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Overview and Purpose of the Workshop

The USACM Thematic Workshop on Uncertainty Quantification and Data-Driven Modeling was
held on March 23-24, 2017, in Austin, TX. The organizers of the technical program were James
R. Stewart of Sandia National Laboratories and Krishna Garikipati of University of Michigan. The
administrative organizer was Ruth Hengst, who serves as Program Coordinator for the USACM.
The organization of this workshop was coordinated through the USACM Technical Thrust Area
on Uncertainty Quantification and Probabilistic Analysis. The workshop website
(http://ugqpm?2017.usacm.org) includes the presentation agenda as well as links to several of
the presentation slides (permission to access the presentations was granted by each of those
speakers, respectively). Herein, this final report contains the complete workshop program that
includes the presentation agenda, the presentation abstracts, and the list of posters.

The purpose of this workshop was to bring together leading experts in uncertainty
quantification, statistics, computer science, and computational science to discuss new research
ideas in data-driven modeling. With UQ now established as a core area of computational
science and engineering, data science is quickly emerging as a critical accompanying technology
area for enabling validated, predictive simulations. However, data science is still in its infancy
and new ideas are needed, especially in the context of UQ for multi-scale, multi-physics science
and engineering applications.

Wide-ranging physical phenomena, from turbulent flows through materials physics, exhibit
emergent behavior that can only be understood and predicted by detailed multi-scale

models. Existing multi-scale models based on first principles equations, and physical
approximations thereof, tend to be either prohibitively expensive or inaccurate. However,
recent advances at the intersection of data and computational science have created new
opportunities to meet the long-standing challenge of delivering quantitative predictivity in
multi-scale computational physics. This has led to a new paradigm of data-driven model
development. In addition to classical methods from inverse problems, this new framework
brings to bear Bayesian inference, stochastic simulation, reduced order modelling, compressed
sensing as well as advances in machine learning. Of particular interest are approaches by which
the above and related techniques can enhance the predictivity of large scale computational
physics.

Through this workshop, we hoped to highlight new advances in UQ and data-driven modeling
that will lead to breakthroughs in our ability to develop predictive models for realistic
applications. Areas of interest included, but were not limited to

e Deterministic and stochastic inverse problems

o Data assimilation methodologies, particularly in the context of datasets with a high
degree of noise and/or poorly characterized uncertainties

e Machine learning and data mining methods to inform model development

e Inference of models, including parameters and functional forms

e Validation and data-informed predictions for science and engineering applications

e Uncertainty quantification for large-scale, high-dimensional problems



Workshop Participation and DOE Financial Support

A total of 90 people registered for and attended the workshop. The photo below shows the
workshop venue at capacity. The registration fee of $320 covered breakfast, lunch, and coffee
breaks on each day, the dinner banquet on the first day, printing costs for the registration
materials, and rental of the workshop venue. The workshop format consisted of 20 talks (25
minutes each) organized over six sessions, as well as 34 posters organized into one poster
session. The poster session started with a lively one-minute poster introduction by each of the
poster presenters.

DOE’s Office of Advanced Scientific Computing Research (ASCR) provided financial support for
students and postdocs to attend the workshop. A total of 10 postdocs and 27 graduate
students, from 19 different (U.S.-based) institutions, received this support; the full list of award
recipients is included at the end of this report. The support covered workshop registration,
lodging, and airfare for each recipient (with the exception that four of the recipients were local
and only required workshop registration expenses). Each of the financial award recipients was
required to present a poster at the workshop. We received 43 applications for this financial
support, which put us in the difficult position of turning down some very deserving applicants.

Workshop Summary and Path Forward
The final session of the workshop was an open discussion where all participants were given the

opportunity to provide feedback and comments. The following major themes and observations,
arising from the presentations and the posters, were identified:



e Model selection;

e Adivide between the machine learning and computational science & engineering
communities;

e Coupling physics modeling with machine learning;

e Discussions of “big data” vs. “little data”;

e Combining information from different sources: high vs. low fidelity;

e Reduced-order modeling — discovering lower dimensional manifolds;

e Need for taxonomy;

e Structure preservation — how does/can data preserve structure in models?

e Sequential data assimilation, e.g., Kalman filtering;

e Data regularization;

e Modeling/predicting rare events;

e UQ benchmarks (both positive and negative experiences were expressed).

Notable missing themes (which could be incorporated into future workshops) included:

e Data wrangling; data characterization; physics identification;

e Model robustness against data;

e Code implementation details and performance;

e Identifiability in Bayesian analysis; e.g., simultaneous parameter uncertainty and model
bias (distinguishing the two);

e Data augmentation, identifying gaps in data;

e Decision making — based on results of the data and/or models;

e Data acquisition, experimental design;

e Data science applied to experimental data;

e Artificial intelligence;

e System ID and system theoretic communities.

