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The distinctive viscoelastic behavior of polymers results from a coupled interplay of motion on multiple
length and time scales. Capturing the broad time and length scales of polymer motion remains a challenge.
Using polyethylene (PE) as a model macromolecule, we construct coarse-grained (CG) models of PE with 3-5
methyl groups per CG bead and probe two critical aspects of the technique: pressure corrections required
after iterative Boltzmann inversion (IBI) to generate CG potentials that match the pressure of reference fully-
atomistic melt simulations and the transferability of CG potentials across temperatures. While IBI produces
non-bonded pair potentials which give excellent agreement between the atomistic and CG pair correlation
functions, the resulting pressure for the CG models is large compared to the pressure of the atomistic system.
We find that correcting the potential to match the reference pressure leads to non-bonded interactions with
much deeper minima and slightly smaller effective bead diameter. However, simulations with potentials
generated by both IBI and pressure-corrected IBI result in similar mean-squared displacement (MSD) and
stress auto correlation functions G(¢) for PE melts. While the time rescaling factor required to match CG
and atomistic models is the same for pressure and non-pressure corrected CG models, it strongly depends on
temperature. Transferability was investigated by comparing the MSD and G(t) for potentials developed at

different temperatures.

I. INTRODUCTION

Modeling dynamics of entangled polymers is challeng-
ing since the time for a polymer to diffuse its own size
increases faster than N3 where N is the polymerization
number. Capturing dynamics is critical for the real-
ization of the unique viscoelastic behavior of polymers.
With typical N varying from tens to millions this time be-
comes exponentially greater than the shortest time scales,
which are on the scale of the bond vibrations. As a result,
fully atomistic simulations of entangled polymer liquids,
even at temperatures far above the glass transition, re-
main computationally inaccessible. To overcome this lim-
itation, coarse-grained (CG) models have been developed
to study polymer dynamics on long time scales that cap-
ture their unique properties. The most basic CG model
is the bead-spring description,! in which polymer chains
are modeled simply by beads connected by a finite ex-
tensible spring to avoid chain crossing. Because of its
simplicity and computational efficiency, this model has
been widely used to probe phenomena that occur at long
length and time scales.’™ To incorporate the local de-
tails, yet retain computational efficiency, new atomistic
derived CG models have recently been developed.?®

The basic approach of all atomistic derived CG models
is to combine groups of atoms into pseudoatoms. United
atom (UA) models,” '3 which combine each CHy/CHj3
group into a single pseudoatom, have been in use for
decades. UA nonbonded interactions are often fit to
a functional form, such as a Lennard-Jones (LJ) 12:6
or Buckingham exponential-6 potential, with parameters
chosen to reproduce physical properties such as densities

and critical temperatures of small molecules. Another
widely used CG representation is the MARTINI model,
where each bead represents of order four CHy/CHs. In
this model, the nonbonded interactions are assumed to be
LJ 12:6 potentials with the interaction parameters fit to
match bulk densities and compressibilities of short alkane
chains. To improve the ad-hoc approach often used to
determine the interaction parameters for UA and MAR-
TINI potentials, more rigorous approaches such as force
matching, iterative Boltzmann inversion, and optimized
relative entropy have been developed.!® 2! These new
powerful methods encode atomistic details into the CG
model interactions, enabling simulation over extended
length and time scales. While atomistic-derived CG
models capture well some properties they are not yet
universally derived and face several challenges that arise
from the basic construction of the potentials.

One critical open question in developing CG models
is determining the optimal number of atoms represented
by a CG bead that enable effective measurements of the
properties of the system.?? This issue is directly corre-
lated with resolving the shortest length scale in a poly-
mer that is fundamental to the macroscopic dynamics
and properties. Using linear polyethylene as a model
system, we?*?4 have probed the effects of the degree of
coarse-graining on structure and dynamics of highly en-
tangled polymer melts. The number of -CHs- methy-
lene groups A in a psuedoatom was varied as illustrated
in Figure 1 and potentials were developed using IBI for
A = 2—6. This work showed that independent of the de-
gree of coarse graining, all static and dynamic properties
are essentially the same once the dynamic scaling factor



a and non-crossing constraint for A\ = 6 are included.??
Using this CG model we were able to reach times of over
500 ps, allowing us to measure a number of quantities
which can be compared directly to experiments, includ-
ing the stress relaxation function, plateau modulus and
shear viscosity.?* Here we build on this understanding of
the CG process, resolving the pressure effects that arise
from IBI methods and the temperature transferability of
CG potentials.

