives

K(wz){ 24 —a(a))z}ﬂ{m]

c(w)? c(w)

and this must equal (from the dispersion relation (A4.3))
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2
/X )
K(w)? =—+i—.
C C

o0 o0

Equating real and imaginary parts gives a pair of nonlinear algebraic equations for ¢(w) and a(w):

200(w) oo

clw ¢

Interestingly, the second expression implies that the attenuation factor is directly proportional to the phase
speed: a(w) = ( [ 2¢2 )c(a)) . Solving for each yields

> 1/2
c@ _ 2| | (@) | (A4.10a)
Coo a)t a)t a)t ,

and

> 1/2
a@) _ |2 | ||, (@) | (A4.10b)
a, a)t a)t a)t ,

where &, = @,/2¢C, . These expressions are appropriate for non-zero conductivity o (implying non-zero

transition frequency wi). If conductivity vanishes, then we have ¢(w) = ¢, and a(w) = 0. The common
right-hand-side of (4.10a and b) is consistent with the functional form given in Lgseth et al. (2006)).

Limiting values of the phase speed are

c(0)=0, c(+oo):cw:i.

Jau

This justifies using the symbol ¢ for 1/1/@11 . The analogous limiting values of the attenuation factor are

(0) =0, a(m):aw:ﬂ:z\/l_
2c, 2\Ve¢

0 1S referred to as the infinite-frequency attenuation factor. At the transition frequency o = w, we have

@) _al@) _ L7 1)~0.910.

C a

o0 00

Thus, the phase speed and attenuation factor achieve about 91% of their infinite-frequency values at the
transition frequency. For small values of dimensionless angular frequency |e|/e, <<1, the above
expression (A4.10a or b) for phase speed/attenuation factor is expanded to first order, yielding
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c(@) a(w) |2a
¢, a Vo

o0 0

(A4.11)

This square root dependence on frequency is appropriate for a diffusion process. Substituting the
expressions for C., a-, and w: gives the equivalent forms

2
(@)~ |2 (o)~ | 2

A4.12a,b
> ( )

For low frequencies, phase speed and attenuation factor are independent of the electric permittivity ¢ of
the medium.

For large values |e|/e, >>1, the expansion is

Mzﬂzl_l(ﬂjz, (A4.13)

C o 8\ w

which clearly indicates the two limiting values c(+w) = €., and a(+9) = tt.

The explicit functional forms of equations (A4.10a and b) are useful for determining limiting values and
understanding dependencies on parameters, etc. However, for numerical evaluation purposes, phase
speed and attenuation factor are conveniently obtained from the real and imaginary parts of the complex
wavevector K(w) of equation (A4.8) as:

c(w) = a(w) = Im{K (@)} (A4.14a,b)

_®
Re{K (@)}’

A low-frequency approximation to the complex wavenumber is readily assembled from the phase speed
and attenuation factor approximations as

o (|9l [son(e) +i(1-5,(w))] _ sgn(w) +i(1-6,(w))
R e L e

= Jafalsn(e)e" ", (A4.15)

where sgn(w) is the sign function (= w/|w| for w # 0, zero otherwise) and do(w) is the null function (= 0
for w # 0, one otherwise) (Bracewell, 1965). Note that this approximation is Hermitian anti-symmetric
(i.e., real part odd and imaginary part even) as required. The low-frequency approximation is independent
of the electric permittivity e.

Finally, a high-frequency approximation to the complex wavenumber is
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K(a))zcﬂﬂaw:@(a)ﬂzj. (A4.16)

2¢

o0

Retaining a non-zero imaginary part in the approximation enables attenuation of a propagating high-
frequency EM wave. Otherwise, vanishing conductivity ¢ = 0 implies the complex wavenumber is K(w)
= wlc. (i.e., pure real) appropriate for wave propagation without attenuation and dispersion.

A4.3 Group Speed

Group speed g(w) is obtained from the phase speed c¢(w) via the formula

c(w)
o Oc(w)

- c(w) ow

(A4.17)

9(w) =

Then, from the above phase speed expression, we have

1 oY o) _lo
_wac(w)_z\/lJ{th \/1+(th o |

c(w) Ow

Hence, the explicit expression for group speed is

2 5 5 3/2
9(@) _, ] \/1 N ( o j \/1+ (ﬁj e , (A4.18)
COO a)t a)t a)t a)t

with specific values

g(0) =0, o(e) =42 -1]""c, ~1.066c, , g() =c. .

Low-frequency and high-frequency expansions are

2
9(@) _, 2|60|, 9(e) _ 1+%[ﬂj , (A4.19a,b)
c 2 c ®

o0 o0

respectively. At low frequencies, group speed is exactly twice the phase speed (see equation (A4.11)
above). Interestingly, the high frequency approximation indicates that group speed g(w) exceeds the
infinite frequency phase speed c.. (in contrast with the analogous situation for phase speed c(w)).

For numerical calculations, group speed may be obtained from the derivative of the complex wavenumber
via

1
g(w) = Re{ (A4.20)

dK (w)/dew}’
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as in Aldridge (2013) for seismic wave propagation.
A4.4 Quality Factor
The quality factor function Q(w) is another diagnostic frequency function for wave propagation problems

(although it is much more common in seismics than in electromagnetics). Quality factor may be written
as a combination of phase speed and attenuation factor as

(A4.21)

Qw) = %{ 0] B C(w)a(a))} |

c(w)a(w) 10}

(O’Connell and Budiansky, 1978). Since phase speed and attenuation factor are even functions of
frequency, the quality factor is an odd function of frequency. Substituting expressions (A4.10a and b) for
c(w) and a(w) and engaging in some algebraic manipulation yields the remarkably simple result

4]

Q(w) = (A4.22)

@

The quality factor for electromagnetic wave propagation is a linear function of frequency which vanishes
at DC. At the transition frequency w: = ofe, quality factor equals unity.

In the special case of a vacuum where the medium conductivity o vanishes, then the transition angular
frequency w: = 0. The phase and group speeds are independent of frequency and equal c.. The
attenuation factor vanishes and the quality factor is infinite. Substitution of the low-frequency
approximations (A4.12a and b) for the phase speed and attenuation factor into the quality factor definition
yields Q(f) = 0, which is characteristic of a diffusion process (e.g., Aldridge, 2013).

Figure Al displays curves of phase speed, attenuation factor, group speed and quality factor as functions
of dimensionless frequency f/ f;, for an electromagnetic medium defined by the parameter values:

relative electric permittivity &/&, =10.0,

relative magnetic permeability s/, =1.0,

current conductivity o =0.01 (A/V)/m= S/m .
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Figure Al. Diagnostic frequency functions for electromagnetic wave propagation, plotted with respect to
dimensionless frequency f/ f.  Blue curve is phase speed c(f) and attenuation factor of(f), normalized by
the respective infinite frequency values. Red curve is group speed g(f), also normalized by the infinite
frequency value. Green curve (linear with frequency) is quality factor Q(f) = f/f;.

Phase speed, attenuation factor, and group speed are normalized by their respective infinite frequency
values. With this normalization, phase speed and attenuation factor curves are identical, and thus are
plotted as the single blue curve. For large values of frequency, the dimensionless phase and group speed
curves approach unity (from below and above) implying that the physical phase and group speeds

approach ¢ = ]/,/ep =9.480x10" m/s . This is about 31.6% of the speed of electromagnetic waves in

a vacuum (C,,. :]/ VEokly = 2.998x10% m/s). Group speed exceeds the asymptotic limit by about

8.9% at 0.58f; . The transition frequency is f; = 1.798 x 107 Hz (or about 18 MHz). Quality factor equals
unity at this frequency, and phase speed, group speed, and attenuation factor are (roughly) constant above
fi, corresponding to wavelike propagation. The infinite frequency attenuation factor is o.. = 0.596 m.

The electromagnetic spectral range used in geophysical exploration is typically much lower than the
transition frequency f;. Hence, Figure A2 depicts normalized phase speed, attenuation factor, and group
speed vs. frequency from DC up to 10 kilohertz. These curves, calculated via the exact formulae, are
indistinguishable from the approximations (A4.12a and b) over this low frequency range. Quality factor
is nearly zero, indicating that EM propagation is almost perfectly diffusive.
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Figure A2. Diagnostic frequency functions for electromagnetic wave propagation, plotted with respect to
physical frequency f in kilohertz. Blue curve is phase speed c(f) and attenuation factor a(f), normalized
by the respective infinite frequency values. Red curve is group speed g(f), also normalized by the infinite
frequency value. Green curve (linear with frequency) is quality factor Q(f).
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11.0 APPENDIX B: REFLECTION AND TRANSMISSION COEFFICIENTS
B1.0 Derivation

Figure B1 below depicts the geometric framework used for deriving expressions for normal incidence
plane wave reflection and transmission coefficients. Medium #1 (characterized by homogeneous and
isotropic EM parameters 1, w1, o1) is separated from medium #2 (&2, iz, 62) by a plane horizontal interface
located at level z = zix. A plane EM wave is incident onto the interface from medium #1; this gives rise to
reflected (in medium #1) and transmitted (in medium #2) plane waves.

Incident EM wavfield: Reflected EM wavfield:
+X E. Nper
inc Href
+y I_Iin:: E
+Z Ninc ref

medium #1
®1. - 01) Interface atz =z,
medium #2
(8. 1y, 0,)

Transmitted EM wavfield:

Etrn

Htrn

r‘trn

Figure B1. Geometric setup of the normal incidence plane wave reflection / transmission problem. Unit
propagation direction vectors of the plane wavefronts are Ninc = Nyn = +€; and Nrer = —€;.

Incident, reflected, and transmitted electric fields are given by

+iKy (0)(z-25)

Einc(z’ a)) = ex Einc(zs ’ (!))e ’ (Bla)
Eref (Z, a)) = exEref (Zint! a))e“Kl(w)(Zim_Z) ! (Blb)

Etrn (Z’ a)) = eX Etrn (Zint’ a))e+iK2 (w)(Z_Zim) " (B].C)
Note that the reflected plane electric wave propagates in the —z direction. The associated incident,
reflected, and transmitted magnetic fields are calculated from the Faraday law via

H(z, 0) = 1o E(z,0) =¢e, LM

- (B2)
lou lou 0Oz

Hence, we obtain
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(z.o)=e, 1(60) Elnc(Zs’a))eHKl(w)(Z_ZS)’ (B3a)

|nc

o
K +iKy (0)(Zjny—2
ref (Z 60) - ( ) Eref (th’a))e o)z ! (B3b)
Hho
K +iK, (0)(z2-2
Hy, (2, 0) =¢, y( )Etm(z,m,a))e Ke(@)z=2n) (B3c)
2

Note that the polarity of the reflected magnetic vector component is reversed with respect to the incident
magnetic vector component (and this is depicted in Figure B1).

