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Turbulent Spot Pressure Fluctuation Wave Packet
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Lawrence J. DeChant
Aerosciences Department
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P.O. Box 5800
Albuquerque, New Mexico 87185-0825

ABSTRACT

Wave packet analysis provides a connection between linear small disturbance theory and
subsequent nonlinear turbulent spot flow behavior. The traditional association between
linear stability analysis and nonlinear wave form is developed via the method of
stationary phase whereby asymptotic (simplified) mean flow solutions are used to
estimate dispersion behavior and stationary phase approximation are used to invert the
associated Fourier transform. The resulting process typically requires nonlinear
algebraic equations inversions that can be best performed numerically, which partially
mitigates the value of the approximation as compared to a more complete, e.g. DNS or
linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the
complete packet solution is modeled via approximate amplitude (linear convected
kinematic wave initial value problem) and local sinusoidal (wave equation) expressions.
Significantly, the initial value for the kinematic wave transport expression follows from a
separable variable coefficient approximation to the linearized pressure fluctuation
Poisson expression. The resulting amplitude solution, while approximate in nature,
nonetheless, appears to mimic many of the global features, e.g. transitional flow
intermittency and pressure fluctuation magnitude behavior. A low wave number wave
packet models also recover meaningful auto-correlation and low frequency spectral

behaviors.
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NOMENCLATURE

Symbols

const Constant

c Velocity parameter definition (L/t)

Co Pressure model fluctuation constant

Cr Skin friction coefficient

K Wave number (1/L)

L Streamwise length scale (L)

L, Transition zone streamwise length (L)

M Mach number

p Fluctuating pressure (m/Lt?) or fluctuating pressure/density (L?/t?) (density modified)

Po Fluctuating pressure model initial condition (L?/t?) (density modified)

Dirans Root mean square transition zone fluctuating pressure (L?%/t?) (density modified)

Prp Root mean square fully-developed turbulent (post transition) fluctuating pressure (m/Lt?)
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(density modified)

Dimensionless pressure correlation
Time (t)

Fluctuating streamwise velocity (L/t)
Mean streamwise velocity (L/t)
Fluctuating cross-stream velocity (L/t)
Friction velocity (L/t)

Root mean square velocity fluctuation (L/t)
Lateral fluctuating velocity (L/t)
Streamwise spatial location (L)
Streamwise spot/packet location (L)
Cross-stream spatial location (L)

*
co\v N\ L,

Local variable definition: ¢, = L(gj(éj
. . 1)

Local variable definition /3, = k9| [L—j

t

Boundary layer thickness length scale (L)

Method-of-characteristics cross-stream location definition (L)

Turbulent intermittency

Dimensionless proportionality constant

Separation constant (1/L?)

Separation constant (1/L.?)

Spot shape angle

Frequency (1/t)

Density (m/L?)

-2
. . .U, 2

Dimensionless pressure power spectral density: ? o, (E pU-

Temporal correlation function separation time scale (t)

Wall shear stress

Method-of-characteristics streamwise location definition (L)

Subscripts/Superscripts

0
o0
inc
w

Constant value
Free stream
Incompressible
Wall value






. INTRODUCTION

Wave packet analysis can be useful in providing a model for turbulent spot behavior in laminar turbulent
transition.  The connection between linear stability analysis and wave form via the method of stationary
phase! is developed by Bowles and Smith? and Schmid and Henningson®. The method follows by
combining a local (for example piecewise) mean flow solution with the method of stationary phase,
whereby it is possible to estimate the shape and behavior of wave packets that are surrogates for turbulent
spots. Corroboration of analytical models follows from the measurements and Cohen, Breuer and
Haritonidis* which suggest good agreement between linear theory and measurement for packets prior to
later time nonlinear interaction. Late time nonlinear behavior can also be examined using wave packet
concepts as developed but experimentally and analytically by Kachanov and Lechenko® and more
recently by Breuer, Cohen and Haritonidis®. Unfortunately, while traditional wave packet/method-of-
stationary-phase model provides an elegant connection between linear stability theory and transitional
flow behavior; this type of analysis yields complex results that (beyond rough estimates of spot shape)

that may not be readily utilized in practical transitional flow analyses.