We note that many of the above topics would need much more thorough discussion; the above
list simply captures the open comments from the participants. Regarding the workshop itself,
the participants were asked what worked well and what could be improved. The participants
liked the one-minute poster introductions and thought that the length of the talks (25 minutes),
as well as the number of talks per session, were appropriate. Areas for improvement included
having smaller poster sessions (our single session was thought to be too large), providing
food/drinks during the poster session, getting a better room (especially for viewing the
presentation slides), better grouping of talks within sessions according to themes, and more
diversity among speakers (e.g., women, students, postdocs).

Additional ideas that were mentioned for future workshops included the following: Introducing
a single new topic and inviting one or two subject matter experts to speak on that topic;
highlighting software (especially open source software); sharing of frustrations in applying
various UQ and data assimilation methods; hands-on experiences for junior researchers as well
as tutorials. It was strongly felt that there are many fruitful directions for possible future



workshops. Finally, it was noted that there is a danger of a small workshop turning into a
conference; therefore, it was emphasized that focusing on specific themes would help keep the
size down and maintain the value of small-group interactions.
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AT&T Executive Education and Conference Center, Austin, Texas
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Thursday, March 23

7:30

Registration; Room 104

8:15 - 8:30 Opening Remarks
Session 1
8:30 — 8:55 Roger Ghanem, University of Southern California
Data-driven Sampling and Prediction on Manifolds
8:55-9:20 Michael Shields, Johns Hopkins University
How Much Data do I Really Need to Conduct Probabilistic UQ?
9:20 — 9:45 Robert Moser, ICES/University of Texas at Austin
Validating the Reliability of Predictions based on Unreliable Models
9:45-10:15 Break
Session 2
10:15 - 10:40 | Paris Perdikaris, Massachusetts Institute of Technology
Data-driven Modeling and Optimization with Probabilistic Multi-fidelity
Surrogates
10:40 — 11:05 | Rick Archibald, Oak Ridge National Laboratory
Sparse Sampling Methods for Large Scale Experimental Data
11:05-11:30 | Kevin Carlberg, Sandia National Laboratories
Reducing Nonlinear Dynamical Systems via Model Reduction and Machine
Learning
11:30 — 12:30 | Lunch
12:30 — 1:00 | Poster Introductions (see list at end of program)
1:00 — 2:25 Poster Session
Session 3
2:25-2:50 Nathan Kutz, University of Washington
Data-driven Discovery of Governing Equations in the Engineering and
Physical Sciences
2:50 - 3:15 David Stracuzzi, Sandia National Laboratories
Uncertainty Quantification for Machine Learning and Statistical Models
3:15-3:40 Youssef Marzouk, Massachusetts Institute of Technology
Low-dimensional Couplings for Bayesian Inference
3:40 - 4:10 Break
Session 4
4:10 — 4:35 Daniele Schiavazzi, University of Notre Dame
A Generalized Multi-resolution Expansion for Uncertainty Propagation with
Application to Cardiovascular Modeling
4:35-5:00 Paul Barbone, Boston University

Efficiently Computing Covariance of Parameter Estimates in Inverse




Problems

5:00 - 5:25 Tan Bui-Thanh, ICES/University of Texas at Austin
A Randomized Misfit Approach for Data-driven PDE-constrained Bayesian
Inverse Problems

6:30 — 7:00 Dinner reception — UT Alumni Center, 2110 San Jacinto Blvd.

7:00 —9:00 Workshop Dinner - UT Alumni Center, Legends Room

Friday, March 24

Session 5

8:15 - 8:40 J. Tinsley Oden, ICES/University of Texas at Austin
Selection and Validation of Predictive Models of Tumor Growth and Cancer
Therapies

8:40 — 9:05 C. Alberto Figueroa, University of Michigan
A Reduced-order Kalman Filtering Approach for Data-driven Parameter
Estimation in Arterial Hermodynamics

9:05 - 9:30 Ben Peherstorfer, University of Wisconsin
Multifidelity Methods for Uncertainty Propagation and Rare Event
Simulation

9:30 —9:55 Qiqi Wang, Massachusetts Institute of Technology
When Does an Accurate Model Lead to a Predictive Simulation?

9:55-10:25 | Break

Session 6

10:25 - 10:50 | Omar Ghattas, ICES/University of Texas at Austin
Scalable Methods for Optimal Control of Systems Governed by PDEs with
Random Coefficient Fields

10:50 — 11:15 | Jonathan Freund, University of Illinois at Urbana-Champaign
Adjoint-based Sensitivity in Turbulent Combustion Simulation

11:15-11:40 | Mohammad Khalil, Sandia National Laboratories
Data-Driven Bayesian Model Selection: Parameter Space Dimension
Reduction using Automatic Relevance Determination Priors

11:40 — 12:05 | Karthik Duraisamy, University of Michigan
A Paradigm for Data-driven Predictive Modeling Using Field Inversion and
Machine Learning

12:05 - 1:15 Lunch

1:15-2:00 Open Discussion: Key research themes, challenges, opportunities, etc.