At the interface, the tangential components of both the electric and magnetic vectors must be continuous:

Ex(zint’a))|medium1 =E ( 'm’a))|medium2 and Zints )‘medluml (Zim’w)‘mediumz'
Then, substituting from the above expressions yields
Einc( int? Cl)) + Eref (th’ 6()) Etrn(zlnt’ 0)) ! (B4a)
K (o w K
( ) Emc( int? )_L Eref (Zlnt’ )_ ( ) Etrn(zmww)' (B4b)
ho Hho H, 0

where the incident x-component of the electric vector at the horizontal interface z = zj is defined as
Eine(Zin @) = Ejp (2, )@ X072 (B5)
These two wavefield continuity conditions are re-written in matrix/vector form as

+1 -1 E. (2 @) Einc(Zine, @)
{Kl(a»/ul K, (co)/uj { EunZan w)} - {(Kl(w)/ﬂl)am(zm, w)} | (=0

where a common divisor by angular frequency @ has been canceled from the second equation. Next, we
define the reflection coefficient R(w) and transmission coefficient T(w) as

R(a)) = Eref (Zint7 a))/Einc(Zint’ CU) and T((()) = Etrn(zint1 a))/Einc(Zint’ a)) ' (B7a1b)
Then, the above matrix/vector equation is put into the form
+1 -1
R -1
o K@) || R (88)
1K, (@)

The determinant of the 2 x 2 coefficient matrix is A(w) =1+ 1K, (®)/ 1, K, (@), which is non-zero.
Hence, the reflection and transmission coefficient solutions are

128



1— 1K, (o)

_ 1K(0) K (o) i~ K, (@)
- 14 HKa (@) K (@) + Ky (@)1, (B9a)
1K, (@)
and
= 2 = 2Kl(a))//u1 _
T(w)_1+MKz(a’)_ K (@)/ 1, + K, (@) 1, =1+R(@). (B9b)
1K, (@)

These expressions are consistent with equations (3.50) and (3.51) on page 188 in Ward and Hohmann
(1987).

The reflection and transmission coefficients are complex-valued and frequency-dependent. The complex
wavenumbers are Hermitian skew-symmetric (i.e., K(-») = —=K(w)" where the asterisk denotes complex-
conjugation). Hence, it is straightforward to demonstrate that the reflection and transmission coefficients
are Hermitian symmetric (which is equivalent to real part even in w and imaginary part odd in w):

R(-w)=R(w)", T(-0)=T(w)". (B10a,b)

In turn, Hermitian symmetry implies that the time-domain reflected and transmitted electric vectors are
real-valued, as is required.

Low- and high-frequency approximations to the reflection/transmission coefficients may be obtained. At
low frequencies, the complex wavenumber is approximated by

K(w) ~ 1/@ [son(w) +i(1- 5, ()], (B11)

where sgn(w) is the sign function and do(w) is the null function. The second factor in expression (B11) is
necessary to obtain Hermitian skew-symmetry, but is often omitted. The low-frequency reflection and
transmission coefficients become

Rz\/o-l/ﬂl_\/o-z/ﬂz ’ T~ 2o,/ 1 _ (B12a,b)
\/O-l/lul_'_\/GZ/:uZ \/O-l//ul_'_\/GZ/:uZ
The low-frequency approximations are real-valued and independent of frequency (and independent of

electric permittivity ¢). Note that T = 1+R still holds. In the limit as one or the other conductivity
approaches infinity (corresponding to say, pure metal) we have

o,>©0=>R=+land T =2, and o, >c0o=>R=-1and T =0.

[In fact, these two results hold for the exact reflection/transmission coefficient formulae (B9a and b),
without low-frequency approximation.] So, an electromagnetic wave incident onto pure metal (i.e., from

medium #1 with o, finite to medium #2 with o, = 00) is totally reflected, with no transmission into the
metal. Although it is tempting to consider the other limiting situation where one or the other halfspace is
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vacuum, corresponding to zero-valued conductivity o, that would violate the low-frequency assumption
inherent in (B11).

The high-frequency approximation to the complex wavenumber is

K () z@(w+iij. (B13)

Dependence on current conductivity o is retained in the imaginary part. The reflection and transmission
coefficients become

UZ H [@ @J

N (Bl4a)
20 ﬁ+i o
T(w) = m (B14b)

with T(w) = 1 + R(w). Reflection and transmission coefficients are complex-valued and frequency-
dependent. However, in the infinite frequency limit, we obtain the real-valued and frequency-independent
forms

\/gl/ﬂl \/52/,“2 T= N ,
\/gl/ﬂl"‘\/gz/ﬂz \/51//‘1"'\/52/,“2

where the expressions are written as equalities. Note the interestingly mathematical similarity to the low-
frequency analogues (B12a,b). If both conductivities vanish in (Bl4a,b) (implying both media are

vacuum with ¢ =&, = gand g, = 11, = 14,) then R =0 and T = 1. [This result also holds for the exact

reflection/transmission coefficient formulae (B9a and b).] Moreover, as conductivity approaches infinity
(implying media are pure metal) then the previous results remain valid:

(B15a,b)

o, »>o=>R=+land T =2, and o, >co=>R=-1land T =0.

B2.0 Reflection Coefficient Magnitude

The series summation approach pursued in the main text for deriving the total reflection response of a thin
geologic bed requires the inequality HRmp(a)) Rbot(a))H <1, whereR,,,

incidence reflection coefficients associated with the top and bottom bed-bounding interfaces. This
condition enables the summation to pass from a finite number N to an infinite number N — o of terms.

(w)and R, (@) are the normal
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We now establish the inequality. SinceHRmp(a)) Rbot(a))H = HRtop(a))H IRyot(@)[ . it is sufficient to show
that the modulus of a single reflection coefficient is less than unity.

From equation (B9a) above, write the normal incidence reflection coefficient as

R(w) = i(a)) ’ (B16a)
1+ Z(w)

where the dimensionless complex number Z(w) = X(w) +i Y(w) is defined as

Z(w) = ASIO) (B16b)

1K, (w) .

Substituting in the complex wavenumber K(w) = @/c(w)+ia(w)in terms of phase speed c(w) and
attenuation factor a(w) gives the real and imaginary parts of Z(w) as

X (@) = | — 24l 4 { a +a1(w)a2(w)} (B172)
w g (w)z ¢, (w)c, (@)
Cl(a))z '
and
N a{az (@) _ al(w)] (B175)
Y L ((0)2 ¢ (w) c,(w)
C1(a))2 '

Recall that the phase speed and attenuation factor are even and positive functions of angular frequency w
(although they both vanish at @ = 0). Hence, real and imaginary parts are even and odd in angular
frequency, respectively. Moreover, the real part X(w) is strictly positive, whereas the imaginary part Y(w)
may be positive, zero, or negative. Clearly, if the two media are identical, then X(w) = 1 and Y(w) =0,

and the reflection coefficient R(w) vanishes. At DC frequency X (0) =./z0,/1,0, and Y (0) =0,
and the real-valued R/T coefficients of (B12a and b) are obtained. As frequency approaches infinity
X(0) =/ 1€,/ 1,&, andY (o0) =0, and the real-valued R/T coefficients of (B15a and b) are obtained.

We work with the squared modulus of the reflection coefficient. It is straightforward to show that

T R-Z@) _@-X (@) +Y (@) _ 1+ X (@)’ +Y (0)*)-2X (o)

L+Z(@)f @+X(@) +Y(@)? [L+X (@)’ +Y (@)’ )+2X (o)
(B18)

1-Z(w)

Rl =7
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Hence, the squared modulus is the ratio of the difference of two positive numbers to the sum of the same
two positive numbers. [As the third term on the RHS above indicates, the difference in the numerator is
always positive.] This implies that the squared modulus is less than unity, which is sufficient proof that
the modulus of the reflection coefficient is also less than unity. If follows that the modulus of the

reflection coefficient product HRtop(a)) Rbot(a))H <1. QED.

The maximum modulus of the normal incidence reflection coefficient is unity. What about the minimum
modulus? The foregoing analysis prompts an interesting question: can the normal incidence
electromagnetic reflection coefficient vanish, for a model other than the trivial situation where medium #1
is identical to medium #2? Equation (B16a) above indicates that the reflection coefficient R(w) equals
zero when the complex number Z(w) equals unity. Proceed by squaring the definition (B16b) for Z(w),
and then substituting in the squared complex wavenumber

K(w)® =iwou [l-i(e/a,)),

where @, = o/& is the transition (angular) frequency. The result is

)2 = (0'2/51){1_“&)/(02)}
2O ) | 1w ) | o

where w: and w; are transition frequencies for media #1 and #2, respectively. Next, define three
dimensionless ratios of medium properties as

r =o,/o,, =1,/ 1, r=e/&, (B20a,b,c)

and recognize that @, /@, =r_/r, . Then quantity Z(w)? can be recast as

Z(w)? :r_o—|:1_i(r£/ra)(a)/a)l):|. (B21)

r 1-i(w/ ;)

u
Interestingly, this relation indicates that the normal incidence plane wave reflection coefficient between
two homogeneous and isotropic media (which includes six independently-specifiable EM parameters) can
be expressed in terms of four parameters (three dimensionless ratios and a single transition frequency).

We now ask an equivalent question: can Z(w)® =+1? Inspection reveals two obvious cases where the
answer is clearly “yes”:

Case 1: DC frequency w=0. Then choose r, =1, =r, where r is any positive real number. Then

Z(0)* = +1, implying Z(0) =+1, implying R(0) =0 or R(0) =co. [The latter is an extraneous root
introduced into the solution.] Even though the electric permittivities & and &, of the two media may
differ, the DC reflection coefficient vanishes.

. _ _ _ 2 _ - . _ - - _
Case 2: Choose I, =r,=r,=r. Then Z(w)" =+1, implying Z(w) =1, implying R(w) =0 or
R(w) =o. The reflection coefficient vanishes for all frequencies. This is the interesting case where
medium #2 is a scaled version of medium #1: (o, 1,,5,)=r(cy, 14,€,). In effect, medium #2 is
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completely transparent to an incident EM wave; the transmission coefficient is T(w) = 1 + R(w) = 1. This
constitutes a generalization of the previously-noted trivial case where r = 1.

Moreover, these appear to be the only two cases with vanishing normal-incidence reflection coefficient.
Solving expression (B21) with Z(w)? = +1 for the dimensionless frequency @/, gives

o _ {1—(@/9)}

2] l_(rg/ry)

Hence for general r_, rﬂ,and r., there is no real-valued frequency that satisfies this relation. For

ro_/r# =1 (Case 1), real-valued w = 0 satisfies; if in addition rg/ry =1(Case 2), then the frequency for
vanishing R(w) is indeterminate.

Upon further reflection (ha ha!), equation (B19) above suggests that only three parameters determine a
normal incidence reflection coefficient:

O. r O
a)lz_l’ p :2—/11

o _ 50,
& r, O,

r
£ = (B22a,b,c)
r £,0,

7 q

o

Note that parameters p and g are dimensionless. Quantity Z(w) is re-written in terms of the parameters as

Z(w) = p"*[1-ia(w/ @) [L-ile/m)] .

Expanding to first-order in dimensionless frequency w/w: yields
12 1-q).
Z(w)=p [l+(7jl(a)/a)l)}

Finally, substituting this into equation (B16a) for the normal incidence reflection coefficient gives the
first-order expansion

R(w) ~ R(0) + { (pllf S“_Z ?2)} (_a')w] , (B23a)

where the DC reflection coefficient is

» 1— I 1- O
1- Ve \o
R(O)El pl/Z - == e
+
P 1+ {r—“ 1+ /%
r, O14,
The dependence on only three parameters is obvious in approximation (B23a); note that the first-order

term vanishes for q = 1. Re-writing the reflection coefficient in terms of the material parameter ratios
(B20a,b,c) yields the form

(B23b)
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(B24)

R T R ) (_O,J
1+m (1+M)2 ,

So, the zeroth-order term DC reflection coefficient R(0) vanishes for r, =r, =r (as per Case 1 above)
yielding the first-order approximation

R@), _, z{w} ['—wj (B252)

4 10}

If in addition r, = r (as per Case 2 above), then the first-order term also vanishes. The analysis for Case
2 clearly indicates that all higher-order terms in a frequency series expansion must vanish.