To provide a bridge between the more rigorous wave analyses and a simplified but explicit model we
approximately solve the linearized Euler equations. @ We analyze these equations in context of a
traditional wave packet approximation using a kinematic wave initial value problem formulation. The
initial value for this computation follows from a modified pressure Poisson equation formulation.
Indeed, while the connection between velocity fluctuation and pressure fluctuation is, of course, formally
described by the pressure-Poisson equation we utilize a simple semi-empirical linearized expression’® to
map between pressure fluctuation and velocity fluctuation. Streamwise variation of the meanflow
component is also explicitly included. Solving the resulting linear variable coefficient partial differential
equation provides a plausible wave packet initial amplitude expression. Combination with the
convective dominated kinematic wave solution results in an unsteady packet amplitude model. For a
given wave number, the internal structure of the packet is shown to be consisting with a sinusoidal

structure. This overall packet model is then extended to honor the streamwise growth of the disturbance.

Access to the wave packet pressure fluctuation model permits simplified, but physics-based modeling for
the transition layer pressure field. Focusing on streamwise behavior only, a steady state amplitude
distribution of pressure disturbances yields an overall pressure field that is broadly consistent with

globally based root-mean-square fluctuation models® An estimate for the intermittency suggests good
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agreement with traditional models'®!!2 Finally focusing on small wavenumber/low frequency behavior,
the wave packet model can be used to estimate a pressure fluctuation auto-correlation and frequency
spectrum. Application of the model to these problems suggests that, even though the wave packet model
derived here is certainly approximate in nature, it provides a simple explicit formulation for pressure

behavior.

Il. ANALYSIS

We start by developing the pressure fluctuation wave packet model by posing and solving the kinematic

wave initial value problem. We then extend the model to include streamwise growth behavior.

A. Elementary Wave Packet Model

Consider the 3-d linearized Euler equations® for the fluctuating velocities u, v, w and the fluctuating
pressure p.
u +v, +w, =0

u, +Uu, +vU +wU, =-p

pY

1
v, +Uv, =—p M

y
w,+Uw, =-p.
The mean flow velocity is given as U. In our analysis we implicitly map the constant density into the
pressure term.  Notice as well, that we have included a small “z” component through the term:
oU

U, =—.

0z
These linear equations can be rewritten in terms of a single variable. Traditionally we focus on pressure
p and v. Since the expressions are so well known?® we’ll simply quote the results. The pressure
(fluctuation) is governed by (this expression follows from differentiating the 3 Euler equations by x, y, z
and applying continuity):

Putpy,+p.=Vp=-Uy -Uw, @



ov
Equation (2) clearly requires a closure for the velocity derivative term: v, = 6_ and w,_ = 6_ . The
X X

absence of explicit temporal terms in equation (2) suggests that an approximate solution may provide a

useful estimate for initial condition behavior associated with a kinematic wave packet formulation.

For the purpose of estimating this wave packet initial condition magnitude description of the pressure in
terms of the velocity fluctuation may make more sense. Following Lowson’® the pressure fluctuation

magnitude (for isotropic turbulence) has been given by:

2 2

prms = 058Vrms ~ O7Vrm¥ (3)
where p.,s is the root mean square magnitude of the pressure fluctuation. The density term here is again
suppressed. Other models® utilize the friction velocity v*.  Note that for isotropic turbulence
V.. =u=v=w. Thus we could write:

. 1
pP=CVyV >V, =—=D, 4)
CoVo

. : : o U
It is possible to use a simple constant closure for the mean flow gradient, i.e. U, = gand U , = 0 for

y>>1. For x<<I we need to use the outer solution with U , = 0 and then increase the presence of the

U)x
non-zero inner gradient for “x” increasing. Thus we propose the model: U y = (Ejf where L, is the
t
total transition zone length and can write the termU v, as
Ul o 1 a,( x
Uv. ==+ s -p.|=—2| = |p,. This closure is strictly valid for x<<I since for
ONL, )o | cyvy, o\o) "

% >>1 this would be a secular (unbounded) term. We will perform our analysis for x<<I (recall that

we are modeling the initial condition) and then extend the model to be valid t>1 and x>>1.

