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ABSTRACT

Wave packet analysis provides a connection between linear small disturbance theory and 

subsequent nonlinear turbulent spot flow behavior.   The traditional association between 

linear stability analysis and nonlinear wave form is developed via the method of 

stationary phase whereby asymptotic (simplified) mean flow solutions are used to 

estimate dispersion behavior and stationary phase approximation are used to invert the 

associated Fourier transform.   The resulting process typically requires nonlinear 

algebraic equations inversions that can be best performed numerically, which partially 

mitigates the value of the approximation as compared to a more complete, e.g. DNS or 

linear/nonlinear adjoint methods.   To obtain a simpler, closed-form analytical result, the 

complete packet solution is modeled via approximate amplitude (linear convected 

kinematic wave initial value problem)  and local sinusoidal (wave equation)  expressions.   

Significantly, the initial value for the kinematic wave transport expression follows from a 

separable variable coefficient approximation to the linearized pressure fluctuation 

Poisson expression.   The resulting amplitude solution, while approximate in nature, 

nonetheless, appears to mimic many of the global features, e.g. transitional flow 

intermittency and pressure fluctuation magnitude behavior.  A low wave number wave 

packet models also recover meaningful auto-correlation and low frequency spectral 

behaviors.
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NOMENCLATURE

Symbols

const Constant
c Velocity parameter definition (L/t)
c0 Pressure model fluctuation constant
cf Skin friction coefficient
K Wave number (1/L)
L Streamwise length scale (L)
Lt Transition zone streamwise length (L)
M Mach number
p Fluctuating pressure (m/Lt2) or fluctuating pressure/density (L2/t2) (density modified)
p0 Fluctuating pressure model initial condition (L2/t2) (density modified)
ptrans Root mean square transition zone fluctuating pressure (L2/t2) (density modified)
pFD Root mean square fully-developed turbulent (post transition) fluctuating pressure (m/Lt2) 
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(density modified)
R Dimensionless pressure correlation
t Time (t)
u Fluctuating streamwise velocity (L/t)
U Mean streamwise velocity (L/t)
v Fluctuating cross-stream velocity (L/t)
v* Friction velocity (L/t)
Vrms Root mean square velocity fluctuation (L/t)
w Lateral fluctuating velocity (L/t)
x Streamwise spatial location (L)
xi Streamwise spot/packet location (L)
y Cross-stream spatial location (L)

Greek

α0 Local variable definition:  















tLv
U

c
 *

0
0

1

β0 Local variable definition 









tL
k 0

δ Boundary layer thickness length scale (L)
η Method-of-characteristics cross-stream location definition (L)
γ Turbulent intermittency
κ Dimensionless proportionality constant
λ Separation constant (1/L2)
μ Separation constant (1/L2)
φ Spot shape angle
ω Frequency (1/t)
ρ Density (m/L3)

Φ Dimensionless pressure power spectral density:
2

2
* 2

1 


 






 UU

pp 


τ Temporal correlation function separation time scale (t)
τw Wall shear stress
ξ Method-of-characteristics streamwise location definition (L)

Subscripts/Superscripts

0 Constant value
∞ Free stream
inc Incompressible
w Wall value



7



8

I. INTRODUCTION

Wave packet analysis can be useful in providing a model for turbulent spot behavior in laminar turbulent 

transition.     The connection between linear stability analysis and wave form via the method of stationary 

phase1 is developed by Bowles and Smith2 and Schmid and Henningson3.   The method follows by 

combining a local (for example piecewise) mean flow solution with the method of stationary phase, 

whereby it is possible to estimate the shape and behavior of wave packets that are surrogates for turbulent 

spots.    Corroboration of analytical models follows from the measurements and Cohen, Breuer and 

Haritonidis4 which suggest good agreement between linear theory and measurement for packets prior to 

later time nonlinear interaction.   Late time nonlinear behavior can also be examined using wave packet 

concepts as developed but experimentally and analytically by  Kachanov and Lechenko5 and more 

recently by Breuer, Cohen and Haritonidis6.  Unfortunately, while traditional wave packet/method-of-

stationary-phase model provides an elegant connection between linear stability theory and transitional 

flow behavior;  this type of analysis yields complex results that (beyond rough estimates of spot shape) 

that may not be readily utilized in practical transitional flow analyses.   