Figure B2 illustrates the phenomenon of zero-valued EM reflection coefficients. A three layer earth
model is considered, with relative (i.e., dimensionless) permittivity & = /&, , permeability &2 = 1/ 11, ,

and conductivity 6 = (7/(7 (with o, =1S/m) for the three media given by:

Medium #1: (é‘l,ﬂl, &1): (1,1,1),

Medium #2: (£,, 41,,6,)=(10,10,10),

Medium #3: (&, i, 6,)=(L11).
Hence, layer parameters are 10 times larger than those of the overlying and underlying halfspaces. Both
the top-bed and bottom-bed reflection coefficients vanish. The total reflection response of the bed, as

indicated in the top panel of Figure B2, equals zero. In effect, the embedded layer (h = 10 m thick) is
transparent to EM plane waves normally incident from the overlying medium #1. When the conductivity

of the layer is changed to &, =15S/m (and all other medium parameters remain the same), the results

depicted in Figure B3 are obtained. A weak inverted-polarity reflection appears, although the transmitted
response appears virtually identical to that in Figure B2.

ref
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Figure B2. Reflected (top panel) and transmitted (bottom panel) electric vector x-components from an
“invisible” or “transparent” geologic layer with thickness h = 10 m. Relative (i.e., dimensionless)

permittivity £ = &/ &, , permeability & = 1/ 11, , and conductivity & = o/ (with o, =1S/m) for the

three media are:

(él’ :[‘1’ 6_1) = (111’1) ' (éz ) ,[‘2 ' 6'2 ) = (10’10110) ' (és’ /[‘3' &3) = (1’1'1)-

The reflected response vanishes because both the top-bed and bottom-bed reflection coefficients
numerically equal 0.0.
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Figure B3. Reflected (top panel) and transmitted (bottom panel) electric vector x-components from a
geologic layer with thickness h = 10 m. All medium parameters are the same as in Figure B2, except the

relative (i.e., dimensionless) conductivity 6 assigned to the layer (medium #2) is 6, =155/m. A weak
reflected response is generated, and the transmitted response appears to be nearly unchanged (compare

with Figu

re B2).

We have obtained a similar “reflectionless” response using an embedded layer with parameters equal to
1/10 of the enclosing two halfspaces, although these are not displayed here. Modeling results in Figures
B2 and B3 are obtained with an EK source wavelet (see Aldridge, 2013, page 36) with duration T =1
second and unit amplitude. A 50% duty cycle alternating-polarity sequence of wavelets is used; the first
two pulses are visible in the bottom panels. Receivers sensing reflected and transmitted EM responses are
located 50 m from the center of the embedded geologic layer.
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The existence of a zero-valued normal incidence reflection coefficient does not appear to be well-known
in electromagnetic geophysics. Perhaps it is difficult to engineer a material where all three EM medium
parameters scale identically. Some discussion of the analogous phenomenon in seismic geophysics is
given by Levin (1986), who considers a non-normal incident compressional elastic wave. The normal
incidence elastic (P-wave or S-wave) reflection coefficient is commonly given by

R= PN, — P1Vy _ Z-1
PNy oY, Z+1

PNy
=rr, ,or

PV
the product of the two dimensionless parameter ratios r, = p,/p.and 1, =V, /v, . Clearly r,=r,=1

where p is mass density and v is wavespeed (either P or S). Quantity Z is defined asZ =

implies R = 0. However, if density and velocity of medium #2 are scaled by the same factor r, a
vanishing reflection coefficient is not obtained. Consider re-parameterizing the reflection coefficient in
terms of mass buoyancy b = 1/p or slowness s = 1/v. The reflection coefficient becomes

Z-1 r r
R=="—"withZ="=2 withr,=b,/band r. =5s,/s. .
Z+1 rb r b 2/1 S 2/1

S

Quantity Z is now re-cast as a quotient of two dimensionless parameter ratios. If both ratios scale by the
same factor, then Z = 1 and the reflection coefficient vanishes. So, the key to obtaining a zero-valued
reflection coefficient is to find a suitable parameterization that makes quantity Z contain only guotients of
dimensionless parameter ratios, as equation (B21) above is.

B3.0 Electromagnetic Fields

Finally, we give the reflected and transmitted electric and magnetic vector components. From equations
(B1b and c) above, the Fourier transformed electric vectors are

E"Ef (Z' a)) = ex R(w)Einc(Zint! a))e”Kl(w)(zim_Z)

= ex R(a))Einc(Zs ’ a))e+iK1(w)(22im_Zs_z) y fOI’ Z < Zint. (8268.)
E’[rn (Za 60) = exT (CO) EinC(Zint! a))e+iK2 (0)(2-2jny)

=e,T(@)E, (2, @)e (Wm0 GXz0) = for 7> 73y, (B26b)

Reflected and transmitted Fourier transformed magnetic fields, from equations (B3b and c), are

Href (Z, a)) = _ey m R(a)) Einc(zint1 a))eJriKl(w)(ZinﬁZ)
Hao
=—€, M R(w) EinC(Zs , a))e”Kl(“’)(ZZiansfz) , for z < i, (B272)
Hho
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K :
H,.(z,0)=¢e, MT(@) E, (2, @)e" @
H, 0

K,(®)

—e, 2T E (7., @)e O K@) g g s g
inc s? ' .

y
H @

At low frequencies, the multiplicative factor K(w)/w is given by

K@) | i
. ~\/J[lﬂsgn(a))],

which presents a problem for numerical evaluation at DC frequency.
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12.0 APPENDIX C: ALTERNATIVE DERIVATIONAL APPROACH

The derivational approach pursued in the main text involves summing terms in an infinite series. Each
term represents a particular reflected or transmitted phase. Remarkably, the series may be evaluated in
closed form via the famous geometric progression formula. In this Appendix, we pursue an alternative
derivational approach that yields (as fully expected!) identical results for the reflected and transmitted
responses. In the limit as the number of terms in the series becomes infinite (and provided a
mathematical condition on the reflection coefficients is satisfied; see Appendix B) the two approaches are
demonstrated to be equivalent.

Within a homogeneous and isotropic medium, plane wave solutions of the frequency-domain Maxwell
equations are proportional to the complex exponentials exp [J_riK(a;)z], where K(w) is the complex

wavenumber.  Hence, within media #1, #2, and #3, the x-components of the electric vector may be
written in the general forms

E, (@) ... =Epnc(Z,, @)e"™ ) 4 A(g)e ™, (Cla)
E, (2,0)] iy, = B(@)e™ " +Ca)e ™", (C1b)
E (z.0)| . . =D(we™ " (Clc)

Terms proportional to exp [+iK(a>)z] represent downward propagating (+z direction) energy, whereas

those proportional to exp[—iK(a))z] represent upward propagating (—z direction) energy. The four

frequency-dependent coefficients A(w), B(w), C(w), and D(w) are determined by imposing boundary
conditions at the two horizontal interfaces. Note that, as per expression (C1b), there are both upward and
downward propagating waves within the thin bed.

Magnetic vector y-components are obtained from the Fourier-transformed Faraday law via

H(z o) = ——curl E(z,0) e, —+ 25x(20). (C2)
oy Yiou oz

Hence, the y-components of the magnetic vector are given by

K, (@ +iK, (w)(z-12 -iK; (w)z
Hy(z’a))‘rmdiuml =%J.)[Einc(zs1a))e ale)z=z.) —A(O))e () ]’ (C3a)
K, (@ +iK, (w)z —-iK, (w)z
Hy(z’a))‘mediumZ 2%2)[8(0))9 o _C(a))e e ]’ (C3b)
K .
Hy(z,a))‘ _ _ K@) D(w)e™™7. (C3c)
medium3 a)/u3

At the two interfaces z = zip and z = zuot, the electric and magnetic vector components are continuous.
Application of these boundary conditions yields the four expressions
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Einc(zs ’ a))eJriKl(w)(zmp—zs) + 'B\(a))e—iKl(w)z‘[Jp _ B((())e+iK2 (0)20p + C(a))e—iKz (0)20p , (C4a)

Kl (a)) [Einc(zs , w)eﬂKl(m)(zmpfzs) eXp— A(a))efiKl(w)z‘Dp ]
1
_ K2 (a)) I:B(a))e+iKz(a))zmp _ C(a))e—iKz(a))zmp :I, (C4b)
H

B(a))e+iK2(w)me +C(a))e—iKz(‘0)Zbot — D(a))e+iK3(w)Zb°‘ , (C4c)
K i i K i

2 (0)) [B(a))eHKz (@) Zpoy _ C(a))e_IKZ (@) Zpoy ] — 3 (a)) D(a))e+lK3(a))Zbot . (C4d)

M, Hs

Or, organized as a 4 x 4 system of linear algebraic equations:

_e_iKl(a))Ztop _e+iK2(w)Zmp _e—iKz(w)Zmp 0
—iKy ()2 m Ky (®) 1K, (@)z, mKy (@)  —iK, (0)z, A(w)
e . —€ P ——€ P 0
oKy (@) oKy (@) B(CO)
_e*iKZ (@) Zpot _efiKZ(w)Zbot e+iK3(w)Zbo! C(a))
0 _#3K2(0))e+iK2(w)zbm H3Ko (@) e Ko (@no @K@ || D(gp)
L ﬂng(a’) ﬂgKg(a’) a
+iKy (@0)(2p,—-25)
_Einc(zs’a))e ' o
+iKy (0)(Zp —25)
- Emc(zs,w)eo T (C5)
0

Rather than solve this 4 x 4 system directly, we reduce it to a simpler 2 x 2 system. The first and last
equations of (C5) are written as

A(C())eiiKl(w)Zm _ B(a))eJriK2 (0)2i0p + C(a))e—iKz(w)zmp _ Einc(zs , a))e+iK1(w)zmp—zs) , (C6a)

D(a))e+lK3(w)Zb°l — B(a)) IUSKZ (Cl)) e‘HKz(W)Zbot _C(a)) 'Ll3 2 (a)) e_'Kz(a))Zbut

, (Céb)
1, K5 (o) 1K (o)

respectively. Then, eliminating coefficients A(w) and D(w) from system (C5) yields

B(w)e M er {1+ M} +C(w)e e {ym} =2E, (z,,w)e™" =7 (C7a)

Ho Kl (a)) H K1(0))
B(w)e "™z {1— M} +C(w)e () [1+ M} =0. (C7b)
1K (@) H#K;(w)

The determinant of this 2 x 2 system is
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A= (1+ p)(l+ q)e_iKZ(w)(Zbot_Ztnp) _(1_ p)(l— q)e+iK2(w)(me_ZmP) ,

K
with p and g defined by p EM q E,us—z(a)). From Appendix B, normal incidence
1K, (o) 1Ky (@)
reflection coefficients at the top and bottom interfaces are given in terms of p and q by
Riop = =p , and Rpot = 9-1 :
1+p g+1
1-R
This implies p=——=  and _ 1R Hence, we have
+ Rtop 1- bot
2R _

l+p= , 1-p=—2_ 1+q= 2 , 1_q:ﬂ.