A similar modeling proposal might seem appropriate for the _w_term. Rather than relying on isotropic

[T 1)

pressure fluctuation model, we alternatively use a quasi-steady approximation from the “z” Euler equation

w,+Uw, =-p

z

1
whereby: w_~ U p.. A model for W, is less apparent in the absence of an obvious

: : : : : : 0
“z” convective velocity. We believe that the scaling associated with the W, = 6_ term follows from
A
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the internal structure (wave oscillation) internal to the wave packet as described by the wave number “k”.

ow
Thus a plausible model for W, = a—would be: W, oc Uk whereby W_w_ = kp,. Utilizing a similar
4

. . z\ o . .
argument to U v, we introduce the extension such that: W w, ~ k(_j(L_] p.. It is convenient to

)

t

o

t

z o
define: W w, E&(g)pz where /3, :ké‘(L—j. With these approximations/definitions we can

formulate the equation:

pxx +pyy +pzz +vax+szx :O

a X 4
D+ ?(Ejpx +p.+ %(Ejpz +p, =0

©)

Equation (5) is linear and separable whereby the expression: p(x,y,z)= f(x,z)g(y) is of use.

Applying this expression to equation (5) we then obtain:

a, | x z
(=) By
(6)
g'-p’g=0
where p? is the separation constant. The f(x,y) (modified Helmholtz equation) is separable as

f(x,z) = A(x)B(z) which yields:
A"+ﬂ(ijA'+/12A =0
o \o

(7
B"+&(EJB'+(;¢2 B =0
sls

The two ODE’s associated with equation (7) can be readily solved if we can assess a value for the

(04 a
separation constants. Indeed if we let 1* = 5—gthen A"+?O[§jA'+ﬂ,2A =0 solves as:

1 2
Az exp(-a (gj ) ()

11



,5'0

In a similar manner if we let (> — 4°) = 2% then yields:

Bo exp(—%ﬂo (%} ) 9)

a, +
o_ﬂo and g''-u’g = 0 provides the expected exponential decay as:

g cexp(—/a, + (gj) (10)

We are then in a position to formulate the initial condition for pressure term as:

Po(x, y,Z)OCeXp(__ao(é.J __:Bo( j _\/ao"'ﬂo[%j) (11)

This finally gives: u° =

The variable ¢, is fully specified as «, :i(gj(?j while £, :k5(%) Simple order of
v t

Co ¢

2 which is O(25-35).

2
A

magnitude analysis'? suggests that —

The dimensionless wave number ko is perhaps best understood via the dimensionless wave number as

Uk Uk :

— . The dominant portion of the spectrum centers on — = O(1) (Taylor hypothesis) the “so-called
@ @

convective ridge”'*.  The dimensionless wavenumber can be written in terms of the traditional

. : wo . . . .
dimensionless frequency, ko = 7 suggesting that a wide range of frequencies may play a role in the

o
wavenumber spectrum. The frequency spectrum is dominant for N7a = O(1) but is characterized by

higher frequencies for smaller (inner law) scales by frequencies on the order of O(100-1000). Certainly,

ko within the boundary layer can be as large as O(100).

Finally, let’s estimate the size of the transition zone length L,. We can readily relate the transition zone

length to the (laminar) boundary layer thickness Reynolds number via the Blasius solution':

Re, =5Re!?, the empirical'®!! expressions Re, =9Re’*and the definition Re, =3.3Re,.

12



.. . S _ 9 3/2 _ 3/2 : ReL, _ Lz :
Combining these expressions gives: Re, _3'3(25W) Rey” =2.7Re;". The ratio Re. " 5 is
1 eé‘

1{eL, Lt 1/4 .. .
R =—~6Re, " that for a transitional flat plate, Re,=O(10%), give
Cs

shown to be

Re L
R oo 0O(100) which implies that the spatial domain is given by 0 < % <100 with a similar
Cs

temporal ~ domain. This  suggests, that ¢, = i( U* j{%} ~ O(1/2)—O(1) while
v

Co 1

9
L

t

B, :ké{ Jz O()-0(10). Clearly, these are rather gross estimates but they are useful to help

delineate

There is value in considering equation (11) for a set of relevant parameter values say: 0y=3/4,

a, z%(1/2+1):% and Bi=5.5, 3, z%(1+10):%

Figure 1. Initial condition p0(x,y,z) for y=0, a0=3/4 and p0=11/2.

