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Overview	and	Purpose	of	the	Workshop	
	
The	USACM	Thematic	Workshop	on	Uncertainty	Quantification	and	Data-Driven	Modeling	was	
held	on	March	23-24,	2017,	in	Austin,	TX.	The	organizers	of	the	technical	program	were	James	
R.	Stewart	of	Sandia	National	Laboratories	and	Krishna	Garikipati	of	University	of	Michigan.	The	
administrative	organizer	was	Ruth	Hengst,	who	serves	as	Program	Coordinator	for	the	USACM.	
The	organization	of	this	workshop	was	coordinated	through	the	USACM	Technical	Thrust	Area	
on	Uncertainty	Quantification	and	Probabilistic	Analysis.	The	workshop	website	
(http://uqpm2017.usacm.org)	includes	the	presentation	agenda	as	well	as	links	to	several	of	
the	presentation	slides	(permission	to	access	the	presentations	was	granted	by	each	of	those	
speakers,	respectively).	Herein,	this	final	report	contains	the	complete	workshop	program	that	
includes	the	presentation	agenda,	the	presentation	abstracts,	and	the	list	of	posters.	 
	

The	purpose	of	this	workshop	was	to	bring	together	leading	experts	in	uncertainty	
quantification,	statistics,	computer	science,	and	computational	science	to	discuss	new	research	
ideas	in	data-driven	modeling.		With	UQ	now	established	as	a	core	area	of	computational	
science	and	engineering,	data	science	is	quickly	emerging	as	a	critical	accompanying	technology	
area	for	enabling	validated,	predictive	simulations.		However,	data	science	is	still	in	its	infancy	
and	new	ideas	are	needed,	especially	in	the	context	of	UQ	for	multi-scale,	multi-physics	science	
and	engineering	applications.	

Wide-ranging	physical	phenomena,	from	turbulent	flows	through	materials	physics,	exhibit	
emergent	behavior	that	can	only	be	understood	and	predicted	by	detailed	multi-scale	
models.		Existing	multi-scale	models	based	on	first	principles	equations,	and	physical	
approximations	thereof,	tend	to	be	either	prohibitively	expensive	or	inaccurate.		However,	
recent	advances	at	the	intersection	of	data	and	computational	science	have	created	new	
opportunities	to	meet	the	long-standing	challenge	of	delivering	quantitative	predictivity	in	
multi-scale	computational	physics.		This	has	led	to	a	new	paradigm	of	data-driven	model	
development.		In	addition	to	classical	methods	from	inverse	problems,	this	new	framework	
brings	to	bear	Bayesian	inference,	stochastic	simulation,	reduced	order	modelling,	compressed	
sensing	as	well	as	advances	in	machine	learning.		Of	particular	interest	are	approaches	by	which	
the	above	and	related	techniques	can	enhance	the	predictivity	of	large	scale	computational	
physics.	

Through	this	workshop,	we	hoped	to	highlight	new	advances	in	UQ	and	data-driven	modeling	
that	will	lead	to	breakthroughs	in	our	ability	to	develop	predictive	models	for	realistic	
applications.		Areas	of	interest	included,	but	were	not	limited	to	

• Deterministic	and	stochastic	inverse	problems	
• Data	assimilation	methodologies,	particularly	in	the	context	of	datasets	with	a	high	

degree	of	noise	and/or	poorly	characterized	uncertainties	
• Machine	learning	and	data	mining	methods	to	inform	model	development	
• Inference	of	models,	including	parameters	and	functional	forms	
• Validation	and	data-informed	predictions	for	science	and	engineering	applications	
• Uncertainty	quantification	for	large-scale,	high-dimensional	problems	



Workshop	Participation	and	DOE	Financial	Support	

A	total	of	90	people	registered	for	and	attended	the	workshop.	The	photo	below	shows	the	
workshop	venue	at	capacity.	The	registration	fee	of	$320	covered	breakfast,	lunch,	and	coffee	
breaks	on	each	day,	the	dinner	banquet	on	the	first	day,	printing	costs	for	the	registration	
materials,	and	rental	of	the	workshop	venue.	The	workshop	format	consisted	of	20	talks	(25	
minutes	each)	organized	over	six	sessions,	as	well	as	34	posters	organized	into	one	poster	
session.	The	poster	session	started	with	a	lively	one-minute	poster	introduction	by	each	of	the	
poster	presenters.		

	

DOE’s	Office	of	Advanced	Scientific	Computing	Research	(ASCR)	provided	financial	support	for	
students	and	postdocs	to	attend	the	workshop.		A	total	of	10	postdocs	and	27	graduate	
students,	from	19	different	(U.S.-based)	institutions,	received	this	support;	the	full	list	of	award	
recipients	is	included	at	the	end	of	this	report.	The	support	covered	workshop	registration,	
lodging,	and	airfare	for	each	recipient	(with	the	exception	that	four	of	the	recipients	were	local	
and	only	required	workshop	registration	expenses).	Each	of	the	financial	award	recipients	was	
required	to	present	a	poster	at	the	workshop.	We	received	43	applications	for	this	financial	
support,	which	put	us	in	the	difficult	position	of	turning	down	some	very	deserving	applicants.		