1+ RtOp 1+ Rtop 1-R,, 1-R,,

Then, the determinant of 2 x 2 system (C7a,b) is re-expressed as

Ao Kz (@) (1

_ +R_R e+iK2(w)2h),
(1+ Rtop)(l_ Rbot)

top’ ‘bot

where bed thickness is h = zpot — ziop.  Interestingly (and not surprisingly), the determinant contains the
factor obtained from summing the infinite series (3.4b). Solution of 2 x 2 system (C7) for coefficients
B(w) and C(w) yields

E. (z w)(l+R )e+iK1(aI)(Zmp—Zs)e+iK2(w)he—iK2(a))zhm
inc\“s? op

+iK, (w)2h
1+ Rtoprote ’

B(w) = , (C8a)

E..(z,, @) (1+R

. )RbOte+iKl(a))(Zmp—Zs)e+iK2(w)he+iK2((0)zbm
p

+iK, (®)2h
1+ Rtoprote ’

C(w) = (C8b)

Substituting into equations (C6a and b) gives solutions for the remaining coefficients A(w) and D(w) as

+iKy (0)(220p-25) Tk (o
A — Einc(ZS'w)e I i i (Rtop + Rbote el )Zh) C8
- 1+R_R_g*Ka(@)2h , (C80)
top” “hot
Einc (25, @)1+ Rtop)(1+ Rbot)e+iK1(w)(zwpizS)eHKz(a))he_iKS(m)Zbot

1+ Rtoprote+iK2 (w)2h

Finally, introducing the coefficients into equations (Cla,b,c) gives the electric vector x-components in the
three media as (next page):
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EX(ZI,,O))| = EinC(Zs,a))e+iK1(”’)(Zf_zs)

mediuml

i h
+ E (Z a))e+iK1(w)(22“°"_Z'_Zs) Rtop(a)) + Rbot(a))eHKZ(w)z
Inc\=s? l+ Rtop(a)) Rbot(a))e+iK2 (@)2h |

(C9%)

Ex (Zr ’ 60)| Einc(zs ) a))eHKl((U)(ZmiZS)eHKZ(w)(zrizm)

medium2

) [(1+ Rigp (@) L+ Ry () (120000720 )} (C9b)

1+ Rtop(a)) RbOt(w)e+iKz(w)2h

iK B ) ) )
EX(Zr,C{))| — Einc(ZS,a))eH 1 (@)(Zp Zs)e+IK2(a))he+|K3(a))(zr Zoot)

medium3

X l: (1+Rtop(a)))(1+ Rbot(a))) }’ (C90)

1+ Rtop (@) Rbot(a))e+i|<2 (w)2n

where we have explicitly re-introduced the frequency-dependence of the two reflection coefficients.
Equation (C9a) contains the thin bed reflection response (in addition to the incident wave), and equation
(C9c) is the thin-bed transmission response. These are identical to equations (3.13) and (4.3b) of the main
text. Expression (C9b) is new; it yields the response within the thin bed (i.e, for zwp < Z < Zyer), and is
comprised of both upward and downward propagating waves.

Equations (C3a,b,c) above give the magnetic vector y-components within the three media. Thus, magnetic
induction vector components (= uHy) are

_K w +iK, (w)(z, -2
By(zr,co)\rnediuml :ulHy(z,a))‘mediuml :[ 1a() )jEinc(Zs’w)e Ky ()2, -24)
_K @ +iKy (@)(22pp -2, -2 Ro (a))—|— R o (a))e”Kz(w)Zh
_( 1( ))Emc(zs,a))e Ky (@)(2 p4r s) top bot JriKz(w)Zh , (Cloa)
@ 1+ Rtop(a)) Ry (@w)e
K, (o Ky (0)(Zigp 25 ) ~+iK, (@) 2, 2
BV(Z“a))‘mediumz:"’ZHy(Zr’a))‘mdium:( A )]Einc(zya))e Ka (@) 2ap25) g +Ka (@) 2 ~205)
_ +iK; (0)2(Zpr—2,)
[0+ Rep(@) R (e o ) | oo
1+ Rmp(a)) R, (w)e™ 2 (@)

and
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B, (z,, )| = 1.H, (2, 0)|

medium3 medium3

) ( K3(a’)j Einc (25, w)e 1Nt 8) ik (@h o +iKs (@)Z =250
(4]

(L+ Ry (@) L+ Ry ()

: . Cl0c
L+ Ry (@R (@) .

Expressions (C10a and c) are consistent with equations (3.15a) and (4.6a) of the main text. Note the sign
changes in equations (C10a and b) compared with (C9a and b)!

An interesting observation from the analysis in this Appendix is that the inequality condition

HRtop(co)Rbm(a))H <1 is not required to establish the correct reflection, transmission, and intrabed EM
responses. This contrasts with the series summation approach utilized in the main text, where this
condition is explicitly required for the number of terms in the finite sum to become infinite. Hence, we

conclude that the inequality condition is an “automatic” or “necessary” result arising from basic
electromagnetic theory, not requiring an additional proof (as we give in Appendix A).
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13.0 APPENDIX D: FIRST BORN APPROXIMATION

D1.0 Heterogeneous Medium

Consider a set of electromagnetic body sources (i.e., current density j,(X,t), magnetic induction

b.(x,t), and electric displacement d (x,t)) applied to an isotropic medium characterized by

permittivity e(x), permeability u(x), and conductivity o(x). Within the three-dimensional volume V
occupied by the body, the electric field vector e(x,t) and magnetic field vector h(x,t) satisfy the coupled
first-order partial differential system (i.e., the EH PDE system (Al.3a and b)):

ad, (x)

£(X) % + o(x)e(x,t) —curl h(x,t) = —j, (x,t) — p (D1.1a)
,u(x)%+curl e(x,t) = —w. (D1.1b)

Electric and magnetic boundary conditions are applied to the surface S bounding V (this surface may be
infinitely far away). We adopt a general point of view that these boundary conditions are represented by
linear differential operators acting on the electric and magnetic vectors:

G, {e(x.t)}=v(x,t) for xeS,, G, {h(x,t)}=w(x,t) for xeS,, (D1.1c,d)

where S, US, =S, and v(x,t) and w(x,t) are prescribed vector-valued functions. Operators G, and
Gn may involve space and time differentiations, but linearity in the sense of the additive superposition

Glce, (X, 1) +c,e, (X 1)} =c,Gle, (x,1)}+¢,Gle, (x,1)} ,

must hold. Finally, at time to, the initial conditions

e(x,t,)=e,(x), h(x,t,)=h,(x), (D1.1e/f)
hold throughout V and on S.

Now consider a medium occupying the same volume V, but characterized by the slightly different
electromagnetic parameters

e(X) + (X)), LX)+ ou(x), o(X) + oo (X).

The two space-dependent perturbations de(x) and du(x) are considered small compared to &(x) and u(x),
respectively. However, in the case where the conductivity o(x) vanishes (i.e., the medium at x is
vacuum), then perturbation do(X) is obviously not small compared to o(x). Moreover, a slightly different

set of body sources, boundary conditions, and initial conditions are applied to this perturbed medium.
These new sources of electromagnetic waves are given by

j (%, 1)+ 8j, (x.1), b, (x,t)+8b, (x,1), d,(x,t)+&d (x,t),

V(X,1)+dv(x,t), w(x,t)+dw(x,t),
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&, (X)+de, (X), h,(X)+8h, (X).

The above EM wavefield body sources, boundary conditions, and initial conditions generate perturbed
electric and magnetic field vectors given by

e(x,t) +oe(x,t), h(x,t) + 8h(x,t),

respectively, where de(x,t) and dh(x,t) represent corresponding small variations. These new electric and
magnetic fields satisfy the coupled EH PDE system

oe(xt) N 0 de(x,1)
ot ot

[e(x) + &(x)]{ }L [0(X) + 5o (x)][e(x, 1) + de(x,1)]
ads(x,t)  2dd (x,t)

—curl h(x,t) —curl 8h(x,t) = —j, (x,t) — 8j, (x,t) — o

(D1.2a)

[1(x) + 5,u(x)][a h(xt) , aﬁh(x,t)} +curl e(x,t) +curl de(x,t) = — 0b, (1) _0db,(x.) ,
ot ot ot

(D1.2b)
for x within V. On the bounding surface S, the electric and magnetic conditions
G, {e(x,t)+de(x,t)}= v(x,t) +dv(x,t) for xeS,, (D1.2¢)
G, {h(x,t)+8h(x,t)} = w(x,t) +dw(x,t) for xeS,, (D1.2d)
hold. Finally, at time to, the total EM wavefield satisfies the initial conditions
e(X,t, )+ de(X,t, ) =€, (X) + e, (X), (D1.2¢)
h(x,t, )+ 8h(x,t,) = h, (X) +8h,(X), (D1.2f)

throughout V and on S.

Subtracting equations (D1.1a,b) from (D1.2a,b) gives

£(x) fiﬁeT(x,t) + o(x)oe(x,t) —curl dh(x,t) + [55 (x) %eT(x,t) + oo (X)oe(X, t)}
=—-0j,(X,t) —%djT(X’t) —&(x)% — oo (x)e(x,t),
and
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d8h(x,t) 0 h(X H

#(X)

—qu(X)——

+curl de(x,t) + {é‘ﬂ(x) 0 6h(x,t)} __08b (x,1)

ot ot

This system is simplified by neglecting the terms (in square brackets) that are products in (presumed)
small quantities. Thus, the PDEs governing the perturbation electromagnetic wavefield become

£(x) 98e(x.1) + o(x)oe(x,t) —curl dh(x,t)
s 3 ~ 0dd(x.t) oe(X, t)
~ —0j, (X, t) — oo (X) e(x,t) —Qa o (X)———= p
(D1.33)
ﬂ(x)aﬁh—(x,t) +curl de(x,t) = _%b;T(x,t) u(X)—/———= 0 h(x t) (D1.3b)

where approximate equality symbols indicate that the expressions are appropriate for small material
parameter perturbations. Additionally, subtracting equations (D1.1c-f)) from (D1.2¢-f)) implies that the
perturbation wavefield satisfies (exactly!) the boundary and initial conditions

G, {6e(x,t)}=dv(x,t) for xeS,, G, Bh(x,t)}=dw(x,t) for xeS,, (D1.3c,d)
de(x,t, ) = de, (X), dh(x,t,)=5h,(x). (D1.3e,)

Note that we have appealed to the linearity property of differential operators Ge and Gy, in obtaining
equations (D1.3c and d).

The solution of equations (D1.3) constitutes the First Born Approximation for the perturbation wavefield.
These expressions have a straightforward interpretation. The perturbation wavefield [6e(x,t) and dh(x,1)]
propagates within the original (i.e., unperturbed) medium characterized by parameters &(x), u(x), and o(x).
This wavefield is generated by a combination of time-varying body sources [8js(x,t), 8ds(xt), and
obs(x,t)], time-varying boundary conditions [dv(x,t) and dw(x,t)], as well as time-invariant initial
conditions [deo(X) and 6ho(x)]. However, in a typical electromagnetic experiment, it is unlikely that all of
these source types will be simultaneously active. Finally, the perturbation wavefield is also sourced by
effective body sources that depend on the material parameter perturbations:

0j . (X,1) = o (X)e(x,t), (D1.4a)
od , (X,t) = e (X)e(x,t), (D1.4b)
ob  (X,t) = u(x)h(x,t). (D1.4c)

Clearly, these effective body sources vanish at positions x in V where the material property perturbations
equal zero. The sources are also directly proportional to the primary (or “incident” or “reference”)
electromagnetic field vectors e(x,t) and h(x,t).

The first Born approximation may be advantageously utilized in electromagnetic modeling in the
following manner: First, given a “background” model represented by the three EM parameters
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o(X), e(X),and u(x), the EH partial differential system (D1.1a,b) is solved for the electric vector e(x,t)

and magnetic vector h(x,t) [subject to the boundary conditions (D1.1c,d) and initial conditions (D1.1e,f)].
This electromagnetic field is referred to as the “primary” or “incident” EM wavefield. During this
modeling run e(x,t) and h(x,t) are stored at all positions x in the model where perturbations to the three
medium parameters do (X), o (X), and du(x) are subsequently inserted into the background model.