These order of magnitude estimates provide useful information regarding the shape of the wave packet
magnitude a surrogate for a physical turbulent spot. The spreading rate associated with the spot follows
from the ratio of the “x” and “z” expressions in equation (11). Indeed the ratio of the packet footprint

width to length is found to be:

13



1/2
(YA _fx]_ JEj ~21.2°
tan ¢ [1/%] (ﬂoj 0 22—>¢ . (12)

This value compares moderately with the more traditional method of stationary phases spot shape angle

result which yields>*: ¢ =19.47°

Equation (11) can be expected to satisfy the modified Poisson  equation:

PutP,*tP.= U Ve~ U.w_ modeled as: p +ﬁ[§] p.t+p.. +%(§j p.+p, . Equation

)

(11) provides a rational estimate (though a crude one since the shape of the associated spot is
upstream/downstream symmetric, clearly not the observed behavior)? for the initial condition, let’s call it
po(X,y,z) associated with a single turbulent spot-like wave packet.  Certainly turbulent spots are a
dynamic phenomenon in a convective flow field as demonstrated by the linearized Euler equations, via
equation (1). Using the simple isotropic closure model, i.e. equations (3) and (4) we can readily rewrite

the “y” momentum equation as:

v, +Uv, + cov;vy =0 (12)
We could as well (using the approximate closure p = cov*v :
P, +Up, +cevop, =0 (13)

Using equation (11) to provide the initial condition: p,(x, y,z) the solution to equation (13) is (almost)

trivial as:
p(x’y5Z,t) = po(é:’naz)
14
E=x-Ut (14
n=y-vt
Note that since ‘(}]—0 << 1that to good approximation: p, +Up, = 0whereby:

p(x,y,z,t) = p,(x —=Ut, y,z), which simply a streamwise translating impulse with minimal variation.

Obviously, this is an idealization since the spot grows in size as it translates.

The preceding analysis discusses the amplitude behavior of the wave packet, but there is no attempt to

determine the internal structure of the packet. The internal structure of turbulent spot is characterized by
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a complex, stochastic, multiple scale (time and space) unsteady flow behavior. There is virtually no
possibility that our simple models will adequately describe this behavior. Nonetheless, the internal
structure of the packet is important to us and a meaningful approximation would be of value. Let’s
consider the linearized Euler equation focusing on:

u +Uu, +vU, +wU, =-p

X

(15)
v,+Uv, =-p,
Let’s further introduce p = c,v,v ~ c,vyu and the scaling approximation — p, zg which can be
combined to give:
p o
v+, =5 su="_(v,+Uv,) (16)
1) CoV

Then, assuming that x<<I we can write: u, + (U + cov*)ux =0 which is approximately: u, + Uu_=0.
Using equation (16) we can write:

u, +2Uu, +Uu_ =0 (17)
Though highly simplified equation (17) is intended to an estimate for the internal behavior of the wave
packet. Equation (17) admits the solution: u(x,?) oc exp(ik(x —ct)). We can substitute into equation
(17) to estimate a value for c as:

k*(c* =2Uc+U)=0—>c=U (18)

Such that u(x,t) oc exp(ik(x —Ut)) which taking the real part is simply: u(x,t) oc cos(k(x —Ut)).

Thus, a (normalized) wave packet can be modeled as:

p < cos(ké'(x ;Ut)) exp(—%(%j(x ;Utj _%k5(§j - [clf/* ] + ké‘[gj} (19)

While highly simplified, equation (19) nonetheless may provide a suitable tool to model wave packet

X
behavior. Notice the constraint between packet periodicity cos(ké‘(g)) e.g. ko and the lateral

spreading parameter [ = kJ implied by equation (19) which suggests a relationship between spot shape

and internal periodic structure. This is a relationship that we readily test by comparison to experimental

measurement.