Further, we show that the dynamic rescaling factor «,
which results from the smoother free-energy landscape
of the CG models'®21:23:25-32 compared with atomistic
ones increases with decreasing temperature. This allows
one to reach even longer effective simulation times as
temperature is reduced towards the glass transition tem-
perature.

CG3 CG4 CG5

FIG. 1. Coarse grained bead for A = 3, 4 and 5. The bead
diameter corresponds to the position of the minimum in the
nonbonded interaction.

II. MODEL AND METHODOLOGY
A. Atomistic and Coarse Grained Models

The CG models were derived from atomistic simula-
tions of 345 chains of C,,Hy,19 with n = 96 for A = 3,
4 and 6 and n = 95 for A = 5. Figure 1 shows the CG
beads for A = 3, 4 and 5. CG models were derived at
temperature T = 500 K, mass density p = 0.72 g/cm?
and T = 400 K, p = 0.77 g/cm3. The atomistic simu-
lations used the All Atom Optimized Potentials for Lig-
uid Simulations (OPLS-AA)33:34 potential with modified
dihedral coefficients that better reproduce the properties
of long alkanes.?® With this modified potential the mean-
squared radius of gyration (Rg} and end-to-end distance
(R?) match experimental values.

Most simulations were run at constant volume with a
Langevin thermostat with damping time constant ¢, to
maintain the temperature.3637 In the atomistic simula-
tions, the nonbonded potential is the sum of L.J and long-
ranged Coulomb interactions, while for the CG models
the nonbonded potential is short-ranged. In the atom-
istic simulations the Langevin damping constant is ¢, = 1
ps, while for the CG model ¢, = 10 ps. For the atomistic
simulations, the attractive 7~ dispersion term in the LJ
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FIG. 2. Nonbonded potentials Usgo(r) for CG3 (green), CG4
(black) and CG5 (red) before (dashed) and after (solid) the
pressure correction.

interaction and the electrostatic interactions are calcu-
lated using the particle-particle-particle-mesh (PPPM)
algorithm.38 Interactions closer than 1.2 nm are calcu-
lated in real space; those outside this range are calcu-
lated in reciprocal space with precision of 3x1072. The
repulsive 7~ !2 term in the LJ interaction is truncated at
1.2 nm. For the atomistic model, the bond, angle, dihe-
dral and nonbonded interactions are integrated with a 1
fs time step, and long-ranged interactions are integrated
with a 4 fs time step using the RESPA integrator.?® For
the CG models the nonbonded interactions are truncated
at 1.0 nm. The time step for the CG simulations is 10 fs
for A = 3 and 20 fs for A > 4. For CG6, we found that
the maximum bond length is larger than the character-
istic size of the CG bead and as a result, the chain cut
through each other.?32* As a result for CG6 we adopted
a modified segmental repulsive potential developed by
Sirk et al.*® to prevent chain crossing. All simulations
are performed using the Large Atomic Molecular Mas-
sive Parallel Simulator (LAMMPS) molecular dynamics
code.*!

Atomistic C, Hay, 12 samples with n = 96 and n = 95
were first equilibrated at 400 and 500 K for 30 ns, after
which particle configurations were sampled every 0.1 ns
for 7 ns. Over this time the chains moved a significant
distance relative to their end-to-end size, and many local
conformations were sampled. Atomistic simulations for
a system of 216 chains of length n = 480 were also run
at 500 K at p = 0.73 g/cm? for 675 ns and at 400 K
at p = 0.77 g/cm3 for 2275 ns. Both the n=96 and 480
systems were used to calibrate the time scaling for the
CG potentials. For n = 96 and n = 95, we ran also
simulations at 450K, 550K, and 600K to calculate the
dynamic scaling factor «.

The CG models use bond and angle distributions from
the atomistic simulation to create a tabulated CG poten-
tial. The bond potential is calculated from the distribu-
tion of bond lengths P(1),

Ug(l) = —kpTIn [P(1)/1?] (1)



TABLE 1. Pressure, density, and end-to-end distance (R?) for the simulations performed at 500K with Usoo(r).