Next, partial differential system (D1.3a,b) is solved for perturbations de(x,t) and 8h(x,t) to the primary
electric and magnetic vectors. PDE system (D1.3a,b) is mathematically identical to the original system
(D1.1a,b); only the right-hand-side terms representing body sources of EM waves change. Hence, the
same numerical algorithm may be used for solution. According to equations (D1.4a,b,c), the effective
body sources (conduction current, electric displacement, magnetic induction) for this second modeling
run are localized in the EM earth model at precisely those positions where corresponding perturbations to
medium parameters oo (X), o€ (X), and Ju(X) are inserted. The sources are directly proportional to the

strength of the perturbations, as well as the primary field vectors. The total electromagnetic response at
any receiver position x; is well-approximated by the sums e(x:,t) + de(x,t) and h(x,t) + dh(x,t).

An advantage of this First Born Approximation approach is that it provides a mechanism for modeling the
electromagnetic response to variations (or perturbations) in medium parameters that are small with
respect to the spatial discretization basis (i.e., grid interval) of a numerical algorithm. The obvious
disadvantages are that 1) two modeling runs are necessary, and 2) the mathematical underpinning of the
approach is approximate. In particular, the method does not account for any wave scattering between the
perturbations and the background earth model. Nevertheless, if the magnitudes of the perturbations are
small, the First Born Approximation is considered by geophysicists to be reasonably accurate.

D2.0 Homogeneous Medium
The first-order “de-8h system” (D1.3a and b) above applies to heterogeneous media. For homogeneous

media (i.e., e(X) = &, u(X) = u, o(X) = o), the equations may be combined to yield separated second-order
partial differential equations for 6e and &h:

2
0 6;(},0 +ou 0de(x,1) +curl curl de(x,t)
09 (x,t)  2°8d (x,t) dcurldb (xt)
T T we ot
08jq (xt)  0°8dy (x,t) acurldby (xt)
a at |

0% dh(x,t 0 8h(x,t
atg )+w (X,1)

+curl curl 8h(x,t)

dcurl 8d (x,t) 09, (xt) ; 0° 8b_(x,t)
ot ot ot
ocurl dd,, (x,t)  98b (x,t)  8°3b, (X,t)
— O ot —& 6'[2 .

=curl §j,(x,t) +

+curl 8j., (X,t) +

Note that each physical EM wavefield source term is mimicked by an analogous effective source (e.g.,
djs(x,t) and djerr(x,t), etc.). Eliminating the double curl partial differential operations via

curl curl = grad div — V?yields the variants (next page):

148



0de(x,t)  0°de(xt)

V?8e(x,t) —grad div de(x,t) — ou

ot ot?
. 2
. 09j,(x,t) o 0 6d52(x,t) N ocurl b (x,t)
ot ot ot
0d8j (x,t) 07 dd (x,t) ocurl db (x,t)
+ + + , D2.1a
H— H— p ( )
2
V2h(x.t) —grad div sh(x,t) — qu & alg(tx’ _g0 f’ahtgx’ﬂ
2
— —curl 8, () — ocurl ad (x,t) o 08b (X,t) te 0 Sbsz(x,t)
ot ot ot
ocurl dd_ (x,t 0 db (X, 0% db, (x,t
—curl &j,, (x,t) — ateﬁ( )+a egt( )+g aetf;( ).(D2.1b)

The left-hand-sides of these two equations have the same mathematical form. We now investigate
whether the two grad div terms can be eliminated in favor of electromagnetic body sources, as in
Appendix A. Pursuing exactly the same analysis as there yields the two expressions

grad div Se(x,t) = -~ H (t)exp [—gtj*{grad div (8, (x,t) + 8j (x.1))
& &
grad div (8, (x,t) + &j. (x,1)) |,

and
grad div 3h(x,t) = -~ grad div (3b, (x,t) + by, (x.1)).
7

Interestingly, whenever a physical body source term appears, it is coupled with the analogous effective
body source term. Substituting these expressions into equations (D2.1a and b) yields

dde(x,t) 0 de(xt)

V28e(x,t) —
e(X,t) —ou p e

- ﬂ%(ﬁjs(X,t) + Oj (X,t))+ yst—zz(ﬁds(x,t) +8d,, (x,t))
+§(curl ob_(x,t) +curl 8b (x,t)),
_ % H (t)eXIO(—%tj*{grad div (ﬁjs(x,t) + 8] (x,t))

+§grad div (5, (x,t) + 8d,, (x,t))}, (D2.22)

149



and

d8h(x,t)  0° 8h(x,t)
a7

— —curl (5], (x,t) + 8j,, (x,t))—%(cu fl d, (x,t) + curl d,, (x.t))

V?8h(x,t) — ou

4 a%(ﬁbs(x,t) +8b,, (X.1))+ ggt—zz(ﬁbs(x,t) +8b,, (x.1))

~ 1 grad div (5b, (x,t) + 3b., x.t)). (D2.2b)
Y7,

These have the same mathematical forms as partial differential equations (A2.4a and b) in Appendix A
for the primary electric and magnetic fields e(x,t) and h(x,t), respectively. In the common case where
there are no additional body sources 8js, 8ds, and 8bs active in the perturbed medium, then the secondary
or scattered fields are governed by the simpler PDEs:

0 de(x,t 0° de(X,t
( )_(gu (x,t)

V2oe(x,t) —
(X,t) —ou 2t e

0 .. 0 0
= /Jaﬁ]eﬂ (X,t) + ﬂESdeﬁ (X,t) + Ecurl 6beff (X,t)
- H(t)exp [— gt)*{grad div §j¢ (X,t) + %grad div &d (x,t)} : (D2.3a)
& &

and

d8h(x,t) 0% 8h(x,t)

V?8h(x,t) —ou - s

. 0 0 o°
=—curl 8j 4 (X,t) — acu rlod,, (X,t) + aa ob. (X,1)+ gyébeﬁ (x,1)

~Lgraddivab,, (x1). (D2.3b)
7

The scattered electromagnetic fields arise solely from spatially-dependent perturbations de(X), du(x), and
do(x) in the medium properties. Often, the transition frequency w: = o/e is so large that the convolutional
source term can be neglected.

D3.0 A Born Series

The focus of the present work is the First Born Approximation (FBA). However, there is some interest in
the relationship of the FBA to higher-order Born Approximations (i.e., second, third,...and so on). We
develop one such relationship in this sub-section. The mathematical approach is identical to that used by
Snieder and Aldridge (1995) to develop higher-order perturbations to the eikonal equation for seismic
wave propagation traveltimes.
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The point of departure for the analysis is the first-order EH partial differential system (D1.1a,b) governing
the electric vector e(x,t) and magnetic vector h(x,t). As before, perturb the medium supporting EM wave
propagation/diffusion according to

(00 =60 +nEX), a0 =) +nu(),  o()=oX)+nie(x),  (D3labg)

where 7 is a small dimensionless number (0 < » < 1) (basically, a bookkeeping parameter for the
subsequent expansions). Then, we assume that the EM wavefields can be expressed via the infinite series

e(x.) =e,(x.) + S, (x.) h(xt) =hy(x,t) + > 5"h, (x.). (D3.2,0)

n=1

Subscript n = 0,1,2,.... refers to the “order” of the EM wavefield perturbations. We tacitly assume that
the series expansions exist, in the sense of converging to finite values. Proof of this proposition is well
beyond the scope of this investigation; in fact, convergence is almost certainly situation (i.e., model)
dependent.

Substitute the perturbations (D3.1a,b,c) and the series expansions (D3.2a,b) into EH system, and collect
terms in powers of . The Ampere-Maxwell Law (D1.1a) becomes.

{‘90 (X)aeoT(X’t) + 0, (X)e, (X, 1) —curl hy (X, t) + j, (x,t) + %}

+ 77{50 (x)% + o, (X)e, (x,t) —curl h (x,t) + do (X)e, (X,t) + &(x)aeoT(X't)}
+n2{go(X)aezT(X"‘)+ao(x)e2(x,t) —curl h,(x,t) + oo (x)e, (x,t) +&~(x)%}
+-~+U”{go(x)ae”T(X’t)+0'0(x)en(x,t)—curl hn(X't)+5O'(X)en_1(X,t)+§€(X)ae”‘alt(x’t)}:0_
(D3.3a)

The Faraday Law (D1.1b) becomes

{ﬂo (X)% +eurl ey (x,t) +w}
+ 77{,“0 (X)% +curle, (x,t) + 5;@0%}

2 oh,(x.1) oh, (x,t)
+7 {/uo (X) ot +curl ez(x,t) + é;u()()—at }
+"'+’7n{ﬂo(x)w+curl en(X,t)+5u(X)W}=0. (D3.3b)
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Both equations can be satisfied by equating terms in successive powers of parameter » to zero. This
yields the following progression of EH PDE systems:

Zeroth-order EH system:

g (x)anT(X’t) + 0, (X)e, (X, 1) —curl hy (x,t) = —j, (X, 1) —% , (D3.4a)

,uo(x)M+curl e,(x,t) :—%. (D3.4b)
First-order EH system:

&(X) % + o,(X)e, (x,t) —curl h (X,t) = -do (X)e, (X,t) — & (X) c’}eOT(x,t) , (D3.5a)

Ho (X)M-FCUH e, (x,1) =—5y(x)w. (D3.5b)
Second-order EH system:

2,00 2820 L o 96 () — curl h, (x.t) =~ (x)e, (x,t) — &(x)% | (D3.6a)

,uo(x)M+curl e,(xt) :—6,u(x)M. (D3.6b)

ot

nth-order EH system:

& (x)ae"T(X’t) + o, (X)e, (X, t) —curl h_(x,t) = —do (X)e, , (x,t) - &(x)ae#(x’t) . (D3.73)
oh, (x,t)

1y (X) +curl e, (X,t) =—-du(X)

N, (X 0) (D3.7b)
s .

Note that the coefficients on the left-hand-sides of all systems are the EM medium parameters of the
“zeroth-order” or “background” or “reference” earth model. Hence, the nth-order perturbations are
thought of as propagating within the zero-order earth model. Also, in developing the above PDE systems,
we have not utilized any approximations, as in neglecting product terms in the previous derivation of the
FBA. An obvious solution strategy for this recurrent system of PDEs is as follows:

Solve the zeroth-order EH system first, with physical body source terms on the right-hand-sides. Then
solve the first-order EH system with effective body sources that depend on zeroth-order solution. This
first-order solution is the classical “First Born Approximation”. Then, solve the second-order EH system
with effective body sources that depend on first-order solution. And so on... The same numerical
algorithm can be used to solve for each perturbation order, because each of the above PDE systems is the
same mathematical EH system. The approach is algorithmically achievable because the effective body
sources for the nt"-order EH system depend on the previously-calculated (n-1)"-order wavefield
perturbations.

Finally, the total EM field propagating in the perturbed model (D3.1a,b,c) is constructed via the finite
sums
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e(x,t) :eo(x,t)+in”en(x,t), h(x,t) = ho(x,t)+in”hn(x,t), (D3.8a,b)

n=1

where the sums are truncated at N terms. An obvious question is “How is the numerical value of
parameter # chosen?”; # = 1 is the logical choice. However, we remark that equations (D3.8a and b)
present a very inefficient means for conducting forward modeling of an EM wavefield; a total of N+1
forward modeling runs is required to synthesize e and h! Rather, a modern modeler would simply
substitute the perturbed model (D3.1a,b,c) into the EH system (D1.1a,b,c) and pull the trigger (once) on a
favored numerical algorithm.