To provide a bridge between the more rigorous wave analyses and a simplified but explicit model we 

approximately solve the linearized Euler equations.   We analyze these equations in context of a 

traditional wave packet approximation using a kinematic wave initial value problem formulation.  The 

initial value for this computation follows from a modified pressure Poisson equation formulation.   

Indeed, while the connection between velocity fluctuation and pressure fluctuation is, of course, formally 

described by the pressure-Poisson equation we utilize a simple semi-empirical linearized expression7,8 to 

map between pressure fluctuation and velocity fluctuation.  Streamwise variation of the meanflow 

component is also explicitly included.   Solving the resulting linear variable coefficient partial differential 

equation provides a plausible wave packet initial amplitude expression.   Combination with the 

convective dominated kinematic wave solution results in an unsteady packet amplitude model.   For a 

given wave number, the internal structure of the packet is shown to be consisting with a sinusoidal 

structure.  This overall packet model is then extended to honor the streamwise growth of the disturbance.

Access to the wave packet pressure fluctuation model permits simplified, but physics-based modeling for 

the transition layer pressure field.   Focusing on streamwise behavior only, a steady state amplitude 

distribution of pressure disturbances yields an overall pressure field that is broadly consistent with 

globally based root-mean-square fluctuation models9   An estimate for the intermittency suggests good 
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agreement with traditional models10,11,12  Finally focusing on small wavenumber/low frequency behavior, 

the wave packet model can be used to estimate a pressure fluctuation auto-correlation and frequency 

spectrum.  Application of the model to these problems suggests that, even though the wave packet model 

derived here is certainly approximate in nature, it provides a simple explicit formulation for pressure 

behavior.

II. ANALYSIS

We start by developing the pressure fluctuation wave packet model by posing and solving the kinematic 

wave initial value problem.   We then extend the model to include streamwise growth behavior.

  
A. Elementary Wave Packet Model

Consider the 3-d linearized Euler equations2 for the fluctuating velocities u, v, w and the fluctuating 

pressure p.

     (1)

zxt

yxt

xzyxt

zyx

pUww
pUvv

pwUvUUuu
wvu







 0

The mean flow velocity is given as U.  In our analysis we implicitly map the constant density into the 

pressure term.   Notice as well, that we have included a small “z” component through the term: 

.
z
UU z 




These linear equations can be rewritten in terms of a single variable.   Traditionally we focus on pressure 

p and v.   Since the expressions are so well known3 we’ll simply quote the results.   The pressure 

(fluctuation) is governed by (this expression follows from differentiating the 3 Euler equations by x, y, z 

and applying continuity):

     (2)xzxyzzyyxx wUvUpppp  2
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Equation (2) clearly requires a closure for the velocity derivative term:  and  .  The 
x
vvx 



x
wwx 




absence of explicit temporal terms in equation (2) suggests that an approximate solution may provide a 

useful estimate for initial condition behavior associated with a kinematic wave packet formulation.

 

For the purpose of estimating this  wave packet initial condition magnitude description of the pressure in 

terms of the velocity fluctuation may make more sense.   Following Lowson7,8  the pressure fluctuation 

magnitude (for isotropic turbulence) has been given by:

     (3)22 7.058.0 rmsrmsrms VVp 

where prms is the root mean square magnitude of the pressure fluctuation.   The density term here is again 

suppressed.  Other models8 utilize the friction velocity v*.   Note that for isotropic turbulence 

.   Thus we could write:wvuVrms 

     (4)xx p
vc

vvvcp *
00

*
00

1


It is possible to use a simple constant closure for the mean flow gradient, i.e. and for 

UU y  0yU

y>>1.  For x<<1 we need to use the outer solution with  and then increase the presence of the 0yU

non-zero inner gradient for “x” increasing.   Thus we propose the model:  where Lt is the 
t

y L
xUU 









total transition zone length and can write the term asxyvU

.   This closure is strictly valid for x<<1 since for xx
t

xy pxp
vc

x
L

UvU 













































0

*
00

1

 this would be a secular (unbounded) term.   We will perform our analysis for x<<1 (recall that 1

x

we are modeling the initial condition) and then extend the model to be valid t>1 and x>>1.