Workshop	Summary	and	Path	Forward	

The	final	session	of	the	workshop	was	an	open	discussion	where	all	participants	were	given	the	
opportunity	to	provide	feedback	and	comments.	The	following	major	themes	and	observations,	
arising	from	the	presentations	and	the	posters,	were	identified:		

	



• Model	selection;		
• A	divide	between	the	machine	learning	and	computational	science	&	engineering	

communities;	
• Coupling	physics	modeling	with	machine	learning;	
• Discussions	of	“big	data”	vs.	“little	data”;	
• Combining	information	from	different	sources:	high	vs.	low	fidelity;	
• Reduced-order	modeling	–	discovering	lower	dimensional	manifolds;	
• Need	for	taxonomy;	
• Structure	preservation	–	how	does/can	data	preserve	structure	in	models?	
• Sequential	data	assimilation,	e.g.,	Kalman	filtering;	
• Data	regularization;	
• Modeling/predicting	rare	events;	
• UQ	benchmarks	(both	positive	and	negative	experiences	were	expressed).	

Notable	missing	themes	(which	could	be	incorporated	into	future	workshops)	included:	

• Data	wrangling;	data	characterization;	physics	identification;	
• Model	robustness	against	data;	
• Code	implementation	details	and	performance;	
• Identifiability	in	Bayesian	analysis;	e.g.,	simultaneous	parameter	uncertainty	and	model	

bias	(distinguishing	the	two);	
• Data	augmentation,	identifying	gaps	in	data;	
• Decision	making	–	based	on	results	of	the	data	and/or	models;	
• Data	acquisition,	experimental	design;	
• Data	science	applied	to	experimental	data;	
• Artificial	intelligence;	
• System	ID	and	system	theoretic	communities.	

We	note	that	many	of	the	above	topics	would	need	much	more	thorough	discussion;	the	above	
list	simply	captures	the	open	comments	from	the	participants.	Regarding	the	workshop	itself,	
the	participants	were	asked	what	worked	well	and	what	could	be	improved.	The	participants	
liked	the	one-minute	poster	introductions	and	thought	that	the	length	of	the	talks	(25	minutes),	
as	well	as	the	number	of	talks	per	session,	were	appropriate.	Areas	for	improvement	included	
having	smaller	poster	sessions	(our	single	session	was	thought	to	be	too	large),	providing	
food/drinks	during	the	poster	session,	getting	a	better	room	(especially	for	viewing	the	
presentation	slides),	better	grouping	of	talks	within	sessions	according	to	themes,	and	more	
diversity	among	speakers	(e.g.,	women,	students,	postdocs).	

Additional	ideas	that	were	mentioned	for	future	workshops	included	the	following:	Introducing	
a	single	new	topic	and	inviting	one	or	two	subject	matter	experts	to	speak	on	that	topic;	
highlighting	software	(especially	open	source	software);	sharing	of	frustrations	in	applying	
various	UQ	and	data	assimilation	methods;	hands-on	experiences	for	junior	researchers	as	well	
as	tutorials.	It	was	strongly	felt	that	there	are	many	fruitful	directions	for	possible	future	



workshops.	Finally,	it	was	noted	that	there	is	a	danger	of	a	small	workshop	turning	into	a	
conference;	therefore,	it	was	emphasized	that	focusing	on	specific	themes	would	help	keep	the	
size	down	and	maintain	the	value	of	small-group	interactions.		
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AT&T Executive Education and Conference Center, Austin, Texas 
March 23-24, 2017 

 
Thursday, March 23   
7:30  Registration; Room 104 
8:15 - 8:30  Opening Remarks 
Session 1  
8:30 – 8:55 Roger Ghanem, University of Southern California 

Data-driven Sampling and Prediction on Manifolds 
8:55 – 9:20 Michael Shields, Johns Hopkins University 

How Much Data do I Really Need to Conduct Probabilistic UQ? 
9:20 – 9:45  Robert Moser, ICES/University of Texas at Austin 

Validating the Reliability of Predictions based on Unreliable Models 
9:45 – 10:15 Break 
Session 2  
10:15 – 10:40 Paris Perdikaris, Massachusetts Institute of Technology 

Data-driven Modeling and Optimization with Probabilistic Multi-fidelity 
Surrogates 

10:40 – 11:05 Rick Archibald, Oak Ridge National Laboratory 
Sparse Sampling Methods for Large Scale Experimental Data 

11:05 – 11:30 Kevin Carlberg, Sandia National Laboratories 
Reducing Nonlinear Dynamical Systems via Model Reduction and Machine 
Learning 

11:30 – 12:30  Lunch 
12:30 – 1:00 Poster Introductions (see list at end of program) 
1:00 – 2:25 Poster Session 
Session 3  
2:25 – 2:50 Nathan Kutz, University of Washington 

Data-driven Discovery of Governing Equations in the Engineering and 
Physical Sciences 

2:50 – 3:15 David Stracuzzi, Sandia National Laboratories 
Uncertainty Quantification for Machine Learning and Statistical Models 

3:15 – 3:40 Youssef Marzouk, Massachusetts Institute of Technology 
Low-dimensional Couplings for Bayesian Inference 

3:40 – 4:10 Break 
Session 4  
4:10 – 4:35 Daniele Schiavazzi, University of Notre Dame 

A Generalized Multi-resolution Expansion for Uncertainty Propagation with 
Application to Cardiovascular Modeling 

4:35 – 5:00 Paul Barbone, Boston University 
Efficiently Computing Covariance of Parameter Estimates in Inverse 