Casper et. al.'* provides a series of compelling measurements for wave packet and turbulent spot structure

for supersonic flow over a sharp cone. Figure 6 provides an excellent measurement representation for the

15



initial behavior of a wave packet and an opportunity to ascertain the overall validity of equation (19) for

t<<l. The periodicity of the wave packet in the measurements is approximately ko ~10. Using

Co \V 1

L[ U* j(%j = O(1) equation (19) can be written as

2(3,0,2,0) o cos(lO(%)) exp(—%(%)(gj —%(10{%) ) which

20 ; - p'/p,

0.5
~10 § A °
E D28
E 0
"; I [WRY 3]
-10 18
50 50 04

Figure 2. qualitative comparison between measured wave packet and wave packet model

In figure 2 we present a qualitative comparison between measured wave packet'* and wave packet model:

(1,0, 2,0) o cos(l o%)) exp(—%(%)(gj —%(10{%) ) for k& ~10and CL(VQ](LQ] ~0(1/2).

t

10 1 1)
Measured packet width to length is estimated as: 0 = r while analytical value is: (E / 10) ~0.224 .

The reduction in friction velocity follows from the traditional'3> mapping from conical to flat plate flows.

B. Wave Packet Pulse Growth

A particular issue with the preceding solution is that the spot translates but retains its shape throughout

the flow. For a spot to increase its length in the streamwise direction?, we need to decrease the size of the

16



2
term — L( U; j(x ;‘Utj in equation (19). An effective decrease for this term might follow from the
v

method-of-characteristics that was used to estimate the x—Uf. This term was derived by solving a

simple expression of the form:
p,+Up =0 p(x,t=0)= p,(x) (20)
Which has the solution p(x,t) = p,(&) = p,(x —Ut) for any function po(x,t). Equation (20) follows

[l

from “u” momentum equation u, +Uu, +vU +wU_ =-p with vU +wU, ~ Owhere we have
assumed that U>>1 and that the convective term will dominate.

Let’s examine equation (15) u, + Uu, +vU, +wU_=-p . We can model p = CoV U —>u= p*

Cy)V

U
and choose a model for vU b Certainly a reasonable model for U y is U y R (Ej . Recall, however, that
we noted that x<<I we need to use the outer solution with U , = 0 and then increase the presence of the

U\ x
non-zero inner gradient for “x” increasing. This lead to the model: U, = (EJ(E) valid for x<<3 To

L .. X . .
retain simplicity, let’s assume that the [gj term can be modeled by a dimensionless constant k where

K= (Léj with L, the total transition zone length.

t

The closure for “v” is rather less clear. A possibility is: v = L* so that the governing equation would
coV

then become:

u +Uu, =—vU, - p,
. 21
p, +ley +Ulp, +K%p ~ p, +Up, +K%p =0
Equation (21) can be solved:
U
p(x,1) = py(g) exp(-=x—1)
E=x—[cy +Ult=~x-Ut

(22)
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Examination of equation (22) indicates a temporally damped system with disturbance magnitude. This
behavior is not consistent with our experience for wave packets whereby structures tend to increase in

size3.

Let’s then re-examine the assumptions utilized to achieve equation (21). Consider modifying the “v”

. X . . .
expression to be: v=——p. . The choice to model in terms of the pressure gradient rather than the
CyV

pressure itself will have a significant impact on the behavior of the model. It is critical to note that the
approximation: p =~ xp is (strictly) valid for a local linear approximation only. Certainly this

approximation will not be valid over the full domain.

For a convectively dominated flow it is relatively simple for us to modify the expression p ~ xp to be a

local model by writing: p = K'(x ;Ut) p.- The governing equation would then take the form:
- Ut .
pt-l-[U(l—f-Kx )+c,v lp, =0
(23)
- Ut
p,+U(1+x> 5P, =0

Given an appropriate initial condition py(x) we can solve equation (23). The method-of-characteristics

approach requires that: p(x,t) = p,(&)and:

B _par e
dr

) x(0)=¢ (24)

U
Equation (23) can be solved for & to give: gg:(x—Ut)eXp(—KEt) so that

x-Ut

)

U
p(x,t) = p,( )exp(—k 5 t)) for an arbitrary initial condition. Notice, that this approximation has

. . . . : ) .
damped the effective length scale associated with solution.  Using K:cons{L— we can write:
t

x—-Ut

U
p(x,t) = p,( )exp(—constft)) . If we apply this kind of approximation to equation (19) and

t

[}

focus only on the streamwise “x” variation we can write:

18



1 (UY s 2t (x-UtY
709050 - | —% —_ ! t_ 25
ooy o - (2) fopcem (=Y,

This modification will cause the spot to increase in size as it moves in the streamwise “x” direction. The