Perhaps the nt" Born Approximation es(x,t) and ha(x,t) possesses theoretical or pedagogical utility.
For the case of a finite-thickness geologic layer with a conductivity contrast, the First Born

Approximation wavefield within the layer zwp < Z < zZnet IS given by equation (7.29) of the text, repeated
here as:

e, - 22 BEOELD,

%{ {1— 2iKl(a))(z -7+ gﬂe”“”xh’z) -1 } : (7.29 again)

In the notation of the present Appendix D, this is interpreted as the electric field solution ei(x,t) of the
first-order EH system (D3.5a,b) above (for the case when de(X) = du(x) = 0). So, similar to equation
(7.21a) of the text, the effective current density body source for the second-order EH system (D3.6a,b) is

i (z,t) = (0, - 0,)e,(2,®) H[Z _hzmid ] , (D3.9a)

or, after Fourier transforming to the frequency-domain

'JszxnmB (2 0) = (52 - (71) E.(z, ) H( : _hzmid j : (D3.9b)

We could attempt to develop a solution for the Second Born Approximation (SBA) wavefield by Fourier
transforming to the wavenumber (k) domain and following the analysis of the previous sub-section 7.3.

However, all we do here is note that the SBA effective current density source is proportional to the
squared conductivity contrast (o, —o,)* and the incident wavefield E, (z,®). Compare with the FBA

inc

source of equation (7.24). The detailed development of the SBA scattered field term is left for the future.
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14.0 APPENDIX E: FREQUENCY SPECTRUM OF AN ALTERNATING POLARITY
PULSE SEQUENCE

A common energy source signal used in electromagnetic (EM) geophysical prospecting consists of a
periodic sequence of square pulses with alternating polarity. After transients associated with signal turn-
on have decayed, the signal observed at a remote sensor will also be an alternating polarity pulse
sequence with the same period. However, the pulse shape is no longer square due to attenuation and
dispersion of the propagating/diffusing EM wave. In this Appendix, we develop formulae for the
frequency spectrum of an alternating polarity pulse sequence. The formulae contain three parameters
(fundamental period P, number of periods Np, and in the duty cycle percentage d) that can be adjusted to
optimize various aspects of the frequency spectrum.

E1.0 Transform of a Pulse Sequence

Let w(t) be a time-domain wavelet (or pulse) with frequency-domain Fourier spectrum W(w). Then, a
finite sequence of N alternating-polarity pulses may be constructed via

s(t) = NZ_l(—l)”w(t —-nT), (E1.1)

where T is a fixed lag time (or delay time) between successive pulses. The Fourier transform of the pulse
sequence s(t) is easily calculated as

S() =w(w)NZ_l(—1)“e+‘a“T =W(w)NZ_1(—e”“’T J =W(w){ll;_((%l)ﬂ =W(w){#} -

l+e
(E1.2)
The finite sum has been evaluated via the famous geometric progression formula
N-1 1_ 7 N
7" = , (E1.3a)
n=0 1-z

where z is a complex number. Interestingly, if the modulus of z is less than unity, then the limit of
equation (E1.3a) as N approaches infinity yields

N-1 0 1—ZN l
lim ) z"=) 7"=lim =—. E1.3b
N»w;‘ ;‘ Now 1-72  1-2z ( )

However, we cannot take advantage of this result in the Fourier transform expression (E1.2) above, as the

+ial -

modulus of z=—e"“ is exactly unity.

Equation (E1.2) indicates that the Fourier transform of a pulse sequence is obtained by multiplying the
transform of the underlying pulse by a complex-valued factor (in square bracketes0. Our primary concern
here is with the amplitude spectrum of the pulse sequence. This is easily calculated as

1-(-D)" cos(NaT)
1+cos(wl)

(E1.9)

|s<w>|=wv<w>|J
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Pulse sequence (E1.1) is parameterized in terms of 1) the lag time between successive pulses T, and 2) the
total number of pulses N. However, from the vantage point of electromagnetic geophysics, perhaps a
more useful parameterization involves the fundamental period P of the pulse sequence, and the total
number of periods Np. For an alternating-polarity sequence, the period is just

P=2T. (E1.5a)

That is, the period is twice the lag time. Furthermore, it is useful (and simple) to restrict consideration to
an integer number of periods. The number of pulses is then

N =2N;. (E1.5b)
That is, there are two pulses per period. [An obvious implication is that we do not consider sequences

consisting of an odd number of pulses, which would have a non-zero dc spectral value equal to the area
under a single pulse.] Amplitude spectrum (E1.4) becomes

3 1—cos(wPN,)
S(@) _[W(w)|\/1+ cos(awP/2) (EL6)

If waveform w(t) is the Dirac delta function 4(t), then the amplitude spectrum |W(w)| = 1. Hence, the
second factor in equation (E1.6) is just the amplitude spectrum of an alternating polarity “spike
sequence”. The following set of eight panels depicts the amplitude of this factor as a function of
frequency over the range f = 0 Hz to f = 6 Hz. The fundamental period is fixed at P = 1 s, and the number
of periods increases from Np = 1 to N, = 128 in powers of 2. Note that the logarithmic amplitude
spectrum IoglO(A( f)/ Aef) is plotted, with respect to reference value Ars = 1 s = 1/Hz. Spectral peaks
are located at odd integer multiples of the fundamental frequency 1/P = 1 Hz (where the denominator in
(E1.6) vanishes). These “primary peaks” increase in height and decrease in width as Np increases.
Additionally, numerous secondary peaks and zeros appear between the primary peaks. Since the interval
between an adjacent secondary peak and zero diminishes as Np increases, it is difficult to state just what
value the spectrum assumes between primary peaks. However, the envelope of the spectrum

[1+ cos(#fP )] % is independent of Np and remains invariant.
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Amplitude Spectrum (P =15, Np = 1)
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Figure Ela. Amplitude spectrum of an alternating polarity spike sequence with a single period Np = 1.

Amplitude Spectrum (P =1 s, Np = 2)
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Figure E1b. Np=2.
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Amplitude Spectrum (P =1 s, Np = 4)
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Figure E1lc. Np =4,

Amplitude Spectrum (P =1 s, Np = 8)
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Figure E1d. Np =8.
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Amplitude Spectrum (P =1 s, N, = 16)
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Figure Ele. Np = 16.
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Figure E1f. Np=32.
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E1l.1 Peak Amplitude Analysis

The zeros of the denominator in the second factor (i.e., containing the square root) in equation (E1.4)
occur at

f, :% for 1=1,23,... (E1.7)

However, this factor is indeterminate (~0/0) at these frequencies, rather than infinite. Utilize L’Hopital’s
rule to determine the peak amplitude at these frequencies. Let B(f) denote the argument of the square root
in (E1.6):
1—cos(272fPN )

1+cos(#AP)

B(f)=

Next, let the notation I§( f) refer to differentiating both the numerator and denominator, as required for
application of L’Hopital’s rule. Then

é(f)=—2Npsm(_27ﬁPNF’) and é(f):_4N§cos(2m‘PNp).
sin(#P) cos(#fP)
It is straightforward to demonstrate that [|im E:3(f)=4N§. Hence, the peak spectral amplitude
f—(21-1)/P
value at frequency fi is given by
S(f)|=2N W (f)). (E1.8)

The peak amplitude is directly proportional to the number of periods Np; amplitude increases without
bound as Np — oo,

E2.0 Square Pulse

A commonly-used source pulse in electromagnetic geophysical prospecting is the square (or “boxcar’)
pulse

w(t) = H(#J | (E2.1)

box

where TI(X) is the rectangle function of unit height and area (IT(X) = 1 for |x| < 1/2, zero otherwise). The
square pulse duration time is Twox, SO the onset time of the boxcar pulse (E2.1) ist = 0s. The Fourier
transform of this wavelet is

W (w) = Tboxsinc(—w;:;’xje”“w/ 2, (E2.2)

where sinc(x) =sin(zx)/(7x) is the well-known “sinc” function (Bracewell, 1965). The complex
exponential accounts for the time delay Twox/2 With respectto t = 0. Clearly, the modulus of (E2.2) is
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W (@)| =T, (E2.3)

. T
sing| box |
2
The amplitude spectrum equals Twox at f = 0 Hz, and has zeros at f = k/Tpox With k = 1,2,3,... The boxcar
duration time Thox Can be taken to be a specified fraction (less than unity) of the lag time T:

T - (LJT _ (LJE, €24
100 100/ 2

where the positive number d, referred to herein as the “duty cycle percentage”, ranges from 0 to 100
inclusive.

With this re-parameterization, equation (E1.6) above is re-written in the form

s Dol )] iy

The frequency amplitude spectrum of an alternating-polarity square pulse sequence depends on the three
parameters i) period P, ii) number of periods Np, and iii) duty cycle percentage d.

The first factor in (E2.5) (i.e., containing the sinc function) equals (d/100) (P/2) at zero frequency.
However, multiplication by the second factor always annihilates the DC spectral component. Sinc
function zeros occur at

2k

f,=——+7—< fork=123,... E2.6
“ P(d/100) (E26)

So, the duty cycle percentage d influences the locations of these zeros. Peak values of the square pulse
amplitude spectrum occur at f, = (21 —1)/Pfor I = 1,2,3... and equal

scor=on. () o o 52

The peak amplitude is directly proportional to the product of the period P and the number of periods Ne.
The proportionality factor depends only on the duty cycle percentage d. An alternative way to write the
spectral peak amplitude function is

. 7( d
sm{(Zl —1)2[1()())} ‘

2PN,
|S(ﬁ)L:( ~ j 21 . (E2.7b)

For a 100% duty cycle, the peak amplitudes are given by
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IS(F)) —(ZPNPJ 1 —(ZPNPJFEEEE} (E2.82)
ld=1006 — u (2|—1)_ ju 1'3'5'7'9"" | .

For 50% duty cycle, we have

N . :(ZPNPJ V2 _(ZPNPJ(LJF 1111 } (E2.85)
T

@-1 \ =~ J\V2)[1'8'5'7°9""

implying [S(f))|,_.,, :(1/\/§)|S(f, Nyor0ms = 0-707S(f))], 10 FOF these two cases, amplitudes of
the higher harmonics diminish monotonically, and inversely proportional to the odd integers.

Figure E2 depicts normalized peak amplitude (i.e.,|S(f,)|/(2PN, /7)) for the first four spectral lines
(i.e., 1=1,2,3,4), plotted with respect to duty cycle percentage d.

Normalized Peak Spectral Amplitudes
10 1 1 1 1

0.8 1 1 L

0.4 1 o F

IS{f)I / (2PNp/pi}

0.2 1 3 |

0-0 T |l T |l
0 20 40 60 80 100

d (%)
Figure E2. Normalized peak amplitude for spectral lines | = 1,2,3,4 as functions of duty cycle percentage.

Clearly, the amplitudes of all lines vanish for d = 0, as expected. The amplitude of the fundamental
frequency line (I = 1) exceeds all of the harmonics (I = 2,3,4,...) and is indeed maximized for 100% duty
cycle. Reading down the right edge of the plot yields the 1/(21-1) amplitude decay at 100% duty cycle, as
predicted by equation (E2.8a). But, the harmonics possess multiple maxima and zeros within the full
range 0% < d < 100%! Harmonic | has | equal maxima and | — 1 zeros (not counting the common zero at
d = 0%). Interestingly, over certain limited range of the duty cycle parameter, the amplitude of harmonic
3 exceeds that of 2. Similarly, there are ranges where harmonic 4 exceeds 3 (and even both 2 and 3).
Finally, a harmonic is annihilated at a zero. For example, the line with frequency f is removed from the
spectrum if d/100 = 2/3.