Problems 
 

5:00 – 5:25 Tan Bui-Thanh, ICES/University of Texas at Austin 
A Randomized Misfit Approach for Data-driven PDE-constrained Bayesian 
Inverse Problems 

6:30 – 7:00 Dinner reception – UT Alumni Center, 2110 San Jacinto Blvd. 
7:00 – 9:00 Workshop Dinner - UT Alumni Center, Legends Room 
  
Friday, March 24 
Session 5  
8:15 – 8:40 J. Tinsley Oden, ICES/University of Texas at Austin 

Selection and Validation of Predictive Models of Tumor Growth and Cancer 
Therapies 

8:40 – 9:05 C. Alberto Figueroa, University of Michigan 
A Reduced-order Kalman Filtering Approach for Data-driven Parameter 
Estimation in Arterial Hermodynamics 

9:05 – 9:30 Ben Peherstorfer, University of Wisconsin 
Multifidelity Methods for Uncertainty Propagation and Rare Event 
Simulation 

9:30 – 9:55 Qiqi Wang, Massachusetts Institute of Technology 
When Does an Accurate Model Lead to a Predictive Simulation? 

9:55 – 10:25 Break 
Session 6  
10:25 – 10:50 Omar Ghattas, ICES/University of Texas at Austin 

Scalable Methods for Optimal Control of Systems Governed by PDEs with 
Random Coefficient Fields 

10:50 – 11:15 Jonathan Freund, University of Illinois at Urbana-Champaign 
Adjoint-based Sensitivity in Turbulent Combustion Simulation 

11:15 – 11:40 Mohammad Khalil, Sandia National Laboratories 
Data-Driven Bayesian Model Selection: Parameter Space Dimension 
Reduction using Automatic Relevance Determination Priors 

11:40 – 12:05 Karthik Duraisamy, University of Michigan 
A Paradigm for Data-driven Predictive Modeling Using Field Inversion and 
Machine Learning 

12:05 – 1:15 Lunch 
1:15 – 2:00 Open Discussion: Key research themes, challenges, opportunities, etc. 
2:00 Adjourn 

 
Abstracts of talks follow (in order of presentation) 

List of posters (listed alphabetically) 
	 	



	
Data-Driven Sampling and Prediction on Manifolds 

 
Roger Ghanem1 and Christian Soize2 

 
1University of Southern California,  2Université Paris-Est 

 
 

With the possibility of interpreting data using increasingly complex models we are often 
faced with the need to embed the data in an ambient space consistent with the 
parameterization of these models typically a high-dimensional Euclidean space. 
Constructing probability measures on these spaces or subsets of them is fairly 
straightforward once the subsets have been delineated. Quite often fundamental laws 
associated for example with symmetry of conservation constrain the data to a complex 
manifold within this ambient space. Acknowledging these constraints serves to focus the 
scatter in the data around the manifold with significant ramifications to subsequent 
statistical analysis: the shape of the distributions asymptotic sample properties and the 
sampling mechanisms would all be affected. 
 
Increasingly more often the exact constraints (hence manifolds) to which the data is 
subjected are not known either because of unaccounted interaction with other scales or 
physics (such as in physics-based problems) or because the fundamental governing laws 
are not yet understood (such as in biological social  and economical systems). In such 
situations manifold discovery is an important step in augmenting statistical analysis 
with key hidden constraints. 
 
In this talk we present a recent procedure for describing probability measures on 
diffusion manifolds and sampling from them. The procedure integrates methods from 
machine learning with statistical estimation functional analysis  and white noise 
calculus to achieve orders of magnitude efficiencies in data requirements for 
probabilistic characterization and sampling. Examples will be shown from applications 
from across the sciences and engineering. 
  



How Much Data Do I Really Need to Conduct Probabilistic UQ? 
 

Michael Shields and Jiaxin Zhang 
 

Johns Hopkins University 
 
In purely mathematical terms stochastic systems are expressed in terms of a set of 
random variables with known probability models. Under certain conditions (e.g. 
asymptotic normality) the true probability model may indeed be known. More 
commonly the probability model is assumed or inferred from data. Along these lines a 
great deal of research has focused on methods for estimating probability distributions – 
ranging from frequentist parameter estimation to Bayesian model selection. In these 
methods two common themes arise: 1. In the infinite data limit most of the established 
methods converge toward a “best” (not necessarily true/correct) solution; 2. In the small 
data case uncertainty abounds which (among other factors) has inspired separate fields 
of imprecise probabilities and non-probabilistic approaches. This begs the simple but 
provocative question posed in the title. In general the answer to this question will be 
dependent on the sensitivity of the stochastic system to the probability models of its 
variables and the level of confidence required by the modeler. In this presentation I 
attempt to provide some insights into this question by presenting an efficient method 
for propagating uncertain probability distributions quantified through Kullback-Liebler 
information theoretic multi-model inference with Bayesian parameter estimation. The 
method retains and propagates the uncertainties associated with both model form and 
model parameters that stems from lack of data. In this way we establish confidence 
levels in probabilistic response based on the available data – allowing the user/analyst 
to make the determination of how much data he/she is willing/able to collect in order to 
achieve a sufficient level of confidence in statistical response.  
  