n |CG model|(R?) [nm?]|Pressure Corrected [MPa]|Non Pressure Corrected [MPa]|Density [g/cm?]
96 AA 14.5 £ 0.6 2.0 £2.5 - 0.72
CG3 16.8 £0.6 4.1 £2.73 308.8 +3.2 0.72
CG4 17.7 £0.7 5.2 £1.21 241.0+2.4 0.72
CGbH 18.6 £0.8 9.1 £2.12 192.54+2.0 0.72
CG6 15.4 £1.0 4.2 £0.98 124.5 +1.3 0.72
480 AA 88.6 £0.6 8.52 +£9.3 - 0.73
CG3 94.4 +0.6 14.4 £2.03 329.8 £1.7 0.73
CG4 101.1 +0.7 5.8 +1.36 261.4+1.4 0.73
CGbH 109.8 +0.8 9.5 +1.05 169.0 +1.1 0.73
1920 CG4 382.3 £0.7 15.6 £0.36 447.6 +£0.7 0.76
CGH 360.9+0.8 12.7 £0.30 203.3 £0.3 0.76

where [ is the bond length for CG beads overlaid on the
atomistic reference configurations. The bond potentials
for the CG models with CG3, CG4, and CG6 are shown
in Salerno et al.?* Similarly, the angle potential

Ua(0) = —kpT In [P(6)/sin(0)] 2)

is computed from the distribution P(6), where 6 is the
angle between CG bead triplets from the atomistic refer-
ence configuration. The angle potentials U4 () for A = 3,
4 and 6 are shown in Salerno et al.?* Both the bond and
angle potentials were the same at 400 and 500 K. For the
nonbonded tabulated potential Uy p(r), we used IBI

U3 = Vi) + M S

where g(r) is the target intermolecular radial distribu-
tion function obtained from the atomistic simulation and
g'(r) is the radial distribution function of the current iter-
ation 4. The initial potential, US z(r) = —kpT In [g(r)].
During the iteration procedure A = 0.5 initially, but A
is tuned as g*(r) converges toward the target g(r). The
potential and force are required to go smoothly to zero
at the cutoff by multiplying the potential by the Mei-
Davenport-Fernando taper function.*?

flx) =< (1 —2)3(1 + 3z + 622),
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where z = (r — ry,)/(Tc — Tm), ™m = 0.9 nm is the start
of the taper range and r. is the cut off distance. After
50—70 iterations, the radial distribution nicely converges
to the target g(r) as shown in Figure 3 for T' = 500 K,
giving the resulting nonbonded potential shown in Figure
2 by the dashed lines. However, the resulting pressure P
of all four of the resulting CG model is large, a seen in
Table 1.

This pressure enhancement has been observed in IBI
generated CG potentials and to reduce the pressure of the
CG models to better match that of the atomistic system,
pressure correction has been applied®34°

. r
At == (1-5)  6)
C
where P; is the average pressure during iteration i, P = 3
MPa is the target pressure, and v is a factor to control
convergence.

B. Pressure Effects and Transferability

Pressure Correction Effects While application of the IBI
procedure to extract the non-bonded potential leads to
excellent agreement between the target g(r) and that for
the CG model for all A, the resulting CG system often has
unrealistic high pressures. There are two ways to address
it. The first is to disregard the excess pressure and run
constant volume simulations at experimental densities.
We will further discuss this approach as our new poten-
tials are applied to polymers. The second is to apply a
pressure correction.*3 4%

The pressure correction was applied with an additional
10—20 IBI iterations, generating pressure corrected non-
bonded potentials, with pressures much lower than before
the pressure corrections as shown in Table 1. The result-
ing nonbonded potentials are shown by the solid lines in
Figure 2 for T = 500 K. Pressure corrected, each non-
bonded potential has a deeper minimum, and a slightly
smaller effective diameter compared to non-pressure cor-
rected ones. Reducing the pressure of the CG model
increases the height of first peak in the radial distribu-
tion function, as seen in Figure 3. We refer to these
nonbonded potentials developed at 500 K as Usgo(r).
Temperature transferability Here we test the transferabil-
ity of the potentials developed for A = 4. In Figure 4, the
target radial distribution function for CggHy94 at 400 K,
p = 0.77 g/cm? is compared to the the pressure corrected
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FIG. 3. Intermolecular radial distribution function g(r) for
the atomistic Cyoe H194 system (black) compared to CG4, be-
fore (blue) and after (red) the pressure correction at 7' = 500
K. Inset shows the region around the first peak.