2:00 Adjourn

Abstracts of talks follow (in order of presentation)
List of posters (listed alphabetically)




Data-Driven Sampling and Prediction on Manifolds

Roger Ghanem! and Christian Soize?

University of Southern California, 2Université Paris-Est

With the possibility of interpreting data using increasingly complex models we are often
faced with the need to embed the data in an ambient space consistent with the
parameterization of these models typically a high-dimensional Euclidean space.
Constructing probability measures on these spaces or subsets of them is fairly
straightforward once the subsets have been delineated. Quite often fundamental laws
associated for example with symmetry of conservation constrain the data to a complex
manifold within this ambient space. Acknowledging these constraints serves to focus the
scatter in the data around the manifold with significant ramifications to subsequent
statistical analysis: the shape of the distributions asymptotic sample properties and the
sampling mechanisms would all be affected.

Increasingly more often the exact constraints (hence manifolds) to which the data is
subjected are not known either because of unaccounted interaction with other scales or
physics (such as in physics-based problems) or because the fundamental governing laws
are not yet understood (such as in biological social and economical systems). In such
situations manifold discovery is an important step in augmenting statistical analysis
with key hidden constraints.

In this talk we present a recent procedure for describing probability measures on
diffusion manifolds and sampling from them. The procedure integrates methods from
machine learning with statistical estimation functional analysis and white noise
calculus to achieve orders of magnitude efficiencies in data requirements for
probabilistic characterization and sampling. Examples will be shown from applications
from across the sciences and engineering.



How Much Data Do I Really Need to Conduct Probabilistic UQ?

Michael Shields and Jiaxin Zhang

Johns Hopkins University

In purely mathematical terms stochastic systems are expressed in terms of a set of
random variables with known probability models. Under certain conditions (e.g.
asymptotic normality) the true probability model may indeed be known. More
commonly the probability model is assumed or inferred from data. Along these lines a
great deal of research has focused on methods for estimating probability distributions —
ranging from frequentist parameter estimation to Bayesian model selection. In these
methods two common themes arise: 1. In the infinite data limit most of the established
methods converge toward a “best” (not necessarily true/correct) solution; 2. In the small
data case uncertainty abounds which (among other factors) has inspired separate fields
of imprecise probabilities and non-probabilistic approaches. This begs the simple but
provocative question posed in the title. In general the answer to this question will be
dependent on the sensitivity of the stochastic system to the probability models of its
variables and the level of confidence required by the modeler. In this presentation I
attempt to provide some insights into this question by presenting an efficient method
for propagating uncertain probability distributions quantified through Kullback-Liebler
information theoretic multi-model inference with Bayesian parameter estimation. The
method retains and propagates the uncertainties associated with both model form and
model parameters that stems from lack of data. In this way we establish confidence
levels in probabilistic response based on the available data — allowing the user/analyst
to make the determination of how much data he/she is willing/able to collect in order to
achieve a sufficient level of confidence in statistical response.



Validating the Reliability of Predictions Based on
Unreliable Models

Robert Moser

ICES/University of Texas at Austin

One of the most challenging and important applications of computational models of
physical systems is to make predictions when no observations of the quantities being
predicted are available. This is the usual situation when model results are to be used to
support decisions (e.g. design or operations decisions) where predictions are needed
precisely because observational data are not available when the decision must be made.
Predictions then are essentially extrapolations of available information to the quantities
and scenarios of interest. The validation challenge is to assess whether such an
extrapolation can be made reliably. The structure of many computational models
actually makes this possible. However a critical ingredient is a representation of the
uncertainty introduced due to any modeling errors in such a way that the uncertainties
can be propagated to the predictions. A primary challenge is formulating a model error
representation that respects both what is known about the phenomenon being modeled
and the known deficiencies of the model. In this talk we will explore a basis for making
reliable extrapolative predictions using imperfect models. We will also discuss the
representation of model errors in several physical domains including chemical kinetics,
turbulent combustion and contaminant dispersion in porous media.



Data-Driven Modeling and Optimization with Probabilistic
Multi-Fidelity Surrogates

Paris Perdikaris!, George Em Karniadakis?