The ratio of two successive peak amplitudes is
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(for I = 1,2,3,...) which is obviously independent of period P and number of periods Np. Hence, a
measurement of this amplitude ratio may serve to estimate an unknown duty cycle percentage d. The
amplitude of the first harmonic (I = 2) to the fundamental (1 = 1) is

1sin|(3d,/200)}x|
3 [sin[(d,200)}] (E210)

This approaches unity for vanishing duty cycle d. Figure E3 depicts this amplitude ratio function. Note
the vanishing spectral amplitude ratio R1(66.7).

[(21 2
R (d) = :(2|+J|S|n +1)(d/200)7] (E2.9)

Isin[(21 -1)(d/200)z ]’

R,(d) =

First Spectral Amplitude Ratio
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Figure E3. Ratio of spectral amplitude of first harmonic frequency (I = 2) to the fundamental frequency
(I'=1) vs. duty cycle percentage.

E3.0 Examples

The following Figure E4 depicts six normalized source amplitude spectra |S(f)|/|S(feea)| calculated with
equation (E2.5) for a fixed fundamental period P = 1 s. The number of periods ranges from Np = 1/2 in
the top panel (implying a single square pulse) to Np = 100 in the bottom panel. The duty cycle percentage
is fixed at d = 50, which apparently corresponds to popular EM geophysical usage. The displayed
frequency range is 0 to 50 Hz, although equation (E2.5) was evaluated from DC up to 300 Hz. The peak
frequency freak Used for normalization is the fundamental frequency f, = 1/P = 1 Hz. [Recall that Figure
E2 indicates that the amplitude of the fundamental frequency spectral line is always the largest, for any
duty cycle percentage.] The plotted results replicate those contained in Aldridge (2014).

The top panel plots |sinc(fP/4)|, or the (normalized) first term in equation (E2.5). The sinc function has a
maximum at zero frequency, and exhibits an overall 1/f amplitude decay as frequency increases. Zeros

164



occur at fy = 4k/P = 4k Hz for k=1,2,3,..., or 4, 8, 12, 16, 20,...Hz. Clearly, as the number of periods Np
increases, the source spectrum approaches a line spectrum, with lines located at frequencies f; = (21-1)/P
= (21-1) Hz for 1 = 1,2,3,...,0r 1, 3, 5,7, 9,... Hz. These spectral lines correspond to the zeros of the
denominator of the second term in equation (E2.5). Note the diminishing amplitudes of the peak values
as frequency increases. Also note that, as Ne increases from 1/2, the non-zero DC spectral value is
annihilated. This reflects the simple fact that an alternating polarity pulse sequence with an integer
number of periods has no net area, or no net DC value.

Although there is some non-zero fine structure to the amplitude spectra between the discrete spectral lines
(as illustrated in Figure E1), this rapidly becomes invisible as the number of periods increases (and the
normalization amplitude |S(f1)| increases). The linear (rather than logarithmic) vertical plot scale also
suppresses the intra-line fine structure.

Various numerical values are tabulated below. Calculations include Np = 1000, although that panel is not
plotted because it appears identical to the Np = 100 panel. Column two is the gain in signal-to-noise
achieved by additive stacking of Np periods of recorded data. [An assumption is that ambient EM noise is
zero mean, fixed standard deviation, and uncorrelated between successive periods.]

Np Gsnr Peak frequency (Hz) Bandwidth (Hz) Peak Amplitude (s)
1/2 0.00 0.00 to 126.17 0.250
1 1.00 0.92 0.01 to 106.86 0.454
2 1.41 0.98 0.01t0 101.10 0.902
3 1.73 0.99 0.01to 99.01 1.352
10 3.16 1.00 0.01to 99.00 4471
100 10.0 1.00 0.99to 99.00 45.016
1000 100 1.00 0.99to 99.00 450.158

As the number of periods increases, the maximum frequency settles at 99.00 Hz, which is the point where
the amplitude spectrum descends below 1% of its peak value at 1.00 Hz. However, Np = 3 appears to
yield virtually the same maximum frequency fmax! Of course, the major problem is that such a low

stacking fold yields only a modest gain in the signal-to-noise ratio (recall that Gsnr = /N peiogs )-

Note also that the peak spectral amplitude (which plots at 1.0 in the panels of Figure E4) increases with
Np. The values agree with those predicted by equation (E2.7a or b) above, for spectral line | = 1.

165



10 1 1
] P=1s
-
& o5 Np = 112 i
-
= d=50
(2]
50
=
5
“_Q.
% I
=
@
50
’-‘::“, P=1s
“_Q.
0 g5 NP =2 L
—
= d=50
> |
0.0 |
0 10 20 30 40 50
f (Hz)
10 1 1
‘% P=1s
-
N 54 Np.=3 L
—
= d=50
“ AMMMMMMWMMM
0.0 L
0 10 20 30 40 50
f (Hz)
1.0 . .
’Tf“, P=1s
“_Q.
@B g54 Np =10 L
—
= d=50
” M“—A—L,—H—A—A—L,‘—A—AA,—A—A—A—AA
0.0 L
0 10 20 30 40 50
f (Hz)
10 1 1
’% P=1s
-
9 05 Np =100 L
—
= d=50
(23
0.0 | | | I . | I S T S S .
0 10 20 30 40 50
f{Hz)

Figure E4. Effect of increasing number of periods Np on frequency amplitude spectra, for fixed
fundamental period P = 1 Hz and fixed duty cycle percentage d = 50%.
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Figure E5 illustrates the effect of varying the duty cycle percentage d, while holding the fundamental
period P (= 1 Hz) and number of periods Ne (= 100) fixed. Normalized amplitude spectra are again
plotted. Clearly, increasing the duty cycle percentage changes the overall shape of these line spectra. The
middle panel for d = 50% (which is the same as the bottom panel in the previous figure) appears identical
to the bottom panel for d = 100%. This agrees with the conclusions of equations (E2.8a and b).
However, peak amplitudes differ, as tabulated here:

d (%) Peak frequency (Hz) Bandwidth (Hz) Peak Amplitude (s)
10 1.00 0.99 to 493.00 9.959
25 1.00 0.99 to 237.00 24.362
50 1.00 0.99to 99.00 45.016
75 1.00 0.99to 97.00 58.816
90 1.00 0.99to 99.00 62.878
100 1.00 0.99to 99.00 63.662

Recall that the positions of the spectral lines are independent of the duty cycle percentage, as indicated by
expression (E1.7) above: f, =(21-1)/P =1,3,5,7,9, 11,... Hz for the present examples. However,
the zeros of the multiplying sinc function do depend on the duty cycle parameter d, via equation (E2.6)
above: f, =2k/P(d/100) for k = 1,2,3,...The presence of the additional parameter d enables us to

position these zeros to coincide with some of the discrete spectral lines fi, and thus remove them from the
amplitude spectrum.

Guided by the spectral line amplitude curves plotted in Figure E2, choose d = 66.67% which implies fi =
3,6,9,12, 15,18, 21,...Hz. The top panel of Figure E6 indicates that the odd harmonics fi = 3, 9, 15, 21,
...Hz are removed. Choosing d = 40% as in the middle panel of Figure E6 implies sinc function zeros
occur at frequencies fx = 5, 10, 15, 20, 25, 30, 35,... Hz. The odd harmonics f = 5, 15, 25, 35,...Hz are
then removed. However, Figure E2 indicates that the same harmonics may be removed by choosing d =
80%. The bottom panel of Figure EG6 illustrates this situation. Moreover, the relative suppression of the
non-zero harmonics at fi=3, 7, 9, 11, 13,...Hz appears superior. This is consistent with Figure E3. The
geophysical advantages (or disadvantages) associated with modifying the source signal amplitude
spectrum with this technique requires further study.
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Figure E5. Effect of increasing duty cycle percentage d on frequency amplitude spectra, for fixed
fundamental period P = 1 Hz and number of periods Np = 100.
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Figure E6. Annihilation of certain spectral lines via judicious choice of zero locations for the multiplying
sinc function. Top panel: lines at 3, 9, 15, 21,... Hz are removed via a 67% duty cycle. Maximum
amplitude = 55.133 s. Middle panel: lines at 5, 15, 25, 35,... Hz are removed via a 40% duty cycle.

Maximum amplitude = 37.420 s. Bottom panel: the same lines at 5, 15, 25, 35,... Hz are removed by an
80% duty cycle. Maximum amplitude = 60.546 s.

Finally, Figure E7 depicts frequency spectra of horizontal electric field components observed at a Salton
Sea, California geothermal site and at an undisclosed Saudi Arabian oil field (Marsala et al., 2014). Red
and blue curves show prominent spectral lines at fi=1, 3, 5, 7, 9, 11, 13, 15,... Hz, implying an EM
source signal with a P = 1 s fundamental period. No information is given regarding the number of
periods Np, although the broad spectral peak at 1 Hz suggests a relatively low number (e.g., compare with
Figure E4). Amplitude falloff between f; = 1 Hz and f, = 3 Hz crudely picked from the plot is about R1(d)
= 0.20 (although the vertical plot scale, in units of V/VHz is rather confusing). So, Figure E3 implies a
duty cycle percentage of perhaps d ~ 55 or d ~ 80. Within the limits of accuracy of picking the Figure E7
curves, d ~ 50 (which we believe is common field practice) is perfectly acceptable.
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Figure E7. Frequency amplitude spectra of horizontal electric field measurements, from Marsala et al.
(2014). Red and blue curves are spectra from active-source EM data recorded in an undisclosed Saudi
Arabian oil field, using two different types of sensors (but note different sensor spacings). Green and
black curves are ambient noise spectra (i.e., no active energy source) from EM data recorded at a Salton
Sea geothermal site (also with different sensor spacings). Note the prominent noise peak at 60 Hz.
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15.0 LIST OF FIGURES AND TABLES
Figure 2.1. Geometric setup of the geologic layer reflection / transmission problem.

Figure 5.1. Reference or background model consisting of a single plane horizontal interface separating
two (possibly dissimilar) upper and lower halfspaces.

Figure 5.2. Logarithm of electromagnetic wavelength vs. logarithmic conductivity and logarithmic
permeability, for frequency f = 1 Hz (top), f =10 Hz (middle), and f= 100 Hz (bottom).

Figure 5.3. Logarithm of electromagnetic wavelength vs. logarithmic conductivity and logarithmic
permeability. Top and middle panels are calculated with approximate (i.e., low-frequency) and exact
formulae for frequency f = 1000 Hz, respectively. Bottom panel is exact calculation for f = 10,000 Hz.
Electric permittivity & = 10 & is used for the calculations.

Figure 5.4. Logarithm of electromagnetic wavelength vs. logarithmic conductivity and logarithmic
permeability, calculated with exact formula for frequency f = 100,000 Hz (top), and f = 1,000,000 Hz
(bottom). respectively. Electric permittivity ¢ = 10 & is used for the calculations.

Figure 5.5. Logarithmic amplitude ratio of back-scattered to for-scattered electric field for a thin (hped =
1 cm) layer, at frequencies f = 0.1 Hz (top), f = 1 Hz (middle), and f = 10 Hz (bottom). Scattering ratio is

plotted vs. logarithmic conductivity contrast ratio o,/o; and logarithmic permeability contrast ratio
ol th -

Figure 5.6. Logarithmic amplitude ratio of back-scattered to for-scattered electric field for the layer in
Figure 5.5, at higher frequencies f = 100 Hz (top) and f = 1000 Hz (bottom).

Figure 5.7. Same as Figure 5.5, except the scattering layer is relatively thicker (h = 10 m). Top, middle,
and bottom panels correspond to frequency f = 0.1 Hz, f = 1 Hz, and f = 10 Hz, respectively.