A similar modeling proposal might seem appropriate for the term.   Rather than relying on isotropic xzwW

pressure fluctuation model, we alternatively use a quasi-steady approximation from the “z” Euler equation 

 whereby: .   A model for  is less apparent in the absence of an obvious zxt pUww  zx p
U

w 1
 zW

“z” convective velocity.   We believe that the scaling associated with the  term follows from 
z

WWz 



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the internal structure (wave oscillation) internal to the wave packet as described by the wave number “k”.   

Thus a plausible model for would be: whereby .   Utilizing a similar 
z

WWz 


 UkWz  zxz kpwW 

argument to we introduce the extension such that: .   It is convenient to xyvU z
t

xz p
L

zkwW 


















define:  where .   With these approximations/definitions we can zxz pzwW 








0










tL
k 0

formulate the equation:

     (5)

0

0

00 
















yyzzzxxx

xzxyzzyyxx

ppzppxp

wWvUppp







Equation (5) is linear and separable whereby the expression:  is of use.   )(),(),,( ygzxfzyxp 

Applying this expression to equation (5) we then obtain:

     (6)

0''

0

2

200


















gg

ffzffxf zzzxxx











where μ2 is the separation constant.  The f(x,y) (modified Helmholtz equation) is separable as 

 which yields:)()(),( zBxAzxf 

     (7)

0)('''

0'''

220

20

















BBzB

AAxA











The two ODE’s associated with equation (7) can be readily solved if we can assess a value for the 

separation constants.   Indeed if we let then  solves as:2
02


  0''' 20 






 AAxA 




     (8))
2
1exp(

2

0 








 xA
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In a similar manner if we let then yields:2
022 )(


 

     (9))
2
1exp(

2

0 








 zB

This finally gives: and provides the expected exponential decay as:2
002


 

 0'' 2  gg 

     (10))exp( 00 








 yg

 We are then in a position to formulate the initial condition for pressure term as:

     (11))
2
1

2
1exp(),,( 00

2

0

2

00 




























 yzxzyxp

The variable  is fully specified as  while .   Simple order of 0 















tLv
U

c
 *

0
0

1










tL
k 0

magnitude analysis13 suggests that  which is O(25-35).   2/1*
2

fcv
U


The dimensionless wave number  is perhaps best understood via the dimensionless wave number as k

.  The dominant portion of the spectrum centers on (Taylor hypothesis) the “so-called 


Uk )1(OUk



convective ridge”14.   The dimensionless wavenumber can be written in terms of the traditional 

dimensionless frequency,  suggesting that a wide range of frequencies may play a role in the 
U

k  

wavenumber spectrum.   The frequency spectrum is dominant for but is characterized by )1(O
U




higher frequencies for smaller (inner law) scales by frequencies on the order of O(100-1000).   Certainly, 

within the boundary layer can be as large as O(100). k

  

Finally, let’s estimate the size of the transition zone length Lt.   We can readily relate the transition zone 

length to the (laminar) boundary layer thickness Reynolds number via the Blasius solution13: 

, the empirical10,11 expressions and the definition .   2/1Re5Re x
4/3Re9Re x Re3.3Re 

tL
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Combining these expressions gives: .  The ratio  is 2/32/3
4/3 Re7.2Re)

25
9(3.3Re  

tL 

tL Lt 
Re
Re

shown to be   that for a transitional flat plate, Rex=O(105), give 4/1Re6
Re
Re

x
tL Lt 


 which implies that the spatial domain is given by  with a similar )100(
Re
Re

OLtLt 


1000 

x

temporal domain.   This suggests, that while )1()2/1(1
*

0
0 OO

Lv
U

c t



















.   Clearly, these are rather gross estimates but they are useful to help )10()1(0 OO
L

k
t













delineate

There is value in considering equation (11) for a set of relevant parameter values say: α0=3/4, 

 and β0=5.5, 
4
3)12/1(

2
1

0 
2

11)101(
2
1

0 

Figure 1. Initial condition p0(x,y,z) for y=0, α0=3/4 and β0=11/2.