Validating the Reliability of Predictions Based on  
Unreliable Models 

 
Robert Moser 

 
ICES/University of Texas at Austin 

 
One of the most challenging and important applications of computational models of 
physical systems is to make predictions when no observations of the quantities being 
predicted are available. This is the usual situation when model results are to be used to 
support decisions (e.g. design or operations decisions) where predictions are needed 
precisely because observational data are not available when the decision must be made. 
Predictions then are essentially extrapolations of available information to the quantities 
and scenarios of interest. The validation challenge is to assess whether such an 
extrapolation can be made reliably. The structure of many computational models 
actually makes this possible. However a critical ingredient is a representation of the 
uncertainty introduced due to any modeling errors in such a way that the uncertainties 
can be propagated to the predictions. A primary challenge is formulating a model error 
representation that respects both what is known about the phenomenon being modeled 
and the known deficiencies of the model. In this talk we will explore a basis for making 
reliable extrapolative predictions using imperfect models. We will also discuss the 
representation of model errors in several physical domains including chemical kinetics, 
turbulent combustion and contaminant dispersion in porous media. 
 
  



Data-Driven Modeling and Optimization with Probabilistic 
Multi-Fidelity Surrogates 

 
Paris Perdikaris1,  George Em Karniadakis2 

 
1Massachusetts Institute of Technology,  2Brown University 

 
Multi-fidelity stochastic modeling entails the use of variable fidelity methods and 
models both in physical and probability space. In this new paradigm we target learning 
from variable information sources as even under-resolved simulations or simplified 
mathematical models or empirical correlations can be employed to construct an 
accurate stochastic response surface. The goal of this talk is to provide an introduction 
to multi-fidelity modeling using probabilistic machine learning and Gaussian processes. 
In particular we will present a general yet flexible data-driven framework  that allows us 
to simultaneously track both parametric and modeling uncertainties by synergistically 
combining models of variable fidelity and exploiting their cross-correlation structure. A 
collection of benchmark problems will demonstrate the robustness of the proposed 
algorithms with respect to model misspecification (e.g. inaccurate low-fidelity models or 
noisy measurements) as well as their accuracy and efficiency for a wide range of target 
applications including uncertainty quantification data-assimilation  inverse problems  
design optimization  and beyond. 
 
  



Sparse Sampling Methods for Large Scale Experimental Data 
 

Rick Archibald 
 

Oak Ridge National Laboratory 
 
This talk will focus on mathematics developed to help with the mathematical challenges 
face by the Department of Energy (DOE) at the experimental facilities at Oak Ridge 
National Laboratory (ORNL). This talk will specifically focus on sparse sampling 
methods for large scale experimental data. Sparse sampling has the ability to provide 
accurate reconstructions of data and images when only partial information is available 
for measurement. Sparse sampling methods have demonstrated to be robust to 
measurement error. These methods have the potential to scale to large computational 
machines and analysis large volumes of data.  
 
  



Reducing Nonlinear Dynamical Systems Via Model  
Reduction and Machine Learning 

 
Kevin Carlberg1,  Harbir Antil2,  Matthew Barone1,  Sumeet Trehan2,  Louis Durlofsky2 

 
1Sandia National Laboratories,  2George Mason University, 3Stanford University 

 
Predictive modeling of complex physical systems often necessitates constructing large-
scale nonlinear dynamical-system models that are extremely costly to simulate. This 
creates a 'computational barrier' that precludes such high-fidelity models from being 
employed in many-query applications (e.g.  uncertainty propagation) that can demand 
hundreds or thousands of such simulations. This talk describes a two-pronged approach 
for using available simulation data to significantly reduce the dimensionality and 
complexity of such large-scale dynamical-system models. 
 
First we propose using simulation data related to the system state and nonlinear 
functions to construct a projection-based reduced-order model (ROM). Rather than 
applying the commonly-used Galerkin projection we show that ROMs constructed via 
least-squares Petrov–Galerkin (LSPG) projection exhibit smaller error bounds  time-
discrete optimality  and greatly improved performance large-scale turbulent-flow 
problems. 
 
Second  we propose using simulation data related to the error between the reduced-
order and high-fidelity models to construct a model of the ROM error. This approach 
applies high-dimensional regression methods from machine learning (e.g.  random 
forests LASSO) to map a large set of inexpensively computed 'error indicators' (i.e.  
features) produced by the reduced-order model to a prediction of its error in a quantity 
of interest (i.e.  output). 
 
  



Data-Driven Discovery of Governing Equations in the 
Engineering and Physical Sciences 

 
Nathan Kutz 

 
University of Washington 

 
We use emerging large-scale time-series data from modern sensors to directly construct  
in an adaptive manner  governing equations  even nonlinear dynamics  that best model 
the system measured using sparsity-promoting techniques. Recent innovations also 
allow for handling multi-scale physics phenomenon and control protocols in an adaptive 
and robust way. The overall architecture is equation-free in that the dynamics and 
control protocols are discovered directly from data acquired from sensors. The theory 
developed is demonstrated on a number of example problems. Ultimately the method 
can be used to construct adaptive controllers which are capable of obtaining and 
maintaining optimal states while the machine learning and sparse sensing techniques 
characterize the system itself for rapid state identification and improved optimization.  
  



Uncertainty Quantification for Machine Learning and Statistical 
Models 

 
David Stracuzzi,  Maximillian Chen,  Matthew Peterson,  Michael Darling,   

Charles Volume 
 

Sandia National Laboratories 
 

Charles Darwin once said that "ignorance more frequently begets confidence than does 
knowledge." This is especially true in data analytics. By necessity we often rely on data 
of debatable quality relevance  and completeness to answer all manner of questions. 
Moreover our data often come from multiple sources of varying quality and reliability. 
Under these conditions the easiest way to be certain about results is to avoid looking too 
closely. 
 