CG potential Uygp(r). The pressure for the IBI potential
without the pressure correction is 280 MPa. As for 500
K, the pressure corrected potential produces a slight in-
crease in the height of the first peak compared to the
target. For comparison, g(r) for the pressure corrected
CG Uspo(r) run at 400 K at the same density is shown.
As seen in Figure 5, the attractive well is 20% deeper for
CG potential developed at 500 K compared to that at
400. (Note that the potential in Figure 5 is normalized
by the kgT.) The position of the minimum is shifted
only slightly from ry;, = 0.552 nm for Usgo(r) to 0.548
nm for Uygo(r).

Comparing the pressure corrected Uspo(r) to the stan-
dard LJ 12:6 potential, which is often used in bead-spring
models of polymers,! # show that these atomistically in-
spired CG potentials are softer with a much shallower
attractive well than the LJ 12:6 potential. Since PE is
locally stiff, as the degree of coarse graining increases,
the methyl groups in each CG bead take up less of the
volume. As a result, the nonbonded potentials become
softer with increasing A. A similar softening of the poten-
tial with increasing degree of coarse graining was found
by Clark et al.*® who represented each chain as a col-
lection of interpenetrating blobs. This effect is seen in
Figure 5 where the CG models, already softer than the
LJ potential, are progressively softer as A increases.

11l. APPLICATION OF POTENTIALS TO POLYMERS
A. Effects of Pressure Correction

As was shown in the previous section, introducing a
pressure correction that uses the atomistic pressure as
a guide, results in the pair correlation function g(r) for
the CG system that slightly diverges from the target.
However, we find that these difference hardly leads to
any variances in the static properties of the system, in-
cluding the end-to-end distant, radius of gyration and
single chain structure factor S(q)**2*. The impact on
polymer dynamics was further explored. It is now well
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FIG. 4. Intermolecular radial distribution function g(r) for
the atomistic Cos H194 system (black) and for CG4 for Uago(r)
(red) and Usoo(r) (blue) at 400 K.

min

FIG. 5. Pressure corrected non-bonded potentials Unp(r)
generated at 400 K (black solid) and 500 K (black dashed) for
A =4 and at 500 K for CG5 (red) and CG3 (green) compared
to LJ 12 : 6 interaction (blue). The distance is scaled by the
position of the attractive minimum rmin and the strength of
the potential is scaled by kg7 for the PE models and e for
the LJ potential.

established that coarse graining reduces the number of
degrees of freedom in a system, creating a smoother free-
energy landscape compared with fully atomistic simula-
tions. This results in faster dynamics for the polymer
chain than for the fully atomistic model.!?-21,23,25-32

The dynamics of the atomistic and CG models can be
mapped on to each other by scaling time in the CG mod-
els by a dynamic scaling factor «.!%21:23:25-32 We have
previously shown that for the pressure corrected poten-
tials, a is dependent on the degree of coarse graining
A, but « does not depend on chain length, at least for
n > 96.2324 Here, to determine the effects of including
the pressure correction on the chain mobility we follow



the MSD of the inner 6 CG beads g;(t) for systems pre-
pared using the pressure and non-pressure corrected po-
tentials for A = 4 at 500 K and compared it to the mo-
bility of the inner 24 CHy beads for the atomistic model
for n = 96 and 480. As seen in Figure 6, g;(¢) for the
atomistic and both CG models collapse onto the same
curve after scaling time by a. « is essentially same for
the pressure and non-pressure corrected potentials for all
A studied as seen from the inset, even though the well
depth of the two are significantly different. This result is
consistent with that of Grest* who showed that at fixed
density, far above the glass transition the depth of the
attractive well has little effect on the chain mobility.

g,(t) [nm’]
|

10 10’ 10
time [ns]

FIG. 6. Mean squared displacement ¢1(¢) of the center 24
carbons for Cy Ha,12 atomistic model for n = 96 (solid line)
and n = 480 (dashed line) compared to that of the center 6
CG beads for the pressure corrected (circles) and non-pressure
corrected (squares) CG model for n = 96 (red) and n = 480
(blue) for CG4 at 500 K. The data for the CG models are
scaled by « in time so that they overlap with the atomistic
results. Inset: a versus A at 500 K, with (black) and without
(red) the pressure correction.

