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Postclosure PA Modeling  

 PFLOTRAN Simulations

– Nominal Scenario

• Deterministic and Probabilistic

– Disturbed Scenario (Stuck Package)

• Deterministic

•Coupled heat and fluid flow
•Waste package degradation
•Waste form dissolution
•Radioactive decay and ingrowth
•Solubility, sorption
•Advection, dispersion, diffusion
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Deep Borehole Disposal of Cs/Sr
Capsules – Reference Design 

 1936 Cs and Sr capsules / 108 WPs

– 18 capsules per Waste Package (WP)

• 6 layers of “3-packs”

• Aged to 2050 (Freeze et al. 2016) 

– SrF2 : 601 capsules, ~34 WPs

• 90Sr (1,370 g/WP)

• 1,229 W/WP avg. thermal output

– CsCl: 1335 capsules, ~74 WPs

• 137Cs (2,340 g/WP),135Cs (4,408 g/WP)

• 978 W/WP avg. thermal output 

 All 108 WPs fit in a single borehole with an 
EZ (bottom-hole) diameter of 31 cm (12.25 in)

 Emplacement Zone Performance

– WP breach occurs 1 year after emplacement

– Waste form degradation is instantaneous 
following WP breach

– Unlimited radionuclide solubility 3
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Deep Borehole Disposal of Cs/Sr
Capsules – Reference Design 

 Seal Zone

– Entirely within crystalline basement

– Seals and plugs emplaced directly against borehole 
wall

– Alternating sequence of materials

• bentonite seals

• cement plugs

• ballast (silica sand/crushed rock) 

 Upper Borehole Zone

– Primarily within sediments

– Plugs emplaced against cemented casing

• cement and cement plugs

 Seal Zone Performance

– Seal materials maintain integrity (some degradation) 
over period of thermally-induced upward flow 
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Post-Closure PA –
Nominal Scenario 

 Emplacement Zone

– Decay heat effects:

• Thermal perturbation in borehole produces thermally-
driven upward groundwater flow

• Heat conduction in surrounding crystalline basement rock

– Radionuclide dissolution and transport in groundwater

• Advection, diffusion, and decay (no sorption in EZ)

 Post-Closure Release Pathways

– Radionuclide transport in groundwater by advection 
(thermally-induced upward flux), diffusion (upward and 
lateral), sorption, and decay

• Up borehole through seals / DRZ

• To host rock surrounding EZ

– No regional flow gradient in 
crystalline basement

– Biosphere (dose)

5
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Post-Closure PA –
Nominal Scenario 

 Sediments

– Hypothetical alternating horizontal units

 Crystalline Basement

– Sparsely fractured granite

– Heat flux = 60 W/m2 at 6000 m

• Thermal gradient ~ 25°C/km

• Ambient temperature 

– 10°C at surface

– ~125° to 140°C in EZ

– Reducing geochemical conditions at depth

– Salinity-dependent density gradients
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Material
Perm.
(m2)

Porosity
(-)

Diffusion 
Coeff.
(m2/s)

Thermal 
Cond. 

(W/m∙K)

Heat 
Capacity
(J/kg∙K)

Sr Kd

(ml/g)
Cs Kd

(ml/g)

EZ Annulus 1×10-12 0.99 9.9×10-10 0.58 4192 0 0

Cement Plug 1×10-18 0.175 3.1×10-11 1.7 900 0 0

Bentonite Seal 1×10-18 0.45 2.0×10-10 1.3 800 1525 560

Ballast 1×10-14 0.20 4.0×10-11 2.0 800 0 0

Crystalline Rock 1×10-18 0.005 1.0×10-12 2.5 880 1.7 22.5

DRZ 1×10-16 0.005 1.0×10-12 2.5 880 1.7 22.5
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Nominal Scenario Deterministic Results –
Dissolved Concentrations (mol/L)
[PFLOTRAN]

 < ~100 yrs = Thermally-induced upward advection

– Highest in EZ annulus, overlying seal diverts flux to DRZ

 > ~100 yrs = Slow diffusion

 Concentrations in SZ cement plug at 2 elevations (seal2 and seal0)