Data-driven uncertainty analysis takes the opposite approach; it looks very closely at the 
available data and the statistical modeling process to determine both the stability of the 
learned model and the reliability of its predictions. The talk begins with a discussion of 
what uncertainty means in a data analytics context where it comes from  and why 
analyzing uncertainty is important. We then summarize applications and preliminary 
results in two domains: seismic analysis and overhead image analysis. The talk 
concludes with a discussion of possible long-term implications of the work for data 
collection data analysis  and decision making. 
  



Low-dimensional Couplings for Bayesian Inference 
 

Youssef Marzouk,  Alession Spantini,  Daniele Bigoni 
 

Massachusetts Institute of Technology 
 
 

We will discuss how transport maps, i.e.  deterministic couplings between probability 
measures can enable useful new approaches to Bayesian computation. In particular we 
present a variational approach to Bayesian inference that constructs a deterministic 
transport between a reference measure and the posterior measure without resorting to 
MCMC or importance sampling. Independent and unweighted posterior samples can 
then be obtained by pushing forward reference samples through the map. 
 
Making this approach efficient in high dimensions requires identifying and exploiting 
low-dimensional structure. We present new results relating the sparsity and 
decomposability of transports to the conditional independence structure of the target 
distribution. We also describe conditions  common in inverse problems  under which 
transport maps have a particular low-rank or near-identity structure. In general  these 
properties of transports can yield more efficient algorithms. As a particular example  we 
derive new “online” variational algorithms for Bayesian inference in nonlinear and non-
Gaussian state-space models with static parameters. 

 
  



A Generalized Multi-Resolution Expansion for Uncertainty 
Propagation with Application to Cardiovascular Modeling 

 
Daniele Schiavazzi 

 
University of Notre Dame 

 
Computational models are used in a variety of fields to improve our understanding of 
complex physical phenomena. Recently the realism of model predictions has been 
greatly enhanced by transitioning from deterministic to stochastic analysis frameworks  
where the effects of the intrinsic variability in parameters  loads  constitutive properties  
model geometry and other quantities can be more naturally included. A general 
stochastic system may be characterized by a large number of arbitrarily distributed and 
correlated random inputs and a limited support response with sharp gradients or event 
discontinuities. This motivates continued research into novel adaptive algorithms for 
uncertainty propagation  particularly those handling high dimensional  arbitrarily 
distributed random inputs and non-smooth stochastic responses. 
 
In this talk  I will discuss a generalization of a previously proposed multi-resolution 
approach to uncertainty propagation that improves computational efficiency  can handle 
arbitrarily distributed random inputs and non-smooth stochastic responses  and 
naturally facilitates adaptivity  i.e.  the expansion coefficients encode information on 
solution refinement. Our approach relies on partitioning the stochastic space into 
elements subject to binary refinements that are particularly effective in avoiding the 
exponential increase in the multi-resolution basis cardinality and significantly reduce 
the regression complexity for moderate to high dimensional random inputs.  
 
The performance of the approach is demonstrated through previously proposed 
uncertainty propagation benchmarks and stochastic multi-scale finite element 
simulations in cardiovascular flow. In these latter simulations we show that our 
approach is able to combine random inputs assimilated by sequentially sampling from 
their joint posterior distribution and inputs with assumed distributions.  
  



Efficiently Computing Covariance of Parameter Estimates in  
Inverse Problems 

 
Paul E. Barbone1, Bryan Chue1,  Quang Ha1,  Assad Oberai2 

 
1Boston University, 2Renesselaer Polytechnic Institute 

 
Uncertainty quantification in inverse problems presents distinct opportunities and 
challenges relative to UQ in forward models. A formal solution for the a posteriori 
probability distribution (PPD) for inverse problems is often readily available but is 
difficult to work with practically.  For unimodal posteriors the PPD may be 
approximately characterized by its mode and covariance about the mode.  Computing 
these quantities can present formidable challenges.  In practice finding the MAP 
estimate may require minimizing a very high dimensional function (O(105 - 106) 
parameters)  with complex (e.g. discretized nonlinear) PDE constraints.  For such a 
problem merely storing the final covariance may require tens of terabytes. We show that 
the structure of inverse problems leads to a sparse update on a predictable and a priori 
known covariance operator. This leads to an efficient sparse basis in which to compute 
and store the covariance. We show how the covariance can be accurately computed with 
relatively little computation over and above that used in finding the MAP estimate. This 
method can thus be used to compute the uncertainty in an inverse problem solution 
relatively efficiently. We describe the approach formally in a relatively general setting  
and demonstrate it with examples in inverse diffusion and inverse elasticity. 
  



A Randomized Misfit Approach for Data-Driven PDE-
Constrained Bayesian Inverse Problems 

 
 Tan Bui-Thanh, Elle Le,  Aaron Myers 

 
University of Texas at Austin 

 
A randomized misfit approach is presented for the efficient solution of very large-scale 
PDE-constrained inverse problems with high-dimensional data. The contribution of this 
work is to offer a theory-based framework for random projections in this inverse 
problem setting. The stochastic approximation to the misfit is analyzed using random 
projection theory. The interplay of both Johnson-Lindenstrauss theory and Morozov’s 
discrepancy principle is shown to be essential to the result. The computational cost 
savings for very large- scale PDE-constrained problems with high-dimensional data is 
discussed. Numerical verification of theoretical findings are presented for model 
problems of estimating a distributed parameter in an elliptic partial differential 
equation. Results with different random projections are presented to demonstrate the 
viability and accuracy of the proposed approach. 