Figure 5.8. Same as Figure 5.6, except the scattering layer is relatively thicker (h = 10 m). Logarithmic
amplitude ratio of back-scattered to for-scattered electric field, at higher frequencies f = 100 Hz (top) and
f = 1000 Hz (bottom).

Figure 5.9. Back-scattered (red trace) and for-scattered (green trace) sinusoidal waveforms (period P =
1 s) generated by a thin layer (h = 1 cm) possessing both conductivity and permeability contrasts with a
uniform background medium. Amplitude ratio of the two signals is ~2212.

Figure 6.1. Electric vector component responses generated by a geologic bed with conductivity
Opeq =100S/m (5000 times larger than the background medium conductivity o, ,, =0.02S5/m). Top

and bottom panels correspond to reflected and transmitted measurement geometries, respectively. Green
traces are homogeneous reference model responses and black traces are actual model (i.e., containing the
geologic bed) responses. Red traces are scattered responses, equal to black minus green traces. Back-
scattered and fore-scattered responses are nearly identical for this thin geologic bed.

Figure 6.2. Magnetic vector component responses generated by the same geologic bed with medium
parameters used for Figure 6.1. Top and bottom panels correspond to reflection and transmission
measurement geometries, respectively. Except for a sign change, back-scattered and for-scattered
responses are nearly identical for this thin geologic bed.
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Figure 6.3. Back-scattered E, electric vector components (top panel) and By magnetic vector
components (bottom panel) generated by a geologic bed with conductivity o,., =100S/m (5000 times

larger than the background medium conductivity o,,, =0.02S/m). Bed permeability 4.4 = 14, and

permittivity .., =10, are identical to background values. Bed thickness varies from h = 10 m (red
curves) to h =1 cm (brown curves).

Figure 6.4. For-scattered E electric vector components (top panel) and B, magnetic vector components
(bottom panel) generated by the same conductivity contrast geologic bed as in Figure 6.3.

Figure 6.5. Back-scattered EM field components generated by a geologic bed with fixed thickness
h,.; =1cm, and current conductivity o, varying between 105 S/m (red curves) and 10? S/m (brown

curves). Bed permeability 4., = £, and permittivity &, =10¢, are identical to background.

Figure 6.6. For-scattered EM field components generated by the same conductivity contrast geologic
bed as in Figure 6.5.

Figure 6.7. Back-scattered EM field components generated by a geologic bed with fixed thickness
hyes =10 M, and magnetic permeability 24, varying between 10°, (red curves) and 10"z, (brown

curves). Bed conductivity o, .4 =0.02S/m and permittivity &,., =10¢, are identical to background.

Figure 6.8. For-scattered EM field components generated by the same permeability contrast geologic
bed as in Figure 6.7.

Figure 6.9. Back-scattered EM field components generated by a geologic bed with fixed current
conductivity o, =100S/m and magnetic permeability 24, =100z, and with thickness varying
between h ., =10m (red curves) to h,, =1cm (brown curves). Bed permittivity &, =10¢, is

identical to background. These layers have strong conductivity contrast (x5000) and permeability
contrast (x100) with the background medium.

Figure 6.10. For-scattered EM field components generated by the same joint conductivity/permeability
contrast geologic bed as in Figure 6.9.

Figure 6.11. Back-scattered EM field components generated by a geologic bed with fixed conductance
(i.e., conductivity x thickness product) equal to 100 S. Bed magnetic permeability 4., = 14, and electric

permittivity &, =10¢, are identical to background values. All curves overplot at this plot scale.

Figure 6.12. For-scattered EM field components generated by a geologic bed with fixed inductance (i.e.,
permeability x thickness product) equal to 10* H. Bed current conductivity o, =0.02S/m and electric

permittivity &,., =10, are identical to background values. All curves overplot at this plot scale.

Figure 6.13. For-scattered Ex field components generated by a thin geologic bed (hweds = 5 mm) with
strong permittivity contrasts with the background medium. Top / bottom panels correspond to layer
relative permittivities of 4 x 108 and 10%°, respectively. Bed conductivity and permeability are the same
as the homogenous background medium.
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Figure 6.14. Reflection/Transmission modeling geometry. E;-component electric field plane wave is
incident from the left (x < -h/2) on a geologic layer of thickness h = 10 m. Both reflected (x < -h/2) and
transmitted (x > +h/2) electromagnetic plane waves are generated.

Figure 6.15. Back-scattered and for-scattered E,-component traces generated by proximal (top panel) and
distal (bottom panel) plane wave sources positioned at the vertical red arrows. Maximum absolute
amplitude within each panel is plotted at one trace spacing; positive lobes of the traces are shaded grey.

Figure 6.16. Logarithmic maximum relative E; amplitude vs. receiver location for proximal (top) and
distal (bottom) plane wave sources. Source amplitude level is indicated by the horizontal black dashed

line at 0.0. Background medium conductivities are o,=0.001 S/m (red curves), 0.01 S/m (blue curves),

0.1 S/m (green curves), and 1.0 S/m (brown curves). Solid and dashed amplitude profiles correspond to
conductivity-only scattering, and joint conductivity and permeability scattering, respectively. The
scattering zone is represented by the thin vertical brown strip.

Figure 6.17. Back-scattered and for-scattered By,-component traces generated by proximal (top panel)
and distal (bottom panel) plane wave electric field sources positioned at the vertical red arrows.
Maximum absolute amplitude within each panel is plotted at one trace spacing; positive lobes of the
traces are shaded grey.

Figure 6.18. Logarithmic maximum relative By amplitude vs. receiver location for proximal (top) and
distal (bottom) plane wave sources. Reference amplitude level is Byt = 1 T. Background medium

conductivities are o, =0.001S/m (red curves), 0.01 S/m (blue curves), 0.1 S/m (green curves), and 1.0

S/m (brown curves). Solid and dashed amplitude profiles correspond to conductivity-only scattering, and
joint conductivity and permeability scattering, respectively. The scattering zone is represented by the thin
vertical brown strip.

Figure 7.1. Schematic depiction of First Born Approximation scattered wavefields (upward and
downward propagating red plane wavefronts) for the case of a thin geologic layer possessing a contrast in
current conductivity with respect to a homogeneous background. The material parameter contrast of the
layer is replaced by a horizontally-directed electric current body source (green arrows) with the same
vertical extent.

Figure 7.2. Exact (upper panel) and First Born Approximation (lower panel) back-scattered responses
induced by a strong current conductivity contrast in a thin geologic layer with thickness hpes = 1 cm. Red,
green, blue, and brown curves correspond to ored = 103, 104, 105 and 10® S/m, respectively. Blue and
brown sinusoidal curves plot well off scale in bottom panel.

Figure 7.3. Exact (solid curves) and First Born Approximation (dashed curves) back-scattered responses
induced by moderate current conductivity contrast in a thin geologic layer with thickness hpeg = 1 cm.
Brown, blue, green, and red curves correspond to oneq = 10°, 10%, 102, and 10° S/m, respectively. Solid
red curve is identical to previous Figure 7.2. Note expanded vertical scale of 10x compared with prior
figures.

Figure 7.4. Backward-scattering (top panel) and forward-scattering (bottom panel) logarithmic
amplitude ratios of First Born Approximation to exact scattered responses, calculated for a thin layer (h =
1 cm) and an incident EM sinusoidal signal with frequency f = 1 Hz. Background conductivity o1 = 0.1

S/m and permeability Qi = Ho, implying the thickness-to-wavelength ratio is h/21:10‘6.
Paramagnetic/diamagnetic regions reside above/below the horizontal dashed lines.
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Figure 7.5. Same as Figure 7.4, except for a thicker layer (h = 10 m) and a higher frequency incident
signal (f = 10 Hz).

Figure 7.6. Same as Figure 7.5, except a larger magnetic permeability 4 =104 is assigned to the
background medium.

Figure 8.1. Non-normal incidence plane wave reflected and transmitted responses of a geologic layer.

Figure Al. Diagnostic frequency functions for electromagnetic wave propagation, plotted with respect to
dimensionless frequency f/ f.  Blue curve is phase speed c(f) and attenuation factor o(f), normalized by
the respective infinite frequency values. Red curve is group speed g(f), also normalized by the infinite
frequency value. Green curve (linear with frequency) is quality factor Q(f) =f/f;.

Figure A2. Diagnostic frequency functions for electromagnetic wave propagation, plotted with respect to
physical frequency f in kilohertz. Blue curve is phase speed c(f) and attenuation factor «a(f), normalized
by the respective infinite frequency values. Red curve is group speed g(f), also normalized by the infinite
frequency value. Green curve (linear with frequency) is quality factor Q(f).

Figure B1. Geometric setup of the normal incidence plane wave reflection / transmission problem. Unit
propagation direction vectors of the plane wavefronts are Ninc = Nyn = +€; and Nrer = —€;.

Figure B2. Reflected (top panel) and transmitted (bottom panel) electric vector x-components from an
“invisible” or “transparent” geologic layer with thickness h = 10 m. Relative (i.e., dimensionless)

permittivity £ = &/ &, , permeability & = 1/ 1, , and conductivity & = o/ (with o, =1S/m) for the
three mediaare:  (&,,44,6,)=@111),  (4,,4,,6,)=[101010),  (&,i.6,)=(L11).

The reflected response vanishes because both the top-bed and bottom-bed reflection coefficients
numerically equal 0.0.

Figure B3. Reflected (top panel) and transmitted (bottom panel) electric vector x-components from a
geologic layer with thickness h = 10 m. All medium parameters are the same as in Figure B2, except the

relative (i.e., dimensionless) conductivity 6 assigned to the layer (medium #2) is 6, =15S/m. A weak

reflected response is generated, and the transmitted response appears to be nearly unchanged (compare
with Figure B2).

Figure Ela-h. Amplitude spectra of an alternating polarity spike sequence with N periods.
Figure E2. Normalized peak amplitude for spectral lines | = 1,2,3,4 as functions of duty cycle percentage.

Figure E3. Ratio of spectral amplitude of first harmonic frequency (I = 2) to the fundamental frequency
(I'=1) vs. duty cycle percentage.

Figure E4. Effect of increasing number of periods Np on frequency amplitude spectra, for fixed
fundamental period P = 1 Hz and fixed duty cycle percentage d = 50%.

Figure E5. Effect of increasing duty cycle percentage d on frequency amplitude spectra, for fixed
fundamental period P = 1 Hz and number of periods Np = 100.

Figure E6. Annihilation of certain spectral lines via judicious choice of zero locations for the multiplying

sinc function. Top panel: lines at 3, 9, 15, 21,... Hz are removed via a 67% duty cycle. Maximum
amplitude = 55.133 s. Middle panel: lines at 5, 15, 25, 35,... Hz are removed via a 40% duty cycle.
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Maximum amplitude = 37.420 s. Bottom panel: the same lines at 5, 15, 25, 35,... Hz are removed by an
80% duty cycle. Maximum amplitude = 60.546 s.

Figure E7. Frequency amplitude spectra of horizontal electric field measurements, from Marsala et al.
(2014). Red and blue curves are spectra from active-source EM data recorded in an undisclosed Saudi
Arabian oil field, using two different types of sensors (but note different sensor spacings). Green and
black curves are ambient noise spectra (i.e., no active energy source) from EM data recorded at a Salton
Sea geothermal site (also with different sensor spacings). Note the prominent noise peak at 60 Hz.

Table 5.1. Thin-bed time-domain scattering formulae.

Table 5.2. Thin-bed frequency-domain scattering formulae.

Table 7.1. Backward scattering formulae (zr < Zip).

Table 7.2. Forward scattering formulae (zr > Zpot).
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