These order of magnitude estimates provide useful information regarding the shape of the wave packet 

magnitude a surrogate for a physical turbulent spot.   The spreading rate associated with the spot follows 

from the ratio of the “x” and “z” expressions in equation (11).   Indeed the ratio of the packet footprint 

width to length is found to be:
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     (12)
















 2.21

22
3

/1
/1tan

0

0

2/1

0

0 




 O

This value compares moderately with the more traditional method of stationary phases spot shape angle 

result which yields2,3:  47.19

Equation (11) can be expected to satisfy the modified Poisson equation: 

 modeled as: .   Equation xzxyzzyyxx wUvUppp  yyzzzxxx ppzppxp 


















 00

(11) provides a rational estimate (though a crude one since the shape of the associated spot is 

upstream/downstream symmetric, clearly not the observed behavior)3 for the initial condition, let’s call it 

p0(x,y,z) associated with a single turbulent spot-like wave packet.   Certainly turbulent spots are a 

dynamic phenomenon in a convective flow field as demonstrated by the linearized Euler equations, via 

equation (1).   Using the simple isotropic closure model, i.e. equations (3) and (4) we can readily rewrite 

the “y” momentum equation as:

     (12)0*
00  yxt vvcUvv

We could as well (using the approximate closure :vvcp *
0

    (13)0*
00  yxt pvcUpp

Using equation (11) to provide the initial condition:  the solution to equation (13) is (almost) ),,(0 zyxp

trivial as:

     (14)

tvy
Utx

zptzyxp

*
0

0 ),,(),,,(













Note that since that to good approximation: whereby: 1
*
0 

U
v 0 xt Upp

, which simply a streamwise translating impulse with minimal variation.   ),,(),,,( 0 zyUtxptzyxp 

Obviously, this is an idealization since the spot grows in size as it translates.

The preceding analysis discusses the amplitude behavior of the wave packet, but there is no attempt to 

determine the internal structure of the packet.   The internal structure of turbulent spot is characterized by 



15

a complex, stochastic, multiple scale (time and space) unsteady flow behavior.   There is virtually no 

possibility that our simple models will adequately describe this behavior.   Nonetheless, the internal 

structure of the packet is important to us and a meaningful approximation would be of value.   Let’s 

consider the linearized Euler equation focusing on:

     (15)
yxt

xzyxt

pUvv
pwUvUUuu





Let’s further introduce and the scaling approximation   which can be uvcvvcp *
00

*
00 


ppy 

combined to give:

     (16) xtxt Uvv
vc

upUvv  *
0




Then, assuming that x<<1 we can write:  which is approximately: . 0)( *
0  xt uvcUu 0 xt Uuu

Using equation (16) we can write:

     (17)02 2  xxtxtt uUUuu

Though highly simplified equation (17) is intended to an estimate for the internal behavior of the wave 

packet.   Equation (17) admits the solution: .  We can substitute into equation ))(exp(),( ctxiktxu 

(17) to estimate a value for c as:

     (18)UcUUcck  0)2( 22

Such that  which taking the real part is simply: .   ))(exp(),( Utxiktxu  ))(cos(),( Utxktxu 

Thus, a (normalized) wave packet can be modeled as:

 (19))
2
1

2
1exp())(cos( *

0

22

*
0






























 


















 yk

vc
UzkUtx

v
U

c
Utxkp

While highly simplified, equation (19) nonetheless may provide a suitable tool to model wave packet 

behavior.     Notice the constraint between packet periodicity e.g. and the lateral ))(cos(


 xk k

spreading parameter implied by equation (19) which suggests a relationship between spot shape  k

and internal periodic structure.   This is a relationship that we readily test by comparison to experimental 

measurement.

Casper et. al.14 provides a series of compelling measurements for wave packet and turbulent spot structure 

for supersonic flow over a sharp cone.   Figure 6 provides an excellent measurement representation for the 
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initial behavior of a wave packet and an opportunity to ascertain the overall validity of equation (19) for 

t<<1.   The periodicity of the wave packet in the measurements is approximately .   Using 10k

 equation (19) can be written  as )1(1
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Figure 2. qualitative comparison between measured wave packet and wave packet model

In figure 2 we present a qualitative comparison between measured wave packet14 and wave packet model: 
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Measured packet width to length is estimated as:  while analytical value is: .   
5
1
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10

 224.010/
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


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

The reduction in friction velocity follows from the traditional13 mapping from conical to flat plate flows.