Massachusetts Institute of Technology, 2Brown University

Multi-fidelity stochastic modeling entails the use of variable fidelity methods and
models both in physical and probability space. In this new paradigm we target learning
from variable information sources as even under-resolved simulations or simplified
mathematical models or empirical correlations can be employed to construct an
accurate stochastic response surface. The goal of this talk is to provide an introduction
to multi-fidelity modeling using probabilistic machine learning and Gaussian processes.
In particular we will present a general yet flexible data-driven framework that allows us
to simultaneously track both parametric and modeling uncertainties by synergistically
combining models of variable fidelity and exploiting their cross-correlation structure. A
collection of benchmark problems will demonstrate the robustness of the proposed
algorithms with respect to model misspecification (e.g. inaccurate low-fidelity models or
noisy measurements) as well as their accuracy and efficiency for a wide range of target
applications including uncertainty quantification data-assimilation inverse problems
design optimization and beyond.



Sparse Sampling Methods for Large Scale Experimental Data

Rick Archibald

Oak Ridge National Laboratory

This talk will focus on mathematics developed to help with the mathematical challenges
face by the Department of Energy (DOE) at the experimental facilities at Oak Ridge
National Laboratory (ORNL). This talk will specifically focus on sparse sampling
methods for large scale experimental data. Sparse sampling has the ability to provide
accurate reconstructions of data and images when only partial information is available
for measurement. Sparse sampling methods have demonstrated to be robust to
measurement error. These methods have the potential to scale to large computational
machines and analysis large volumes of data.



Reducing Nonlinear Dynamical Systems Via Model
Reduction and Machine Learning

Kevin Carlberg?, Harbir Antil2, Matthew Barone!, Sumeet Trehan2, Louis Durlofsky?

1Sandia National Laboratories, 2George Mason University, 3Stanford University

Predictive modeling of complex physical systems often necessitates constructing large-
scale nonlinear dynamical-system models that are extremely costly to simulate. This
creates a 'computational barrier' that precludes such high-fidelity models from being
employed in many-query applications (e.g. uncertainty propagation) that can demand
hundreds or thousands of such simulations. This talk describes a two-pronged approach
for using available simulation data to significantly reduce the dimensionality and
complexity of such large-scale dynamical-system models.

First we propose using simulation data related to the system state and nonlinear
functions to construct a projection-based reduced-order model (ROM). Rather than
applying the commonly-used Galerkin projection we show that ROMs constructed via
least-squares Petrov—Galerkin (LSPG) projection exhibit smaller error bounds time-
discrete optimality and greatly improved performance large-scale turbulent-flow
problems.

Second we propose using simulation data related to the error between the reduced-
order and high-fidelity models to construct a model of the ROM error. This approach
applies high-dimensional regression methods from machine learning (e.g. random
forests LASSO) to map a large set of inexpensively computed 'error indicators' (i.e.
features) produced by the reduced-order model to a prediction of its error in a quantity
of interest (i.e. output).



Data-Driven Discovery of Governing Equations in the
Engineering and Physical Sciences

Nathan Kutz
University of Washington

We use emerging large-scale time-series data from modern sensors to directly construct
in an adaptive manner governing equations even nonlinear dynamics that best model
the system measured using sparsity-promoting techniques. Recent innovations also
allow for handling multi-scale physics phenomenon and control protocols in an adaptive
and robust way. The overall architecture is equation-free in that the dynamics and
control protocols are discovered directly from data acquired from sensors. The theory
developed is demonstrated on a number of example problems. Ultimately the method
can be used to construct adaptive controllers which are capable of obtaining and
maintaining optimal states while the machine learning and sparse sensing techniques
characterize the system itself for rapid state identification and improved optimization.



Uncertainty Quantification for Machine Learning and Statistical
Models

David Stracuzzi, Maximillian Chen, Matthew Peterson, Michael Darling,
Charles Volume

Sandia National Laboratories

Charles Darwin once said that "ignorance more frequently begets confidence than does
knowledge." This is especially true in data analytics. By necessity we often rely on data
of debatable quality relevance and completeness to answer all manner of questions.
Moreover our data often come from multiple sources of varying quality and reliability.
Under these conditions the easiest way to be certain about results is to avoid looking too
closely.

Data-driven uncertainty analysis takes the opposite approach; it looks very closely at the
available data and the statistical modeling process to determine both the stability of the
learned model and the reliability of its predictions. The talk begins with a discussion of
what uncertainty means in a data analytics context where it comes from and why
analyzing uncertainty is important. We then summarize applications and preliminary
results in two domains: seismic analysis and overhead image analysis. The talk
concludes with a discussion of possible long-term implications of the work for data
collection data analysis and decision making.



Low-dimensional Couplings for Bayesian Inference

Youssef Marzouk, Alession Spantini, Daniele Bigoni

Massachusetts Institute of Technology

We will discuss how transport maps, i.e. deterministic couplings between probability
measures can enable useful new approaches to Bayesian computation. In particular we
present a variational approach to Bayesian inference that constructs a deterministic
transport between a reference measure and the posterior measure without resorting to
MCMC or importance sampling. Independent and unweighted posterior samples can
then be obtained by pushing forward reference samples through the map.