Selection and Validation of Predictive Models of Tumor Growth 
and Cancer Therapies 

 
J. Tinsley Oden1, Ernesto Lima1,  Amir Shahmorad1,  Barbara Wohlmuth2,  Thomas 

Horger2,  Thomas Yankeelov1,  David Hormuth1 

 
1University of Texas at Austin, 2Technical University of Munich 

 
Stochastic phenomenological models of vascular tumor growth in living tissues based on 
continuum mixture theory and principles of cancer biology are described. These are 
used to predict the evolution of brain cancer in laboratory animals. A Bayesian 
framework is proposed for managing model calibration validation and for prediction. 
Models of radiation effects on tumor growth are also studied. The OPAL algorithm is 
implemented to control parameter sensitivities model plausibilities model inadequacy  
and to the solution of this forward predictions problem. Examples include the 
applications to predictive methods to model glioma in laboratory rats. Encouraging 
results in tumor growth predictions are described. 

  
  



A Reduced-Order Kalman Filtering Approach for Data-driven 
Parameter Estimation in Arterial Hemodynamics 

 
C. Alberto Figueroa 

 
University of Michigan 

 
A major challenge in constructing three-dimensional patient-specific hemodynamic 
models is the calibration of boundary condition and material parameters that enable 
model predictions to match patient data on flow pressure wall motion etc. acquired in 
the clinic. We have implemented a parameter estimation framework based on reduced-
order Kalman filtering [1 , 2] to estimate the Windkessel parameters that characterize 
the outflow boundary conditions in a 3-D subject-specific fluid-structure interaction 
model of aortic hemodynamics. 
 
We first demonstrate the suitability of this methodology to recover estimates and 
covariance metrics of tissue stiffness in an idealized model using synthetic data. Then 
we estimate outflow boundary condition parameters in a clinical scenario: The 
estimation algorithm incorporates noninvasive flow data acquired using magnetic 
resonance imaging and pressure data from applanation tonometry in a healthy human 
volunteer and successfully produced converged estimates for the subject-specific aorta 
model. Numerical experimentation suggests that having time-resolved flow 
measurements in the branches of the model and pressure data at a single location is 
sufficient for the successful recovery of the boundary condition parameters. 



Multifidelity Methods for Uncertainty Propagation and 
Rare Event Simulation 

 
Benjamin Peherstorfer1,  Karen Willcox2,  Max Gunzburger3,  Boris Kramer2 

 
1University of Wisconsin 2Massachusetts Institute of Technology  

3Florida State University 

 
In many situations across computational science and engineering multiple 
computational models are available that describe a system of interest. These different 
models have varying evaluation costs and varying fidelities. Typically a computationally 
expensive high-fidelity model describes the system with the accuracy required by the 
current application at hand while lower-fidelity models are less accurate but 
computationally cheaper than the high-fidelity model. Uncertainty quantification 
typically requires multiple model solves at many different inputs which often leads to 
computational demands that exceed available resources if only the high-fidelity model is 
used. We present multifidelity methods for uncertainty propagation and rare event 
simulation that leverage low-cost low-fidelity models for speedup and occasionally make 
recourse to the expensive high-fidelity model to establish unbiased estimators. Our 
methods combine low-fidelity models of any type including projection-based reduced 
models data-fit models and response surfaces coarse-grid approximations  and 
simplified-physics models. Our numerical results demonstrate that our multifidelity 
methods achieve significant speedups while providing unbiased estimators even in the 
absence of error control for the low-fidelity models. 
 
  



When Does an Accurate Model Lead to a Predictive Simulation? 
 

Qiqi Wang1, Alexandre Marque1, Xiao Heng2 

 
1Massachusetts Institute of Technology, 2Virginia Tech 

 
Data-based methods have great potential in modeling unclosed term in physics-based 
simulations. Such data-based methods often minimizes the modeling error on a training 
set. This error minimization however does not always lead to the most predictive 
simulation. One factor is the possibility of overfitting which can be addressed by many 
statistical and machine learning techniques. There is another factor that should be 
considered when combining data-based modeling and physics-based modeling. This 
factor is model conditioning which quantifies how much a small error in a model term 
impacts the solution. We will use analysis and examples to show that modeling 
conditioning is essential to ensure accurate solution of data-based modeling. We will 
discuss challenges in constructing well-conditioned data-based modeling and in 
particular what conditioning means in the context of chaotic fluid flow. 
 