B. Wave Packet Pulse Growth

A particular issue with the preceding solution is that the spot translates but retains its shape throughout 

the flow.   For a spot to increase its length in the streamwise direction3, we need to decrease the size of the 
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term in equation (19).   An effective decrease for this term might follow from the 
2

*
02

1






 









Utx

v
U

c

method-of-characteristics that was used to estimate the .   This term was derived by solving a Utx 

simple expression of the form:
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Which has the solution for any function p0(x,t).   Equation (20) follows )()(),( 00 Utxpptxp  

from “u” momentum equation  with where we have xzyxt pwUvUUuu  0 zy wUvU

assumed that U>>1 and that the convective term will dominate.

Let’s examine equation (15) .   We can model  xzyxt pwUvUUuu  *
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retain simplicity, let’s assume that the term can be modeled by a dimensionless constant κ where 
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Examination of equation (22) indicates a temporally damped system with disturbance magnitude.  This 

behavior is not consistent with our experience for wave packets whereby structures tend to increase in 

size3.

Let’s then re-examine the assumptions utilized to achieve equation (21).   Consider modifying the “v” 

expression to be: .   The choice to model in terms of the pressure gradient rather than the xp
vc
xv *

0



pressure itself will have a significant impact on the behavior of the model.   It is critical to note that the 

approximation: is (strictly) valid for a local linear approximation only.  Certainly this xxpp 

approximation will not be valid over the full domain.

For a convectively dominated flow it is relatively simple for us to modify the expression to be a xxpp 

local model by writing: .   The governing equation would then take the form:xpUtxp )(


 
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Given an appropriate initial condition p0(x) we can solve equation (23).  The method-of-characteristics 

approach requires that: and:)(),( 0 ptxp 
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Equation (23) can be solved for ξ to give:  so that )exp()( tUUtx
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for an arbitrary initial condition.   Notice, that this approximation has ))exp()(),( 0 tUUtxptxp
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damped the effective length scale associated with solution.   Using we can write: 
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 .  If we apply this kind of approximation to equation (19) and ))exp()(),( 0 t
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focus only on the streamwise “x” variation we can write:
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This modification will cause the spot to increase in size as it moves in the streamwise “x” direction.   The 

constant is estimated to be O(1).   We utilize .   With this information we can 
tL

Utconst 2
 3const

provide a snapshot of the transition zone process where each individual spot/packet is described by: 
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where xi is the location of the spots within the transition domain.   Equation (26) is particularly useful 

since it permits one to make simple time averaged estimates of the pressure behavior within the transition 

zone.   For a computation of this type, details of the wave packet internal structure are of less value as 

compared to the wave packet magnitude.   Further 3-d details in the “y” and “z” directions may also be 

neglected whereby equation (26) provides a simple spatial model for pressure pulses.  By distributing 

pressure pulses in a manner physically consistent overall with the behavior in a transition zone, e.g. a 

maximum burst rate near the middle zone, we can approximately emulate both mean square pressure 

fluctuation and intermittency behaviors which are discussed subsequently.  

Finally, while a single pressure pulse (packet) for a given wave number  with the sinusoidal internal 

structure suggested by equation (19), e.g. 
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provide a meaningful pressure distribution for the transition zone, it nonetheless, can support a correlation 

function and a frequency spectrum.   We examine the correlation model and frequency spectrum in the 

next section.

III. RESULTS AND DISCUSSION

As suggested, a simple model for wavepacket/spot interaction is possible by ignoring temporal and “y” 

and “z” spot variation.    Let’s consider a domain where Lt≈100δ.   Within this domain let’s place a series 