As much of the fascinating dynamics of polymers is
in their entangled regime, MSD of entangled chains for
the two potentials is probed. The MSD of the center of
mass g3(t) and g1 (t) for the inner 6 beads for C920Hssa2
for the pressure and non-pressure corrected potentials for
CG4 and 5 are compared in Figure 7. There is no no-
ticeable difference between the two potentials or for the
degrees of coarse graining. As discussed previously,?3:24
the g1(t) of inner monomers shows a distinct crossover
from the early time ¢'/2 Rouse regime to t'/4 intermedi-
ate scaling predicted by the tube model at an entangle-
ment time 7, ~ 10 ns. For late times, as shown in Figure
7, the MSD of the center of mass and inner monomers
converge at a diffusive time 74 ~ 10° ns with a diffusion
coefficient D = 1.2 x 107!2 m?/s for n = 1920. These
results for the intermediate t!/4 power law are in good
agreement with previous long time simulations using the
bead-spring model.!'3 However, unlike the bead-spring
model this result demonstrates that one can capture long
time and length scales while accounting for atomistic de-
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FIG. 7. MSD for the center of mass gs(t) (closed) and inner
6 monomers g¢;(¢) (open) for Cig20Hzs42 at 500 K for CG4
(squares) and CGbH (circles) for pressure corrected (black) and
non-pressure corrected (red)

The stress response is one of the unique properties
of polymers that characterize their viscoelastic behav-
ior. The stress response function after a small pertur-
bation G(t) can be expressed by the stress autocorre-
lation function according to the fluctuation-dissipation
theorem, G(t) = (V/kpT)(0as(t)oas(0)) where onp(t)
are the off-diagonal components (zy), (xz) and (yz) of
the stress tensor. For all degrees of coarse graining and
chain lengths we studied, we found little difference be-
tween the pressure and non-pressure corrected potentials.
As shown in Salerno et al.?4, for CG4, for example, the
plateau value G{Y = 2.1 & 0.3 MPa and entanglement
molecular weight M, = pRT/GY = 1300 g/mol are in
good agreement with experiment.?” 4% A similar plateau
modulus value was found by Padding and Briels®® for
n = 1000 with A = 20 with their non-crossing constraint.

Next, we calculated the bulk modulus for the atomistic
and CG4 pressure and non-pressure corrected models at
500K. The simulation cell was compressed at a constant
rate of 6.66x10~* m/s for the atomistic simulations. The
CG simulations were compressed at the same scaled rate.
The pressure corrected bulk modulus 576 MPa is similar
to that obtained for the atomistic model, 653 MPa, while
the bulk modulus for the non-pressure corrected poten-
tial as much higher, 1085MPa. This result is in contrast
to Wang et al.*® who found for water their pressure cor-
rected gave a modulus which significantly deviated from
that obtained using atomistic models.

The difference in the two potentials is most strongly
seen when varying the temperature. One example is
the thermal expansion coefficient. In this case we slowly
cooled the CggH194 melt from 500 K to 200K at constant
pressure. For the non-pressure corrected potential, we
held the pressure at P = 241 MPa, its value at 500 K.
For the pressure corrected potential we set P = 3 MPa.
As shown in Figure 8, the agreement between the atom-
istic and two pressure corrected potentials for the density



as a function of temperature is in reasonably good agree-
ment while the thermal expansion is clearly much lower
than the atomistic simulation for non-pressure corrected
potential. The linear thermal expansion coefficients at
480 K are 3.5 and 3.6 x 10~* g/em3K for the pressure
corrected potentials Usoo(r) and Uypo(r) and 1.6 x 1074
g/cm?K for the non-pressure corrected Usgo(r) poten-
tial compared with 3.1 x 10~* g/cm?®K for the atomistic
model. The pronounced density increase between 230
and 300 K corresponds to a semicrystalline state.

260 360 460 560

T [K]
FIG. 8. Density versus temperature for the atomistic simu-
lation for CosH194 (blue) and for CG4 pressure (black) and
non-pressure corrected potential (green) for Usoo(r) and the
pressure corrected potential Uso(r) (red) cooled at 0.0875
K/ns. For the CG models, the time is unscaled.

B. Transferability of the Potential

One of the main unsettled issues with the wide use
of CG potentials is the transferability between temper-
atures. Moore et al.’!, used multiple temperatures to
develop their CG potential for a generic LJ fluid and mut-
liple small molecules, but did not explore the pressure,
thermodynamics, nor the dynamics. We have developed
two potentials at 400 and 500 K. As seen in Figure 5 while
the position of the potential minimum is only slightly
shifted for the CG nonbonded potential developed at 500
K compared to 400 K, the depth of the attractive well is
20% deeper for CG potential developed at 500 K com-
pared to that at 400 K. This results in an 10% increase in
the height of first peak for the pair correlation function
g(r) for Usgo(r) compared to Uygp(r) when both are used
at T = 400 K as shown in Figure 4. The measured end-
to-end distance and radius of gyration was essentially the
same for the two potentials when run at 400 K. To test
the impact of this difference in the non-bonded potential
on the dynamics, we compare in Figure 9, the MSD of
the center of mass g3(¢) and that of the center 6 beads
g1(t) for the potentials. Even though the well depth of
the two potentials are significantly different, they give
very similar dynamics.