 
  



Scalable Methods for Optimal Control of Systems Governed by 
PDEs with Random Coefficient Fields 

 
Omar Ghattas1,  Peng Chen1,  Umberto Villa1,  Alen Alexanderian2,   

Noemi Petra3,  Georg Stadler4 

 
1ICES  University of Texas at Austin  2North Carolina State University  3UC Merced  4Courant 

Institute  NYU 
 

We present a method for optimal control of systems governed by partial differential 
equations(PDEs) with uncertain parameter fields. We consider an objective function 
that involves the mean and variance of the control objective a form of risk-averse 
optimal control. Conventional numerical methods for optimization under uncertainty 
are prohibitive when applied to this problem; for example sampling the (discretized 
infinite-dimensional) parameter space to approximate the mean and variance would 
require solution of an enormous number of PDEs which would have to be done at each 
optimization iteration. To make the optimal control problem tractable we invoke a 
quadratic Taylor series approximation of the control objective with respect to the 
uncertain parameter field. This enables deriving explicit expressions for the mean and 
variance of the control objective in terms of its gradients and Hessians with respect to 
the uncertain parameter. The risk-averse optimal control problem is then formulated as 
a PDE-constrained optimization problem with constraints given by the forward and 
adjoint PDEs defining these uncertain parameter gradients and Hessians. 
 
The expressions for the mean and variance of the control objective under the quadratic 
approximation involve the trace of the (preconditioned) Hessian and are thus 
prohibitive to evaluate for (discretized) infinite-dimensional parameter fields. To 
overcome this difficulty we employ a randomized eigensolver to extract the dominant 
eigenvalues of the decaying spectrum. The resulting objective functional can now be 
readily differentiated using adjoint methods along with eigenvalue sensitivity analysis to 
obtain its gradient with respect to the controls. Along with the quadratic approximation 
and truncated spectral decomposition this ensures that the cost of computing the risk-
averse objective and its gradient with respect to the control---measured in the number 
of PDE solves—is independent of the (discretized) parameter and control dimensions 
leading to an efficient quasi-Newton method for solving the optimal control problem. 
Finally the quadratic approximation can be employed as a control variate for accurate 
evaluation of the objective at greatly reduced cost relative to sampling the original 
objective. We present results of collaborative work with R. Moser and T. Oliver on the 
optimal control of a turbulent jet flow model with an algebraic turbulence model with 
uncertain parameter field. 
  



Adjoint-Based Ignition Sensitivity in Turbulent Combustion 
 

Jonathan Freund1, David Buchta1, Jesse Capecelatro2 

 
1University of Illinois at Urbana-Champaign, 2University of Michigan 

 
The talk will cover ongoing efforts using adjoint-based sensitivity in conjunction with 
large-scale simulations of flow turbulence. A current target of these efforts is adjoint-
based sensitivity calculations for large-scale turbulent combustion simulations with the 
goal of identifying quantifying and reducing prediction uncertainties. It is demonstrated 
on a non-premixed shear layer a reacting jet-in-crossflow and ignition in decaying 
turbulence. We distinguish sensitivities between a detailed and a global one-step 
hydrogen-air mechanism. The primary model system is the ignition of a turbulent jet by 
a laser-induced optical breakdown (LIB). Ignition defined by a space-time integral of 
temperature is most sensitive to the modeled plasma kernel geometry and its energy 
deposited on the gas phase. Thus combining the adjoint-based sensitivity with the LIB's 
aleatoric interspersed plasma kernels these parameters dominate the propagated output 
uncertainty which is local to the inputs. The present combustion sensitivity studies are a 
component of a multi-scale multi-physics combustion application being investigated in 
the Illinois Center for Exascale Simulation of Plasma-coupled Combustion (XPACC). 
Similar examples from aeroacoustic flow control will also be included in the discussion. 
  



Data-Driven Bayesian Model Selection:  
Parameter Space Dimension Reduction using Automatic 

Relevance Determination Priors 
 

Mohammad Khalil 
 

Sandia National Laboratories 
 

Bayes’ theorem provides parameter estimates that blend prior knowledge of the system 
parameters with indirect observational data. Bayesian model selection utilizes such 
estimates in comparing the suitability of many plausible models using the so-called 
model evidence the probability that randomly selected parameters from the prior would 
generate the observed data. There are various approaches to prescribe the prior 
distribution depending on the level of knowledge of the modeler. Popular priors include 
diffuse priors Jeffrey’s priors  conjugate priors  and informative priors. The choice of 
prior distribution and associated parameters that parametrize such priors (called hyper-
parameters) has a major impact on any Bayesian estimation procedure and subsequent 
model selection analysis. 
 
In the context of feature selection automatic relevance determination (ARD)  aka sparse 
Bayesian learning  is an effective tool for pruning large numbers of irrelevant features 
leading to a sparse explanatory subset. It does so by regularizing the Bayesian inference 
solution space using a parameterized data-dependent prior distribution that effectively 
prunes away redundant or superfluous features. The hyper-parameter of each ARD 
prior explicitly represents the relevance of the corresponding model parameter. The 
hyper-parameters are estimated using the observational data by performing evidence 
maximization or type-II maximum likelihood. In the context of model selection ARD 
priors aid in finding the best model nested under the envisioned model. ARD provides a 
flexible Bayesian platform to find the optimal nested model by eliminating the need to 
propose candidate nested models and associated prior pdfs. Thus ARD priors effectively 
reduce the parameter space dimension of the inference procedure based on available 
observations. 
 
This talk will motivate the use of ARD priors in the context of physics-based Bayesian 
model selection. Results will be presented for an application to model selection of 
complex aeroelastic systems modeled by coupled nonlinear stochastic ordinary 
differential equations using noisy wind-tunnel experimental observations. The 
experiments consist of a NACA0012 airfoil undergoing limit cycle oscillation in the 
transitional Reynolds number regime. 