2Ut . . . . .
constant — const L—IS estimated to be O(1). We utilizeconst =3 . With this information we can
t

provide a snapshot of the transition zone process where each individual spot/packet is described by:

2
2(x,0,0,0) oc exp(—exp(—6 %)(1 002 Z al j ) 26)

t t
where X; is the location of the spots within the transition domain. Equation (26) is particularly useful
since it permits one to make simple time averaged estimates of the pressure behavior within the transition
zone. For a computation of this type, details of the wave packet internal structure are of less value as
compared to the wave packet magnitude. Further 3-d details in the “y” and “z” directions may also be
neglected whereby equation (26) provides a simple spatial model for pressure pulses. By distributing
pressure pulses in a manner physically consistent overall with the behavior in a transition zone, e.g. a
maximum burst rate near the middle zone, we can approximately emulate both mean square pressure

fluctuation and intermittency behaviors which are discussed subsequently.

Finally, while a single pressure pulse (packet) for a given wave number with the sinusoidal internal
structure suggested by equation (19), e.g.

x-Ut
o

x—-Ut

p(x,y,2,t) o cos(kd( 5

2
j)) at a particular location does not

xi
) exp(—exp(—6 Z)(

provide a meaningful pressure distribution for the transition zone, it nonetheless, can support a correlation
function and a frequency spectrum. We examine the correlation model and frequency spectrum in the

next section.

lll. RESULTS AND DISCUSSION

As suggested, a simple model for wavepacket/spot interaction is possible by ignoring temporal and “y”
and “z” spot variation. Let’s consider a domain where L~1005. Within this domain let’s place a series
N of turbulent spots. The number of spots, of course, varies but 6-12 spots within the zone seems to be a
plausible number!>. The strength and functional behavior are provided by equation (26). The location

and clustering of the spots is suggested by the burst rate formulation which suggests limited laminar
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turbulent switching (bursting) for x/6~0 and x/6~1 with a maximum in between. Depending on the
intermittency distribution the maximum can be near x/6=0.33 or x/6=0.53'2. If we choose a maximum

symmetrically  located, ie. x/6=1/2 and N=10 we will place spots at:

% =(0.25,0.375,0.417,0.458,0.5,0.542,0.583,0.625,0.75,1.0) and then sum the resulting expression

t

to provide a net pressure expression. Note that the packets in increase in length for increasing x/4

X.
according to exp(—exp(—6 f’)) which causes the additive interference for 50<x/6<100.
t

The figure provides a rather gross explanation for the observed local increase in RMS pressure fluctuation
as compared to the fully developed RMS pressure in the transition zone. Indeed, if we utilize a model

developed in DeChant® which estimates that the ratio of the transition pressure magnitude as:
p p g

X
Z) 27)

3
plral’ls x x
Poe 14 2| (1= (X4 1
Prp [Ltj L,

3
with the intermittency model 7/(%) =1- exp(—4.6052(%] ) to the fully turbulent value we can plot

t t

the expression in figure 3.
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Figure 3. Comparison between RMS pressure wave packet summation model and intermittency based
model.

Here we provide a comparison between RMS pressure wave packet summation model and intermittency

3
based expression: Prvans _ 14[%} (1- 7/(%)) + ]/(Li) Though the model only roughly estimates
t t t

Prp

pressure loading for x/6>60 it grossly suggests a plausible agreement between the two approaches.

With estimates of the pressure field available and the fact that a non-zero pressure response corresponds
to a turbulent zone we are in a position to coarsely estimate the intermittency, i.e. the fraction of the flow
that is turbulent relative to total flow'%!!. This estimate flows by integral averaging the net pressure

function as:

x/L,
Y~ 1 p(s,00)

~ (28)
x/L, o P

This integration if performed over the domain associated with the transition behavior. Using the pressure

expression defined earlier and the distribution:
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% =(0.25,0.375,0.417,0.458,0.5,0.542,0.583,0.625,0.75,1.0) we can estimate the intermittency and
t

3
plot the result as compared to the analytical model 7/(%) =1—exp(—4.6052 Li) ) as:

t

t

Warvepaclket intermittency estimate
Cubie continuous intermittency model
Cadratic continuous intermittency model

a 20 40 g0 80 100
X
i

Figure 4. Intermittency estimate using integral definition compared to cubic and quadratic estimates.