As a further test, we determined the stress autocorre-
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FIG. 9. Mean squared displacement of the center of mass
g3(t) (closed) and center beads g1 (t) (open) for n = 1920 for
Uaoo(r) (red) and Uspo(r) (black) at 400K for CG4.

lation function G(t) at 400 K for the potentials derived at
400 and 500 K but run at 7" = 400 K. As shown in Figure
10, the plateau of Usgo(r) is a little lower than Usgo(r).
The plateau value GYY = 2.040.3 MPa and entanglement
molecular weight M, = pRT/G{ = 15004200 g/mol for
Usoo(r), and G = 1.6 £ 0.3 MPa and M, = 1700 4 300
g/mol for Uy ().
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FIG. 10. Stress autocorrelation function G(¢) for CG4 at
400K for Usoo(r) (red) and Usoo(r)(black) for n = 480 (cir-
cles) and for n = 1920 (squares).

One of the advantages of using CG models is that the
dynamics can be considerably faster than for the atom-
istic models while retaining atomistic details. For PE the
dynamic scaling factor a between the atomistic and CG
models varies from a factor of 6 to 9 at T" = 500K de-
pending on the degree of coarse graining as shown in
the inset of Figure 6. Not surprisingly, the dynamic
scaling factor « is temperature dependent as shown in
Figure 11 for CG4 and CG5. « is only weakly tem-
perature dependent for high 7" > 500 K but increases
to ~ 12 at 400 K for both degrees of coarse graining.
As seen in the inset, « follows the Vogel-Fulcher equa-
tion @ = ageaxp(A/(k(T — Tyr))) with ag = 4.126,
A/k = 80.33, and Tyr = 324.83.52 Further, we show



that the dynamic rescaling factor, which results from
the smoother free-energy landscape of the CG models
compared with atomistic ones increases with decreasing
temperature.®? This increase in « as T' decreases can be
very advantageous in modeling entangled polymers near
the glass transition as relaxation times diverge exponen-
tially. Combining the larger time step and reduced num-
ber of degrees of freedom for the CG models with dy-
namic rescaling factor, allows one to reach effective sim-
ulation times not possible using fully atomistic models.
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FIG. 11. Scaling factor « for Usoo(r) for CG4 (red) and CG5
(black) versus temperature. The inset shows the same data
plotted versus 1000/T with the Vogel-Fulcher equation (blue).

IV. SUMMARY

Here we have shown the physical implications of pres-
sure corrections in atomistic derived CG models and their
effect on polymer dynamics. Using PE as a model sys-
tem we showed that while the IBI method produced non-
bonded pair potentials which give excellent agreement for
the atomistic and CG pair correlation functions, the re-
sulting pressure for all degrees of coarse graining studied
is very large. Correcting the potential so the pressure P
~ 0 leads to non-bonded models with much deeper min-
imum and slightly smaller effective diameter. However,
both the pressure and non-pressure corrected CG models
give similar results for the mean squared displacement
and the stress auto correlation function for PE melts
when run at the same density. The pressure correction
does not change the time rescaling factor a between the
CG models and the atomistic model. The difference in
the two potentials does affect strongly the thermal ex-
pansion, with the pressure corrected potential in better
agreement with the atomistic simulation than the non-
pressure corrected potential.

As one of the current limitations of using CG models
is the transferability of the pair potentials, we developed
CG potentials at different temperatures. We find, the
depth of the attractive well in the non-bonded pair po-
tential decreases as the reference temperature used to
develop the CG potential decreases. While the decrease

in the well depth results in differences in the height of
the first peak in the pair correlation function, somewhat
surprisingly, there was little effect on the chain mobility
or viscoelastic response.

Finally, we showed that the dynamic rescaling factor «
is essentially the same for the IBI and pressure-corrected
IBI potentials for a fixed density and temperature. This
is consistent with the idea that coarse graining reduces
the number of degrees of freedom, creating a smoother
free-energy landscape compared with fully atomistic sim-
ulations. As the temperature decreases and density in-
creases, the local packing inhibits the motion of the atom-
istic system more so than that of the soft CG beads, re-
sulting in an increase in «.
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