N of turbulent spots.   The number of spots, of course, varies but 6-12 spots within the zone seems to be a 

plausible number15.   The strength and functional behavior are provided by equation (26).   The location 

and clustering of the spots is suggested by the burst rate formulation which suggests limited laminar 
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turbulent switching (bursting) for x/δ≈0 and x/δ≈1 with a maximum in between.   Depending on the 

intermittency distribution the maximum can be near x/δ=0.33 or x/δ=0.5312.   If we choose a maximum 

symmetrically located, i.e. x/δ=1/2 and N=10 we will place spots at: 

 and then sum the resulting expression )0.1,75.0,625.0,583.0,542.0,5.0,458.0,417.0,375.0,25.0(
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to provide a net pressure expression.   Note that the packets in increase in length for increasing x/δ 

according to which causes the additive interference for 50<x/δ<100.))6exp(exp(
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L
x
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The figure provides a rather gross explanation for the observed local increase in RMS pressure fluctuation 

as compared to the fully developed RMS pressure in the transition zone.   Indeed, if we utilize a model 

developed in DeChant9 which estimates that the ratio of the transition pressure magnitude as:
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the expression in figure 3.
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Figure 3. Comparison between RMS pressure wave packet summation model and intermittency based 
model.

Here we provide a comparison between RMS pressure wave packet summation model and intermittency 

based expression: .   Though the model only roughly estimates )())(1(14
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pressure loading for x/δ>60 it grossly suggests a plausible agreement between the two approaches.

With estimates of the pressure field available and the fact that a non-zero pressure response corresponds 

to a turbulent zone we are in a position to coarsely estimate the intermittency, i.e. the fraction of the flow 

that is turbulent relative to total flow10,11.   This estimate flows by integral averaging the net pressure 

function as:
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This integration if performed over the domain associated with the transition behavior.  Using the pressure 

expression defined earlier and the distribution: 
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plot the result as compared to the analytical model  as: )6052.4exp(1)(
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Figure 4. Intermittency estimate using integral definition compared to cubic and quadratic estimates.

In figure 4 we specifically compare intermittency estimate using integral definition: 

 compared to cubic  and quadratic
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 intermittency models10,11.  Figures 3. and 4. suggest that global )6052.4exp(1)(
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quantities such as the root-mean-square pressure fluctuation distribution and the intermittency  can be 

adequately approximated in 2-d by a steady distribution of pressure pulse packets.

As suggested previously it is possible, as well, to examine the auto-correlation (longitudinal spatial 

correlation function assuming Taylor’s hypothesis is valid) and the attendant frequency spectrum (power-

spectral-density) for a single wave packet.   Consider the packet described by:
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For x=0 we can readily compute the autocorrelation as:
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Notice, that the auto-correlation is a function of the packet wave number “k” or the dimensionless form 

“kδ”.   The resulting expression is in the form of a damped sinusoidal function which yields: 
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Using the Fourier-transform pair that connects the auto-correlation to the power spectral density15 (also 

called the frequency spectrum or auto-spectral density) we can compute power spectral density as:
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Figure 5. Comparison between scaled low frequency power spectral density models.

In figure 5 we provide a comparison between scaled low frequency power spectral density models, i.e. 

Lowson8  and packet model .  For kδ>>1we have 
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conclude that the wave packet model provides useful correlation/spectral results in the low frequency 

range, but is rather less useful as a tool to provide information in the high frequency range.
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IV. CONCLUSION

We have derived an approximate but explicit model for transitional pressure fluctuation behavior by 

approximately solving the linearized Euler equations and using a kinematic wave initial value problem 

formulation.  The initial value for this computation followed from a modified pressure Poisson equation 

formulation supplemented by a simple semi-empirical linearized expression to map between pressure 

fluctuation and velocity fluctuation.  Streamwise variation of the mean flow component was explicitly 

included.   Solving the resulting linear variable coefficient partial differential equation yielded a plausible 

wave packet initial amplitude expression that combined with the convective dominated kinematic wave 

solution resulted in a complete unsteady packet amplitude model.   For a given wave number, the internal 

structure of the packet was shown to be sinusoidal in structure. The overall packet model needed to be 

extended to honor the streamwise growth of the disturbance.  The wave packet pressure fluctuation model 

provided approximate, but physics-based modeling for the transition layer pressure field including the 

root-mean-square pressure fluctuation behavior models, an estimate for the intermittency, pressure 

fluctuation auto-correlation and frequency spectrum.  Application of the model to these problems suggests 

that, even though the wave packet model derived here is certainly approximate in nature, it provides a 

simple explicit formulation for pressure behavior.   
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