 
  



 
A Paradigm for Data-Driven Predictive Modeling using Field 

Inversion and Machine Learning 

 
Karthik Duraisamy, Anand Singh, Shaowu Pan 

 
University of Michigan 

 
A data-driven modeling paradigm based on field inversion and machine learning 
(FIML) is proposed to aid the quantification of model discrepancy in a predictive 
setting. This work uses inverse modeling to obtain corrective spatio-temporally 
distributed functional terms offering a route to directly address model-form errors. 
Once the inference has been performed over a number of problems that are 
representative of the deficient physics machine learning techniques are used to 
reconstruct the model corrections in terms of features that appear in the closure model. 
When these reconstructed functional forms are embedded in existing PDE solvers 
improved predictions and uncertainty bounds are obtained. The 
inversion/learning/uncertainty propagation framework is cast in a Bayesian setup 
allowing for consistent uncertainty quantification. Results are presented in fluid flow 
and materials problems. 
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Ali Akhavan Safaei  A Bayesian Framework for Rheology Model Combination and UQ in Simulation 
of Geophysical Mass Flows. 

Watheq Al-Mudhafar   Boosted Regression-based Proxy Optimization of CO2 Enhanced Oil Recovery 
in Unconventional Reservoirs  

Negin  Alemazkoor  A Near-Optimal Sampling Strategy for Sparse Recovery of Polynomial Chaos 
Expansions 

Alessandro Alla  A Certified Model Reduction Approach for Robust Optimal Control with PDE 
Constraints 

Ahmed Attia  Cluster Sampling Algorithms for Non-Gaussian Data Assimilation 

Olalekan Babaniyi  Inversion Techniques from Transient Data in the Ultrasound Elastography Field  

Ramin Bostanabad   Data-Driven Modeling and UQ in Multiscale Materials 

Peng Chen   Taylor Approximation and Variance Reduction for PDE-constrained Optimal 
Control under Infinite-dimensional Uncertainty 

Oriol Colomes   Mesh Discretization Error and Uncertainty Quantification: A Variational 
Multiscale Approach 

M. Chase Dwelle   Flooding Dynamics with Spectral Projection and Bayesian Compressive Sensing 

Wouter Edeling   A Return to Eddy Viscosity UQ framework 
Gianluca Geraci   Multilevel/Multifidelity Strategies for Forward UQ 
Alex Gorodetsky   Low-rank Approximation for Gaussian Filtering 

Quang Ha   Krylov Subspace Method for Hessian Approximation - Conjugate Gradient in 
Infinite Dimensional Hilbert Space 

Eric Hall   Uncertainty Quantification for Generalized Langevin Dynamics 
Joey Hart   Efficient Computation of Sobol' Indices for Stochastic Models 

Jeffrey Hokanson   Data-Driven Polynomial Ridge Approximation Using Variable Projection 

Ming Jiang   A Supervised Learning Framework for Arbitrary Lagrangian-Eulerian 
Simulations 

Soo Kyung Kim   Machine Learning Approach of Climate Event Prediction 
Ellen Le/Aaron Myers/ 
Vishwas Rao Scalable Methods for Large-Scale Data-driven Bayesian Inverse Problems 

Jing Lin   Bayesian Learning for High-Dimensional Chaotic Dynamical Systems with 
Application to Two-Dimensional Turbulent Bottom Gravity Currents 

Erin Linebarger   Physically Constrained Ensemble Kalman Filter 

Sudipto Mandal   Analyzing Constitutive Parameters In Multi-Scale Material Models Using 
Canonical Correlation Analysis 

Damon McDougall   QUESO: A Parallel C++ Library for Uncertainty Quantification 

Joseph Slagel   Stochastic Newton and Quasi-Newton Methods for Large Linear Least-squares 
Problems 

David Sondak   Calibration of a Stochastic Model Inadequacy Representation for Chemical 
Kinetics 

Gray Thomas   Identifying Bounded Uncertainty Models with Convex Optimization  



Gregory Teichert 
Data-interactive Computational Materials Physics: Studies of Precipitate 
Morphology by Combination of Experiment  Nonlinear Elasticity and Machine 
Learning 

Panagiotis Tsilifis   Polynomial Chaos Basis Adaptation Schemes for Uncertainty Propagation and 
Design Optimization on a SCRAMJET Engine 

Umberto Villa   Integrating Data with Complex Predictive Models under Uncertainty: An 
Extensible Software Framework for Large-Scale Bayesian Inversion 

Tsuyoshi Wakamatsu   Information Contents of a 4dvar Analysis Based on a Reduced Order Model 
Approach 

Jianxun Wang  Physics-Informed  Data-Driven Approach for Reducing Model Discrepancies 
Due to Unresolved Physics 

Sichao Wu   GENEUS: a Computational Framework for Uncertainty Quantification  
Sensitivity Analysis and Experimental Design for Network-based Models 

Benjamin Zhang   Measure Transport Methods for Rare Event Simulation 

Jiaxin Zhang   Data-Driven Probabilistic Calibration of Material Models from Small Datasets 
and its Influence on Structural Response 

 
 

Directions to Alumni Center 
 

Turn left outside the AT&T Center, head north, walk to 21st Street.  Turn right on 21st Street and 
walk until you get to San Jacinto.  Turn left on San Jacinto until you reach the Alumni Center, 
which is directly across from the stadium.  The dinner will be held in the Legends Room. 
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