Making this approach efficient in high dimensions requires identifying and exploiting
low-dimensional structure. We present new results relating the sparsity and
decomposability of transports to the conditional independence structure of the target
distribution. We also describe conditions common in inverse problems under which
transport maps have a particular low-rank or near-identity structure. In general these
properties of transports can yield more efficient algorithms. As a particular example we
derive new “online” variational algorithms for Bayesian inference in nonlinear and non-
Gaussian state-space models with static parameters.



A Generalized Multi-Resolution Expansion for Uncertainty
Propagation with Application to Cardiovascular Modeling

Daniele Schiavazzi

University of Notre Dame

Computational models are used in a variety of fields to improve our understanding of
complex physical phenomena. Recently the realism of model predictions has been
greatly enhanced by transitioning from deterministic to stochastic analysis frameworks
where the effects of the intrinsic variability in parameters loads constitutive properties
model geometry and other quantities can be more naturally included. A general
stochastic system may be characterized by a large number of arbitrarily distributed and
correlated random inputs and a limited support response with sharp gradients or event
discontinuities. This motivates continued research into novel adaptive algorithms for
uncertainty propagation particularly those handling high dimensional arbitrarily
distributed random inputs and non-smooth stochastic responses.

In this talk I will discuss a generalization of a previously proposed multi-resolution
approach to uncertainty propagation that improves computational efficiency can handle
arbitrarily distributed random inputs and non-smooth stochastic responses and
naturally facilitates adaptivity i.e. the expansion coefficients encode information on
solution refinement. Our approach relies on partitioning the stochastic space into
elements subject to binary refinements that are particularly effective in avoiding the
exponential increase in the multi-resolution basis cardinality and significantly reduce
the regression complexity for moderate to high dimensional random inputs.

The performance of the approach is demonstrated through previously proposed
uncertainty propagation benchmarks and stochastic multi-scale finite element
simulations in cardiovascular flow. In these latter simulations we show that our
approach is able to combine random inputs assimilated by sequentially sampling from
their joint posterior distribution and inputs with assumed distributions.



Efficiently Computing Covariance of Parameter Estimates in
Inverse Problems

Paul E. Barbone!, Bryan Chue!, Quang Ha!, Assad Oberai?

Boston University, 2Renesselaer Polytechnic Institute

Uncertainty quantification in inverse problems presents distinct opportunities and
challenges relative to UQ in forward models. A formal solution for the a posteriori
probability distribution (PPD) for inverse problems is often readily available but is
difficult to work with practically. For unimodal posteriors the PPD may be
approximately characterized by its mode and covariance about the mode. Computing
these quantities can present formidable challenges. In practice finding the MAP
estimate may require minimizing a very high dimensional function (O(105 - 10°)
parameters) with complex (e.g. discretized nonlinear) PDE constraints. For such a
problem merely storing the final covariance may require tens of terabytes. We show that
the structure of inverse problems leads to a sparse update on a predictable and a priori
known covariance operator. This leads to an efficient sparse basis in which to compute
and store the covariance. We show how the covariance can be accurately computed with
relatively little computation over and above that used in finding the MAP estimate. This
method can thus be used to compute the uncertainty in an inverse problem solution
relatively efficiently. We describe the approach formally in a relatively general setting
and demonstrate it with examples in inverse diffusion and inverse elasticity.



A Randomized Misfit Approach for Data-Driven PDE-
Constrained Bayesian Inverse Problems

Tan Bui-Thanh, Elle Le, Aaron Myers

University of Texas at Austin

A randomized misfit approach is presented for the efficient solution of very large-scale
PDE-constrained inverse problems with high-dimensional data. The contribution of this
work is to offer a theory-based framework for random projections in this inverse
problem setting. The stochastic approximation to the misfit is analyzed using random
projection theory. The interplay of both Johnson-Lindenstrauss theory and Morozov’s
discrepancy principle is shown to be essential to the result. The computational cost
savings for very large- scale PDE-constrained problems with high-dimensional data is
discussed. Numerical verification of theoretical findings are presented for model
problems of estimating a distributed parameter in an elliptic partial differential
equation. Results with different random projections are presented to demonstrate the
viability and accuracy of the proposed approach.



Selection and Validation of Predictive Models of Tumor Growth
and Cancer Therapies

J. Tinsley Oden?, Ernesto Lima?, Amir Shahmorad!, Barbara Wohlmuth2, Thomas
Horger2, Thomas Yankeelov!, David Hormuth?

University of Texas at Austin, 2Technical University of Munich

Stochastic phenomenological models of vascular tumor growth in living tissues based on
continuum mixture theory and principles of cancer biology are described. These are
used to predict the evolution of brain cancer in laboratory animals. A Bayesian
framework is proposed for managing model calibration validation and for prediction.
Models of radiation effects on tumor growth are also studied. The OPAL algorithm is
implemented to control parameter sensitivities model plausibilities model inadequacy
and to the solution of this forward predictions problem. Examples include the
applications to predictive methods to model glioma in laboratory rats. Encouraging
results in tumor growth predictions are described.