In figure 4 we specifically compare intermittency estimate using integral definition:

3

1 x/L

Y~ P(s,0,0) ds compared to  cubicy (i) =1-exp(—4.6052 = ) and  quadratic
x/L vy pep L, L

t

2
y(%):l—exp(—4.6052£%] ) intermittency models'®!!.  Figures 3. and 4. suggest that global

t t

quantities such as the root-mean-square pressure fluctuation distribution and the intermittency can be

adequately approximated in 2-d by a steady distribution of pressure pulse packets.

As suggested previously it is possible, as well, to examine the auto-correlation (longitudinal spatial
correlation function assuming Taylor’s hypothesis is valid) and the attendant frequency spectrum (power-

spectral-density) for a single wave packet. Consider the packet described by:
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(6, . 2.1) = cos(kS 20 exp(~ exp(~6 %)(x - Ufj ) (29)

, )

For x=0 we can readily compute the autocorrelation as:

)]dt

R(k5 )oc j [cos(kUt)) exp(— ( j [cos(kU(t + 7)) exp(— (U(t; r)]

(30)
o eXP(—E((?T)2 ~ (k&)*)[cos(ks %) eXp(% (k&)*) +1]

Notice, that the auto-correlation is a function of the packet wave number “k” or the dimensionless form

“kd”. The resulting expression is in the form of a damped sinusoidal function which yields:

R(ko, %) oc exp(— % (%)2) for kd<<1 and tends towards

o

Ur
R(ko, —) 2 (——((—) )cos(ko 7) for k&>>1.

Using the Fourier-transform pair that connects the auto-correlation to the power spectral density!> (also

called the frequency spectrum or auto-spectral density) we can compute power spectral density as:

@(“’—5,k5) o j R(k8. V%) cos(wr)dr
U E 5
* (31)
oc [exp((ko %5) + 1]2 exp[—% (ko + %5)2]

1 @
For small wave number kd the result is simply @ oc eXP[_E (%)2] which is largely consistent with the

. 1
Lowson? classical result @ oc

o,
1+(%2
(U)
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Figure 5. Comparison between scaled low frequency power spectral density models.

In figure 5 we provide a comparison between scaled low frequency power spectral density models, i.e.

1
Lowson?® (DOC; and packet model @mexp[——(w—a)z]. For k&>>1we have
o, 2 U
)

O oc exp[(k5)(%5) - %((ké‘)2 + (%5)2)+] The form of the large wave number expression implies that

o))
® =0() for E7a ~ kO and is zero elsewhere. This frequency behavior is consistent with a correlation
. Ur Ur
function of the form: R(kJ, 7) ~ cos(ko 7) where one formally recovers the well-known result that

%)
the frequency spectrum is simply a Dirac delta solution with 7 ~ ko . From this analysis we can

conclude that the wave packet model provides useful correlation/spectral results in the low frequency

range, but is rather less useful as a tool to provide information in the high frequency range.
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IV. CONCLUSION

We have derived an approximate but explicit model for transitional pressure fluctuation behavior by
approximately solving the linearized Euler equations and using a kinematic wave initial value problem
formulation. The initial value for this computation followed from a modified pressure Poisson equation
formulation supplemented by a simple semi-empirical linearized expression to map between pressure
fluctuation and velocity fluctuation. Streamwise variation of the mean flow component was explicitly
included. Solving the resulting linear variable coefficient partial differential equation yielded a plausible
wave packet initial amplitude expression that combined with the convective dominated kinematic wave
solution resulted in a complete unsteady packet amplitude model. For a given wave number, the internal
structure of the packet was shown to be sinusoidal in structure. The overall packet model needed to be
extended to honor the streamwise growth of the disturbance. The wave packet pressure fluctuation model
provided approximate, but physics-based modeling for the transition layer pressure field including the
root-mean-square pressure fluctuation behavior models, an estimate for the intermittency, pressure
fluctuation auto-correlation and frequency spectrum. Application of the model to these problems suggests
that, even though the wave packet model derived here is certainly approximate in nature, it provides a

simple explicit formulation for pressure behavior.
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