– Concentrations in DRZ at same elevations are similar

7from Freeze et al. (2016), Figure 5-6

seal2
seal0

In SZ Cement Plug 
at z=4463.4 m (seal0)

In SZ Cement Plug 
at z=4438.4 m (seal2)
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 Dissolved Concentration of 135Cs at 10,000,000 years

– Minimal migration beyond Emplacement Zone

8
Stein et al. (2015)

Cs 
WPs

Nominal Scenario Deterministic Results –
Dissolved Concentrations (mol/L)
[PFLOTRAN]
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 100 realizations with 12 sampled parameters

 Sensitivity (Spearman rank correlation) to 
maximum 135Cs concentration

– calculated at several locations

– shown at seal0 and seal2 in the cement plug
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seal2
seal0

Parameter ID Range Units Distribution

Bentonite Permeability kseal 10-20 – 10-16 m2 log uniform
Cement Permeability kcement 10-20 – 10-16 m2 log uniform
DRZ Permeability kdrz 10-18 – 10-15 m2 log uniform
WP Tortuosity tWP 0.01 – 1.0 -- log uniform
Bentonite Porosity pseal 0.40 – 0.50 -- uniform
Cement Porosity pcement 0.15 – 0.20 -- uniform
DRZ Porosity pdrz 0.005 – 0.01  -- uniform
WP Breach Time breach 1 – 100 yr uniform
Cs Kd Bentonite KdCs_s 120 – 1000 ml/g uniform
Sr Kd Bentonite KdSr_s 50 – 3000 ml/g uniform
Cs Kd Crystalline/DRZ KdCs_g 5 – 40 ml/g uniform
Sr Kd Crystalline/DRZ KdSr_g 0.4 – 3 ml/g uniform

Nominal Scenario Probabilistic Results –
[PFLOTRAN / DAKOTA]
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Key parameters for seal2

− Similar to seal0 but rank 
correlations not as “robust” 
due to minimal number of 
realizations with “non-zero” 
max. concentration

Key parameters for seal0

− WP breach time

− Cement plug permeability

− DRZ permeability

− DRZ porosity

10from Freeze et al. (2016), Figure 5-9

Cement Plug (seal2)

from Freeze et al. (2016), Figure 5-11

Cement Plug (seal0) Cement Plug (seal0)

Cement Plug (seal2)

Nominal Scenario Probabilistic Results –
[PFLOTRAN / DAKOTA]
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Post-Closure PA –
Disturbed Scenario 

 Post-Closure Release Pathways

– Undisturbed pathways from nominal scenario

– WP (74th Cs) stuck in borehole-intersecting fracture

• fracture: k = 10-14 m2,  De = 1 x 10-12 m2/s

• cement injected below stuck package

• SZ and UBZ sealed above stuck package

– Regional flow gradient in crystalline basement

• case 1 = 0 m/m (same as nominal scenario)

• case 2 = 0.0001 m/m

– Other disturbed scenarios

• Seismic, igneous, human intrusion

11
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 Dissolved Concentration of 135Cs at 10,000,000 years

– Advection of 135Cs up fracture (~200 m) due to regional gradient

– 135Cs still remains well below sedimentary overburden

12
Stein et al. (2015)

Disturbed Scenario Deterministic Results –
Dissolved Concentrations (mol/L)
[PFLOTRAN]

Regional Gradient = 0 m/m Regional Gradient = 0.0001 m/m

Cs 
WPs
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Summary and Conclusions 

 Preliminary results from post-closure PA calculations suggest 
minimal radionuclide migration beyond the emplacement zone and 
zero dose at biosphere

– Radionuclide mobility is limited by:

• Borehole seals that can maintain their physical integrity for the time period of 
thermally-induced upward advection (a few hundred years)

• Slow diffusion after the thermal period

• Geochemically reducing conditions that enhance sorption.

– Engineered barrier performance (WP, WF, seals) is adequate for post-
closure safety, but could be engineered to be more robust, as needed 

13
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Next Steps 
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High Permeability PathwaysSalinity-Dependent Density

Regional Flow with 
Density Stratification
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