A Reduced-Order Kalman Filtering Approach for Data-driven
Parameter Estimation in Arterial Hemodynamics

C. Alberto Figueroa

University of Michigan

A major challenge in constructing three-dimensional patient-specific hemodynamic
models is the calibration of boundary condition and material parameters that enable
model predictions to match patient data on flow pressure wall motion etc. acquired in
the clinic. We have implemented a parameter estimation framework based on reduced-
order Kalman filtering [1, 2] to estimate the Windkessel parameters that characterize
the outflow boundary conditions in a 3-D subject-specific fluid-structure interaction
model of aortic hemodynamics.

We first demonstrate the suitability of this methodology to recover estimates and
covariance metrics of tissue stiffness in an idealized model using synthetic data. Then
we estimate outflow boundary condition parameters in a clinical scenario: The
estimation algorithm incorporates noninvasive flow data acquired using magnetic
resonance imaging and pressure data from applanation tonometry in a healthy human
volunteer and successfully produced converged estimates for the subject-specific aorta
model. Numerical experimentation suggests that having time-resolved flow
measurements in the branches of the model and pressure data at a single location is
sufficient for the successful recovery of the boundary condition parameters.



Multifidelity Methods for Uncertainty Propagation and
Rare Event Simulation

Benjamin Peherstorfer!, Karen Willcox2, Max Gunzburgers, Boris Kramer2

'University of Wisconsin 2Massachusetts Institute of Technology
3Florida State University

In many situations across computational science and engineering multiple
computational models are available that describe a system of interest. These different
models have varying evaluation costs and varying fidelities. Typically a computationally
expensive high-fidelity model describes the system with the accuracy required by the
current application at hand while lower-fidelity models are less accurate but
computationally cheaper than the high-fidelity model. Uncertainty quantification
typically requires multiple model solves at many different inputs which often leads to
computational demands that exceed available resources if only the high-fidelity model is
used. We present multifidelity methods for uncertainty propagation and rare event
simulation that leverage low-cost low-fidelity models for speedup and occasionally make
recourse to the expensive high-fidelity model to establish unbiased estimators. Our
methods combine low-fidelity models of any type including projection-based reduced
models data-fit models and response surfaces coarse-grid approximations and
simplified-physics models. Our numerical results demonstrate that our multifidelity
methods achieve significant speedups while providing unbiased estimators even in the
absence of error control for the low-fidelity models.



When Does an Accurate Model Lead to a Predictive Simulation?
Qiqgi Wang*, Alexandre Marque?, Xiao Heng?
Massachusetts Institute of Technology, 2Virginia Tech

Data-based methods have great potential in modeling unclosed term in physics-based
simulations. Such data-based methods often minimizes the modeling error on a training
set. This error minimization however does not always lead to the most predictive
simulation. One factor is the possibility of overfitting which can be addressed by many
statistical and machine learning techniques. There is another factor that should be
considered when combining data-based modeling and physics-based modeling. This
factor is model conditioning which quantifies how much a small error in a model term
impacts the solution. We will use analysis and examples to show that modeling
conditioning is essential to ensure accurate solution of data-based modeling. We will
discuss challenges in constructing well-conditioned data-based modeling and in
particular what conditioning means in the context of chaotic fluid flow.



Scalable Methods for Optimal Control of Systems Governed by
PDEs with Random Coefficient Fields

Omar Ghattas!, Peng Chen!, Umberto Villa!, Alen Alexanderian?,
Noemi Petra3, Georg Stadler4

IICES University of Texas at Austin 2North Carolina State University 3UC Merced 4Courant
Institute NYU

We present a method for optimal control of systems governed by partial differential
equations(PDEs) with uncertain parameter fields. We consider an objective function
that involves the mean and variance of the control objective a form of risk-averse
optimal control. Conventional numerical methods for optimization under uncertainty
are prohibitive when applied to this problem; for example sampling the (discretized
infinite-dimensional) parameter space to approximate the mean and variance would
require solution of an enormous number of PDEs which would have to be done at each
optimization iteration. To make the optimal control problem tractable we invoke a
quadratic Taylor series approximation of the control objective with respect to the
uncertain parameter field. This enables deriving explicit expressions for the mean and
variance of the control objective in terms of its gradients and Hessians with respect to
the uncertain parameter. The risk-averse optimal control problem is then formulated as
a PDE-constrained optimization problem with constraints given by the forward and
adjoint PDEs defining these uncertain parameter gradients and Hessians.

The expressions for the mean and variance of the control objective under the quadratic
approximation involve the trace of the (preconditioned) Hessian and are thus
prohibitive to evaluate for (discretized) infinite-dimensional parameter fields. To
overcome this difficulty we employ a randomized eigensolver to extract the dominant
eigenvalues of the decaying spectrum. The resulting objective functional can now be
readily differentiated using adjoint methods along with eigenvalue sensitivity analysis to
obtain its gradient with respect to the controls. Along with the quadratic approximation
and truncated spectral decomposition this ensures that the cost of computing the risk-
averse objective and its gradient with respect to the control---measured in the number
of PDE solves—is independent of the (discretized) parameter and control dimensions
leading to an efficient quasi-Newton method for solving the optimal control problem.
Finally the quadratic approximation can be employed as a control variate for accurate
evaluation of the objective at greatly reduced cost relative to sampling the original
objective. We present results of collaborative work with R. Moser and T. Oliver on the
optimal control of a turbulent jet flow model with an algebraic turbulence model with
uncertain parameter field.



Adjoint-Based Ignition Sensitivity in Turbulent Combustion

Jonathan Freund!, David Buchta', Jesse Capecelatro?
University of Illinois at Urbana-Champaign, 2University of Michigan

The talk will cover ongoing efforts using adjoint-based sensitivity in conjunction with
large-scale simulations of flow turbulence. A current target of these efforts is adjoint-
based sensitivity calculations for large-scale turbulent combustion simulations with the
goal of identifying quantifying and reducing prediction uncertainties. It is demonstrated
on a non-premixed shear layer a reacting jet-in-crossflow and ignition in decaying
turbulence. We distinguish sensitivities between a detailed and a global one-step
hydrogen-air mechanism. The primary model system is the ignition of a turbulent jet by
a laser-induced optical breakdown (LIB). Ignition defined by a space-time integral of
temperature is most sensitive to the modeled plasma kernel geometry and its energy
deposited on the gas phase. Thus combining the adjoint-based sensitivity with the LIB's
aleatoric interspersed plasma kernels these parameters dominate the propagated output
uncertainty which is local to the inputs. The present combustion sensitivity studies are a
component of a multi-scale multi-physics combustion application being investigated in
the Illinois Center for Exascale Simulation of Plasma-coupled Combustion (XPACC).
Similar examples from aeroacoustic flow control will also be included in the discussion.



Data-Driven Bayesian Model Selection:
Parameter Space Dimension Reduction using Automatic
Relevance Determination Priors

Mohammad Khalil

Sandia National Laboratories

Bayes’ theorem provides parameter estimates that blend prior knowledge of the system
parameters with indirect observational data. Bayesian model selection utilizes such
estimates in comparing the suitability of many plausible models using the so-called
model evidence the probability that randomly selected parameters from the prior would
generate the observed data. There are various approaches to prescribe the prior
distribution depending on the level of knowledge of the modeler. Popular priors include
diffuse priors Jeffrey’s priors conjugate priors and informative priors. The choice of
prior distribution and associated parameters that parametrize such priors (called hyper-
parameters) has a major impact on any Bayesian estimation procedure and subsequent
model selection analysis.

In the context of feature selection automatic relevance determination (ARD) aka sparse
Bayesian learning is an effective tool for pruning large numbers of irrelevant features
leading to a sparse explanatory subset. It does so by regularizing the Bayesian inference
solution space using a parameterized data-dependent prior distribution that effectively
prunes away redundant or superfluous features. The hyper-parameter of each ARD
prior explicitly represents the relevance of the corresponding model parameter. The
hyper-parameters are estimated using the observational data by performing evidence
maximization or type-II maximum likelihood. In the context of model selection ARD
priors aid in finding the best model nested under the envisioned model. ARD provides a
flexible Bayesian platform to find the optimal nested model by eliminating the need to
propose candidate nested models and associated prior pdfs. Thus ARD priors effectively
reduce the parameter space dimension of the inference procedure based on available
observations.

This talk will motivate the use of ARD priors in the context of physics-based Bayesian
model selection. Results will be presented for an application to model selection of
complex aeroelastic systems modeled by coupled nonlinear stochastic ordinary
differential equations using noisy wind-tunnel experimental observations. The
experiments consist of a NACA0012 airfoil undergoing limit cycle oscillation in the
transitional Reynolds number regime.



A Paradigm for Data-Driven Predictive Modeling using Field
Inversion and Machine Learning

Karthik Duraisamy, Anand Singh, Shaowu Pan

University of Michigan

A data-driven modeling paradigm based on field inversion and machine learning
(FIML) is proposed to aid the quantification of model discrepancy in a predictive
setting. This work uses inverse modeling to obtain corrective spatio-temporally
distributed functional terms offering a route to directly address model-form errors.
Once the inference has been performed over a number of problems that are
representative of the deficient physics machine learning techniques are used to
reconstruct the model corrections in terms of features that appear in the closure model.
When these reconstructed functional forms are embedded in existing PDE solvers
improved predictions and uncertainty bounds are obtained. The
inversion/learning/uncertainty propagation framework is cast in a Bayesian setup
allowing for consistent uncertainty quantification. Results are presented in fluid flow
and materials problems.



Posters

Ali Akhavan Safaei

A Bayesian Framework for Rheology Model Combination and UQ in Simulation
of Geophysical Mass Flows.

Watheq Al-Mudhafar

Boosted Regression-based Proxy Optimization of CO2 Enhanced Oil Recovery
in Unconventional Reservoirs

Negin Alemazkoor

A Near-Optimal Sampling Strategy for Sparse Recovery of Polynomial Chaos
Expansions

A Certified Model Reduction Approach for Robust Optimal Control with PDE

Alessandro Alla Constraints
Ahmed Attia Cluster Sampling Algorithms for Non-Gaussian Data Assimilation
Olalekan Babaniyi Inversion Techniques from Transient Data in the Ultrasound Elastography Field

Ramin Bostanabad

Data-Driven Modeling and UQ in Multiscale Materials

Peng Chen

Taylor Approximation and Variance Reduction for PDE-constrained Optimal
Control under Infinite-dimensional Uncertainty

Oriol Colomes

Mesh Discretization Error and Uncertainty Quantification: A Variational
Multiscale Approach

M. Chase Dwelle

Flooding Dynamics with Spectral Projection and Bayesian Compressive Sensing

Wouter Edeling

A Return to Eddy Viscosity UQ framework

Gianluca Geraci

Multilevel/Multifidelity Strategies for Forward UQ

Alex Gorodetsky Low-rank Approximation for Gaussian Filtering

Quang Ha Kr}.llcl)v Su.bspac.e Methgd for Hessian Approximation - Conjugate Gradient in
Infinite Dimensional Hilbert Space

Eric Hall Uncertainty Quantification for Generalized Langevin Dynamics

Joey Hart Efficient Computation of Sobol' Indices for Stochastic Models

Jeffrey Hokanson Data-Driven Polynomial Ridge Approximation Using Variable Projection

Ming Jiang g\l rSrilllllII):tri\(/)ilf:d Learning Framework for Arbitrary Lagrangian-Eulerian

Soo Kyung Kim Machine Learning Approach of Climate Event Prediction

Ellen Le/Aaron Myers/

Vishwas Rao

Scalable Methods for Large-Scale Data-driven Bayesian Inverse Problems

Jing Lin

Bayesian Learning for High-Dimensional Chaotic Dynamical Systems with
Application to Two-Dimensional Turbulent Bottom Gravity Currents

Erin Linebarger

Physically Constrained Ensemble Kalman Filter

Sudipto Mandal

Analyzing Constitutive Parameters In Multi-Scale Material Models Using
Canonical Correlation Analysis

Damon McDougall

QUESO: A Parallel C++ Library for Uncertainty Quantification

Joseph Slagel

Stochastic Newton and Quasi-Newton Methods for Large Linear Least-squares
Problems

David Sondak

Calibration of a Stochastic Model Inadequacy Representation for Chemical
Kinetics

Gray Thomas

Identifying Bounded Uncertainty Models with Convex Optimization




Gregory Teichert

Data-interactive Computational Materials Physics: Studies of Precipitate
Morphology by Combination of Experiment Nonlinear Elasticity and Machine
Learning

Panagiotis Tsilifis

Polynomial Chaos Basis Adaptation Schemes for Uncertainty Propagation and
Design Optimization on a SCRAMIJET Engine

Umberto Villa

Integrating Data with Complex Predictive Models under Uncertainty: An
Extensible Software Framework for Large-Scale Bayesian Inversion

Tsuyoshi Wakamatsu

Information Contents of a 4dvar Analysis Based on a Reduced Order Model
Approach

Jianxun Wang

Physics-Informed Data-Driven Approach for Reducing Model Discrepancies
Due to Unresolved Physics

Sichao Wu

GENEUS: a Computational Framework for Uncertainty Quantification
Sensitivity Analysis and Experimental Design for Network-based Models

Benjamin Zhang

Measure Transport Methods for Rare Event Simulation

Jiaxin Zhang

Data-Driven Probabilistic Calibration of Material Models from Small Datasets
and its Influence on Structural Response

Directions to Alumni Center

Turn left outside the AT&T Center, head north, walk to 21* Street. Turn right on 21* Street and
walk until you get to San Jacinto. Turn left on San Jacinto until you reach the Alumni Center,
which is directly across from the stadium. The dinner will be held in the Legends Room.
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